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We study the critical behavior of a Frenkel-Kontorova model, extended to include a second har-
monic of the external potential. For certain parameter values of the model the transition from
the locked to the sliding incommensurate phase shows a scaling anomaly for the correlation
length, with the critical exponent varying with the potential. We conjecture that this behavior in-

dicates a crossover to a new universality class.

X~ Xo6'= limw- (3)

is chosen incommensurate with Ll (i.e., 8/L~ approaches

The physics of incommensurably modulated structures
poses a variety of important and challenging questions. '

One model, albeit a very crude rendering of a real incom-
mensurate system, has played an important role in ad-
dressing these questions: this is the Frenkel-Kontorova
(FK) model. Here one considers a one-dimensional lat-
tice of particles txo, . . . , x~1, with a nearest-neighbor
elastic interaction,

W(xj. ,x~.- 1) = 2 (xj. —xj.—)
—Sp)

xj being the position of the jth particle, and bo a disloca-
tion parameter. The particles are subject to an external
potential V&, usually taken to be sinusoidal,

V =X +[1—cos(2trx /L )] .
J

The problem has two natural length scales: the average
lattice spacing 8 and the periodicity L~ of the potential.
Rather surprisingly, considering the simplicity of the
model, the competition between the two scales generates a
number of intriguing phenomena. In particular, as shown

by Aubry, if 6 via the boundary condition

an irrational number), the ground state undergoes a
structural phase transition at a well-defined value X1=7 l.
When X ~

(X l, the lattice responds smoothly to an
infinitesimal displacing force (sliding phase), while for

the particles remain locked to their positions
(pinned phase) The pinn. ing transition, with X1)k1, is of
second-order type, characterized by a critical exponent
v =0.99 for the correlation length.

What happens if a third length scale is introduced into
the problem, e.g. , by adding a term,

V2 =X2g f 1 —cos(2trxl/L z)1,
J

to Vi? If L2 is incommensurate with both 8 and L ~, there
are reasons to expect that the system will develop a disor-
dered ground state. On the other hand, with L2 com-
mensurate with Li, the ground state is still incommensur-
ably modulated. In this latter case it is of interest to ask
if, and how, the critical behavior at the pinning transition
will be influenced by the presence of the new scale L2.
One can show, by topological arguments, that the struc-
ture of the ground state is linked to the local structure of
certain trajectories in a class of area-preserving twist
maps, and thus, the problem can be attacked by a direct
study of these maps. Renormalization-group arguments,
as well as numerical studies of twist maps, seem to favor
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the existence of one (or several) universality class(es) of systems with identical scaling behavior. In fact, as we will
show below, the critical behavior is rather more intricate, characterized by a scaling anomaly in certain ranges of values
for X,

& and k2, with the critical exponent for the correlation length varying with the external potential.
For simplicity we study the model with L2 =

2 L &, and thus take for the free energy at zero temperature,

~29 =g —,
' (x —x —i

—Bo) — [1 —cos(2+x /Li)] — [1 —cos(4rrxi/Li)],
(2n) (4rr )

(5)

where we have rescaled k( and X2, defined in the range
X) &0, X2~0.

This is a discrete version of the double sine-Gordon
model, and might be of relevance for, e.g. , the study of
misfit dislocation on an Au(111) reconstructed surface. '

The equilibrium equations,

xg
=0

with L ~
= 1 generate the area-preserving twist map,

p, + ~ =p, — sin(2nx, ) — sin(4+x, ),
xj.+( =xj+p~+) (7)

with p~—=xj —xj —~. In what follows we restrict the map
to the torus [0,1] (g( [0,1].

As for the standard FK model, the incommensurate
ground state in the sliding phase is represented by a
Kolmogorov-Arnold-Moser (KAM) trajectory, nonhomo-
topic to zero, with winding number co B. As the parame-
ters k& and X2 are increased, this trajectory breaks up into
a fractal object, a cantorus, "' representing the ground
state in the pinned phase. We choose co= 2 (45+1)
(golden mean), and study the corresponding KAM curve
via its approximating minimax orbits' with winding num-
bers ro„=F„+t/F„.

Here [F„j are the Fibonacci numbers, with the se-
quence [co„] converging to the golden mean. The breakup
of the curve is signaled by a loss of stability of the
minimax orbits, as measured by the residue
R = —,

' (2 —TrM), where M is the Jacobian of the map.
Iterating the map and employing the residue criterion, '"
i.e., identifying the map parameters for which R =0.25 in
the limit of large n, the critical pairs (X,(',k2) can hence be
determined. The resulting phase diagram is shown in Fig.
1, with the area below (above) the curve representing the
sliding (pinned) phase. In Fig. 2 we exhibit two trajec-
tories at criticality, approximated by minimax orbits with
winding numbers 987/610.

It is important to stress that there is a difference be-
tween the phases for X~ =0 and those for A, ~ &0. Along the
critical line, with X~&0, the local behavior of the trajec-
tories shown in Fig. 2 can be expected to be controlled by
the fixed map renormalization for the golden mean wind-
ing number, described below. On the other hand, at the
endpoint, k& 0, the period of the trajectory is halved, so
the winding number is doubled, ' leading to a different re-
normalization.

