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Domain growth and nucleation in a discrete bistable system
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A cubic map lattice, which consists of an array of cubic discrete-time maps coupled through
nearest-neighbor difFusion interactions, is studied in a parameter region where the isolated maps
possess bistable steady states. Within this parameter region, the spatio-temporal evolution of this
deterministic dynamical system exhibits the phenomena of phase separation and nucleation. When
the two coexisting states have the same stability, the domain growth is like that for continuous
systems with a nonconserved order parameter, and follows Allen-Cahn scaling on long distance
and time scales. When the states have difFerent stabilities, growth typically occurs by a nucleation
process. In addition to exploring these phenomena, which have their analogs in continuous sys-

tems, features of the inhomogeneous states peculiar to the discrete model are also investigated.

I. INTRODUCTION

Phase separation and domain growth in nonequilibri-
um systems are common phenomena in nature, yet many
aspects of the description of the dynamics of these pro-
cesses are not completely understood. Typically, the
time evolution of such systems is described in terms of
the behavior of an order parameter, which may be either
conserved or nonconserved. We restrict our attention to
cases where the order parameter is not conserved; thus,
we have in mind phenomena like the competition be-
tween bistable states in a reaction-diffusion system, the
development of domains of staggered magnetization in a
ferromagnetic system, or the antiphase boundary motion
in some alloys, to mention just a few such processes. '

Systems of this type can show rather different kinds of
behavior depending on whether the two competing states
have the same or different stabilities. In the former case,
according to the Allen-Cahn theory, the motion and
growth of one phase in the other is governed by the cur-
vature of the domain boundaries, and does not depend
on the surface free energy. In this circumstance a planar
interface between the phases is stable and will not propa-
gate in space and time. If, on the other hand, one state
is more stable than the other, the more-stable phase will
grow at the expense of the less-stable phase; the planar
interface will move with a constant shape and a constant
velocity whose magnitude depends on the stability
difference. In general, when the curvature of the inter-
face is taken into account, phase growth can be de-
scribed by a nucleation process. There have been
numerous simulation studies which have attempted to
verify various aspects of the theoretical predictions, or
probe the dynamics of the above-mentioned processes
more deeply. '

A class of deterministic discrete-space and discrete-
time models comprising cellular automata and coupled
map lattices also exhibits phase separation and nu-
cleation phenomena. They are trivial to simulate and
amenable to theoretical analysis in some circumstances.
The aims of the present paper are to study and docu-

II. THE DISCRETE MODEL

The model dynamical system was introduced earlier
in an investigation of some aspects of the coexistence of
stable states in spatially distributed systems: It consists
of a d-dimensional array of X coupled cubic maps,

q

x(i, t+1)=f(x(i, t))+y g x(j, t) qx(i,t)—
(j)

with

(2.1)

f(x)= —ax +(1+@)x+c . (2.2)

In Eq. (2.1) (j ) refers to the sutn of the q neighbors of i,
but in this paper we restrict our discussions to the case
of nearest-neighbor coupling in one or two dimensions
where q =2 or 4, respectively. Furthermore, we let
a = 1 and consider the behavior as a function of e, c, and
the coupling strength y.

Simulations and linear stability analyses of this model
have shown that a wide variety of spatio-temporal struc-
tures exist. All of the investigations of domain growth
carried out here pertain to the region of the (e, c, y) pa-
rameter surface where two stable homogeneous steady

ment the existence of a variety of phase-separation phe-
nomena, analogous to those in the continuum systems,
for a coupled map model possessing bistable steady
states.

Section II describes the model and outlines the param-
eter range within which our study is confined. The na-
ture of the discrete, planar interface is studied in Sec. III
and contrasted with the corresponding continuum inter-
face. Domain evolution in two dimensions and effects
due to the existence of curved interfaces are the topics
considered in Secs. IV and V. Section IV deals with the
phase separation of equally stable states, and makes
comparisons with the Allen-Cahn theory, while Sec. V
considers nucleation processes in situations where the
states have different stabilities. The results are discussed
in Sec. VI.
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states coexist. The phase diagram for the relevant pa-
rameter region is shown in Fig. 1. If studies of the
dynamical behavior are confined to this region of the
phase diagram, most of the phenomena exhibited by the
discrete space-time model mimic those of the corre-
sponding continuous system. In fact, Eq. (2.1) is simply
the discrete version of the time-dependent Ginzburg-
Landau (TDGL) model,

x(r, t)= —a [x(r, t)] +ex(r, t)+c+}V'x(r, t), (2.3)

which has been used extensively in theoretical investiga-
tions of phase-separation processes. ' We prefer to re-
gard the coupled map lattice as a model in its own right.
The discrete model has a much richer bifurcation struc-
ture than Eq. (2.3): for example, while subharmonic bi-
furcations can take place as the parameters are tuned in
the coupled map model, these cannot occur in its con-
tinuous counterpart; thus, some care must be used in the
application of the model results to physical systems.
However, we note that in some instances the physical
situation lends itself to modeling by a discrete equation;
this is especially true of some biological applications.
On the other hand, provided the parameter region is
chosen to avoid unwanted bifurcations, the results have
a bearing on physical systems whose underlying dynam-
ics is best described by a continuous model. Evidence
for this point is given in Secs. IV and V.

The paper is largely concerned with the structure and
dynamics of the interface between coexisting stable
states. The simplest type of interface to consider is a
planar one: the equations of motion reduce to those for
a single spatial degree of freedom, and, naturally, com-
plications due to curvature do not enter. Since the na-
ture of the interface determines all the phenomena of in-
terest, we devote the next section to a study of some of
the peculiar features of the discrete, planar interface.

III. STRUCTURE OF THE DISCRETE, PLANAR
INTERFACE

Consider a planar interface separating the two phases.
If c =0 the two phases have identical stability and, in
the continuous case, the interface is stable and has a
hyperbolic-tangent form. For the discrete model, the
planar interface is stable also, and its shape is closely ap-
proximated by a hyperbolic tangent, but is not given ex-
actly by this function. Below we study in some detail
how the interface arises in the discrete model. The
discrete interface has been studied in connection with a
di6'erent set of physical problems: commensurate-
incommensurate phase transitions in metal insulators
and pinned solitons. The equations describing these
systems also take a form which is similar to that of the
coupled cubic map lattice. The analysis presented below
focuses on the symmetry properties of the system and
their role in determining the structure of the stable inter-
facial profile. An algorithm is developed for directly
computing the profile, and a temporal stability analysis
is carried out in order to provide insight into how the in-
terface arises and responds to perturbations. Finally, the
generalization to the asymmetric case c =0 is discussed,
focusing on the peculiarities of the discrete model.

Since the spatial degree of freedom normal to the in-
terface is the only relevant one, we study the stationary,
inhomogeneous solutions of Eq. (2.1), with q =2 and i a
one-dimensional discrete index:

x(i+1)=—y [f(x(i)}—x(i)]—x(i —I)+2x(i) .

(3.1)

Introducing y (i ) =x (i —1), the following two-
dimensional area-preserving map with periodic boundary
conditions is obtained:

x (i +1)=—y [f(x (i)}— (xi)]+2 (ix) y(i)—
=F(x (0}—y (0,

0.6

0.4

y(E +1)=x(0,
which may be written in vector form as

r(i +1)=M( r(i ) ) .

(3.2a)

(3.2b)

O.2

—0.2

-O. I O. I

This map is of the De Vogelaere form, ' which is mani-
festly area preserving. One iteration of the map corre-
sponds to a displacement of one lattice spacing along the
one-dimensional chain. The solutions of Eq. (3.2)
represent all possible stationary profiles for the one-
dimensional version of Eq. (2.1).