Turning to the scaling behavior in the critical region,

(„-(x(—x f) (9)

where („ is the inverse Liapunov exponent for the minim-
izing orbit with winding number co„. As n ~, the orbits
converge to the cantorus and g„(with v„v, v being
the critical exponent for the correlation length. For
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FIG. 1. Phase diagram in the (X~,Xq) plane. The area below
(above) the critical line represents the sliding (pinned) phase.
The intersections with the k I and X2 axes are given by
A. f 0.97164 (critical point in the standard FK model) and
X,$ =0.804 72, respectively.

we focus on the correlation length g, defined by

» -exp( I m k I /'&)»k .

g measures the distance over which a perturbation»q
propagates along the lattice, and, as follows from its
definition, is the inverse of the Liapunov exponent for the
trajectory representing the ground state. To study scaling
of the correlation length in the supercritical region, we ap-
proximate the golden mean cantorus with the minimizing
orbits' with winding numbers m„, and compute their
Liapunov exponents over some range A.~

~ X~, j 1,2.
We take 14 pairs (Xf,k2) on the critical line (see Table

I), and for each pair study the map for six values of k( in
the supercritical region

~ k~ —k f ~

~ 0.02, holding k2 fixed.
The obtained results imply a power-law behavior
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FIG. 2. Critical trajectories approximated by minimax orbits
with winding number 987/610. The trajectory hitting the verti-
cal axis at p =0.645 and p 0.609 corresponds to the critical
point (Xf,Al') =(0.02441,0.70000) and (0.56156,0.20000), re-
spectively.
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FIG. 3. Scaling exponents vs orbit levels for scaling in k~.

A, ~
~0.08~0.02, the value of v is consistent with the

golden mean exponent: extrapolation from level n =16
yields v=0.99+.0.005. As an illustration, in Fig. 3 we
display two sequences for Xf =0.97164 (standard FK
model), and k' =0.252 37, respectively. However, for
X~ ~0.08+ 0.02 the sequence of v„do not converge to-
wards the expected value 0.99. Instead the convergence is
now towards exponents which decrease monotonically
with Xf (see Fig. 3). We estimate the lower bound at the
endpoint k~ =0 to be v=0.60%-0.02.

This behavior may suggest the existence of a new fixed
point under renormalization of the map. In fact, as we
have already hinted, there is at least one additional fixed

map which can be found by exploiting the renormalization
operator '

hand, when X& goes to zero the physical winding numbers
of the critical trajectory discontinuously jumps to
2co=m —1. Since co has the continued fraction repre-
sentation [4,4, . . . , 4], the critical trajectory for Xi =0 is
given in terms of the fixed map of

U T
N4 T —8 4 B

It follows from the cubic relations between the numbers
ro and 2ro that the critical fixed map of Eq. (11) is directly
related to a three-cycle of Eq. (10). This three-cycle is a
higher-order solution of Eq. (10), analogous to the
higher-order fixed points of period doubling. ' Numerical

U T
N) T —=B

TU B (10)

where T and U are a pair of commuting maps and 8 is a
scaling operator. In the parameter range where v=0.99,
the critical trajectory of winding number ro is locally given
in terms of the well-known ' fixed map N~. On the other
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TABLE I. Points on the critical line in Fig. 1.
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FIG. 4. Scaling exponent vs orbit levels for scaling in X2.
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observations of the linearization of Eq. (11) around the
fixed map of Eq. (11) show that there is one relevant ei-
genvalue, of magnitude very close to co =4.23. Similarly,
linearizations of Eq. (10) around the three-cycle of Eq.
(10), show, as it must, that 4.23 is a relevant eigenvalue.
In addition, since perturbation of the three-cycle solution
of Eq. (11) can diverge in the direction of the well-known
critical fixed map of that equation, there must be a second
relevant eigenvalue in this case. Unfortunately, we have
been unable to estimate it.

Analagous to examples in finite-temperature critical
phenomena, ' our results suggest that the apparent
"nonuniversal" scaling observed numerically is a manifes-
tation of a crossover to the doubled winding-number fixed
point. We wish to emphasize, however, that we have as
yet no independent observations to support this hy-
pothesis.

The picture takes on an added twist when studying scal-
ing in X2 for nonzero k~. Choosing the same critical points
as above and repeating the analysis, now keeping X& fixed,
we find

(12)

Some of the sequences [v„1 are displayed in Fig. 4. The
instabilities of the supercritical orbits are now more
severe, which prevents us from reaching a level where the
convergence is evident. Nevertheless, the obtained results
again show a scaling anomaly, with, for example, the se-
quences for X2=0.40 and X2=0.78 converging towards

different critical exponents. For kz ~ 0.30, a direct study
of the minimizing orbits is obstructed, due to their insta-
bilities.

The further extension to scaling along a path with
nonzero components in k~ and k2 meets with the same in-
stability problem. Thus some alternative method
should be tried in order to explore the dependence of the
critical exponents on the choice of scaling path.

To conclude, we have found evidence for a scaling
anomaly at the critical transition of a simple two-
parameter model representing an incommensurate struc-
ture. Unless a new kind of critical behavior is involved,
our results probably reflect a crossover to a new fixed
point under renormalization of the corresponding twist
map. However, the exact mechanism which drives the ob-
served scaling behavior remains to be conclusively
identified.
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