In the continuous case, a simple integration of the sta-
tionary form of Eq. (2.3) is possible, and yields the
hyperbolic-tangent profile for the solution connecting the
two stable states. Analysis of the discrete model requires
other techniques. The fixed point solutions of Eq. (3.2)
are given by

FIG. 1. Phase diagram in the (e,c) parameter plane for
y =0.15. Within the shaded area two stable steady states coex-
ist. The curve marked t corresponds to a tangent bifurcation
where the number of stable states changes. The curve marked
h is the first subharmonic bifurcation boundary.

f (x*)=x* (3.3)

and correspond to homogeneous solutions, whose stabili-
ty can be determined from the eigenvalues of the Jacobi-
an matrix. For c =0 and y ~ 0, the eigenvalues are
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a+= 1 — ' + —'
2@ y 4y

1/2

(3.4)

(3.5)

for the fixed point x' =0, and
1/2

1+—+ ——+2

for the fixed points x i z
——+&@. The trajectories defined

by Eq. (3.2) are shown in Fig. 2 for different values of e
and y. The pictures were obtained by direct iteration of
200 initial conditions equally spaced on the lines x =y or
x = —y. The results are quite different from those of the
corresponding continuous case." Some initial conditions
produce closed invariant elliptic curves centered on the
origin, but this is true only for e &4y, when ko are a
complex conjugate pair, and x =0 is an elliptic point.
For larger values of e this fixed point undergoes a
subharmonic bifurcation, which drastically changes the
solution structure [see Fig. 2(d)]. However, even though
this behavior may affect the dynamics of the phase sepa-
ration starting from the unstable state, it has no effect on
the stable spatial solutions. The behavior of the map
close to the other fixed points, x*, z, is more relevant to
the nature of the discrete interface. For any value of e,
both eigenvalues in Eq. (3.5) are real and positive.
Moreover, since X+ (X ) is always larger (smaller) than
one, the fixed points are hyperbolic. The boundary layer
that connects the two phases is a trajectory of the map
which starts from one fixed point and terminates in the
other. However, as Fig. 2 shows, the path connecting
the two fixed points must thread its way through a
chaotic layer. The thickness of this layer depends criti-
cally on e and disappears only for @=0. This implies

F(x) =P(x)+P '(x) . (3.6)

It can be shown' that this implies the existence of two
symmetry curves, x =y, associated with reAection
through the bisectrix, and x =F(y)/2, associated with
refIection through lines parallel to the abscissa. Both
curves are shown in Fig. 2. However the closed invari-
ant curves show an additional symmetry with respect to
x = —y; this symmetry does not exist for the open
curves„and is expected in the physics of the problem as
a consequence of the equal stability of the two coexisting
states for c =0. Imposing the latter symmetry in Eq.
(3.2), the number of possible orbits describing the inter-
face is reduced to two: the orbit passing through the
line x = —y, which is represented by

—x ( n) =x—(n + I), n )0, (3.7)

and the orbit passing through the lines x =0 and y =0,
—x( n)=—x(n), n)0. (3.8)

It is possible to give a graphical representation of such
orbits by simply iterating the map, Eq. (3.2), in the
neighborhood of the hyperbolic fixed points. The stable
and unstable manifolds associated with these fixed points
can be obtained by iterating a set of points lying along
the eigenvectors,

that a smooth "separatrix" connecting the two hyperbol-
ic fixed points does not exist ~ Nevertheless, a smooth
phase boundary profile exists and corresponds to a tra-
jectory through this chaotic layer. The nature of this
trajectory can be examined through an investigation of
the symmetries associated with the map.

If P(x) is an invariant curve under the transformation
Eq. (3.2), then

(b) X+
e+ —— (3.9)

(c) (d

FIG. 2. Conservative map [Eq. (3.2)] for c =0 and difFerent
values of e and y: (a) @=0.15, @=0.15; (b) @=0.23, @=0.15;
(c) a=0. 3, @=0.15; and (d) v=0. 42, @=0.1. The solid line is
the symmetry curve x =F{y)/2 whose intersections with the
bisectrix are the homogeneous states.

and slightly displaced from the fixed points. Figure 3
presents a sample of the manifolds for different values of
e and y. The "supersymmetric" orbits given by Eqs.
(3.7) and (3.8), which are indicated in Fig. 3(a) by
squares and crosses, respectively, correspond to the in-

tersection of the stable manifold of one fixed point with
the unstable of the other one; i.e. , they are heteroclinic
points. The two different paths are sketched in Fig. 3,
and show that the relative slopes of the manifolds
remain constant at the intersection points for each of the
supersymmetric orbits. The system selects the "smooth"
symmetric orbits that allow an iterate of Eq. (3.2) to
travel from one phase to the other through the chaotic
layer.

We next present an algorithm to numerically evaluate
the intersections between the two manifolds. Starting in

the neighborhood of either fixed point along the expand-
ing direction, an iterate of the conservative map will

eventually cross the particular lines on which the super-
symmetric orbits lie. We want to determine the point r
whose nth iteration lies exactly on a symmetry line and
is thus a point on a supersymmetric orbit. Criven an ini-
tial point ro near the fixed point and along an eigenvec-
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time scale corresponds to a fast relaxation (few time
steps) of an arbitrary "kinked" initial condition to a
state close to one of the two supersymmetric orbits, the
second time scale corresponds to the relaxation of the
orbit of Eq. (3.8) towards the profile described by Eq. .
(3.7); this time scale is characterized by the eigenvalues
shown in Fig. 4.

More information about the nature of the instability
of the trajectory of Eq. (3.8) can be obtained from the
distribution of the entire set of eigenvalues and from the
corresponding eigenvectors. Figure 5 shows the eigen-
values, ordered by magnitude, of the two supersyrn-
metric orbits for @=0.25 and @=0.15. The tails of the
curves are independent of the orbit considered, and these
small-magnitude eigenvalues are simply those that are
found from a linear stability analysis of the inphase
solution. '"

0

-I 5 0 J5

A(j ) =f '(x *
) —4y sin

X (3.14)

I.O—

Here the index j labels the wavenumbers of the Fourier
modes (0&j &N/2). In Fig. 5 comparison between Eq.
(3.14) and the numerical evaluation of the eigenvalues is
presented. Only few eigenvalues are larger than A(N/2)
showing that the stability or instability of the orbits is
mainly determined by the interfacial region. Figure 6 re-
ports the eigenvectors associated with the interface for
the unstable supersymmetric orbit. The largest eigenval-
ue has a symmetric eigenvector, strongly peaked at the
center of the interface, suggesting that the origin of the
instability resides in the peculiar behavior of the orbit of
Eq. (3.8) in the neighborhood of x =0; any perturbation
of this point will break the supersymmetry, x = —y, and
the perturbation will grow in time until the profile de-
scribed by Eq. (3.7) is reached.

The theory discussed up to this point has dealt only
with the equal stability case (c =0), which possesses an

FIG. 6. Eigenvectors of the unstable profile (3.8). The num-
bers indicate the magnitudes of the corresponding eigenvalues
with l having the largest magnitude. The ordinate scale is ar-
bitrary.

obvious symmetry in the exchange of the fixed points.
The one-dimensional analysis of the continuous equation
(2.3) (Ref. 11) shows that for any value of c different
from zero the interface front will travel in space until a
uniform state of the more-stable phase is restored. This
is due to the absence of a separatix connecting the two
hyperbolic fixed points for every value of c&0. The sit-
uation is quite different for the discrete case. The sym-
metry with respect to x = —y is destroyed, reflecting the
different stabilities of the fixed points; however, the in-
tersections between the stable manifold of one fixed
point and the unstable of the other one survive for small
values of c, and solutions which show similar behavior
(but not the same symmetry) to Eqs. (3.7) and (3.8) can
still be found. This allows one to recover a stationary
profile. As the plots in Fig. 7 show, the intersections
gradually approach each other, and for a critical value
of c that depends on e the solutions connecting the two
stable states disappear when the curves cease to inter-
sect. This corresponds to an inverse tangent bifurcation
at which the stable and the unstable orbits analogous to
Eqs. (3.7) and (3.8) collide. This picture is confirmed by
the temporal linear stability analysis, which shows that

(b)
j

/t
t

0—

FIG. 5. Eigenvalue distribution for the temporal stability
analysis for the stable (light line) and unstable (heavy line)
profiles [Eqs. (3.7) and (3.8)] for E=O 25 and y=0. . 15. The
squares are the eigenvalues of the homogeneous solution evalu-
ated using Eq. (3.14).

FICi. 7. Same as Fig. 3 but for (a) c =0.004 and (b)
c =0.007. The disappearance of a stable intersection occurs
via a tangent collision with a neighboring unstable intersection.
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at the critical point the largest eigenvalues for both or-
bits are equal to unity. For any larger value of c the
profile connecting the two states will move, on the aver-
age, at a constant velocity (see Sec. V).

A different situation is found for negative values of y.
The two eigenvalues [Eq. (3.5)] form a complex-
conjugate pair for

(3.15)

giving rise to elliptic fixed points; it is now impossible
for a phase point to move from one fixed point to the
other. Moreover, a linear stability analysis shows that in
such a region of the parameter space only period-one
spatially alternating solutions are stable, due to the ex-
istence of a short wavelength instability. When
@=2

~ y ~

the elliptic fixed points undergo a subharmonic
bifurcation and become hyperbolic. Figure 3(b) shows
the stable and unstable manifolds of the hyperbolic fixed
points of map, Eq. (3.2), for e&2~ y ~. None of the
structure found for negative values of y has an analog in
the continuous model.

It is important to note that the effects described in this
section are connected to the fact that the system de-
scribed by Eq. (2.1) has discrete spatial variables, and
not on the specific form (invertible or not) of the map.

IV. PHASE SEPARATION FOR EQUALLY STABLE
STATES

In this section we study the dynamics of the phase-
separation process in the discrete model for c =0 where
the two coexisting fixed points have equal stabilities. We
consider the time evolution following a critical quench in
which the temperature (the e parameter) is suddenly
changed below the critical point (e=c =0). The lattice
is initially prepared in the unstable state [x(i,j)=0,
Vi,j] to which small fiuctuations are added in order to
simulate the internal noise of the physical system. The
spatial competition between the two phases leads to the
growth of clusters of one phase in the other.

Many of the consequences of the Allen-Cahn theory
for the motion of curved boundaries in a system with a

nonconserved order parameter have been checked in
Monte Carlo (MC) simulations of Ising models. ' We
show below that most aspects of the curved boundary
evolution in the cubic map lattice are in accord with this
theory.

In the phase-separation process any curved boundary
separating the two different phases moves with a velocity
v given by

(4.1)

where K is the curvature of the boundary in two dimen-
sions. Note that there is no dependence on the form of
the potential and that stationary boundaries have a pla-
nar shape. For a disk-shaped nucleus of radius R,
IC =1/R and integration of Eq. (4.1) yields

R'(t) —R'(0) = 2yt .— (4.2)

In the MC simulations and in many experiments on sys-
tems with a nonconserved order parameter' the scaling
of the dynamic structure factor with t ' has been found
as a consequence of Eq. (4.2). This implies that the
boundary motion governs the dynamics of these systems
on long distance and time scales.

In Fig. 8(a) the square of the radius of a circular nu-
cleus is plotted as a function of discrete time for a
80)& 80 lattice of coupled cubic maps. The long-time be-
havior is linear and the measured slope is found to be in
agreement with Eq. (4.2) to within 0.02%, for a=0. 1.
Effects due to the discrete nature of the model were
found for larger values of e. Figure 8(b) shows R (r) for
a=0.3; small-scale oscillations are superimposed on the
linear decay. An explanation of the origin of these oscil-
lation s can be given easily. Consider the boundary
structure along a radial line from the center of the nu-
cleus. In the continuous case the one-dimensional
boundary layer has a fixed shape in a reference frame
moving with velocity v. However, in the discrete-space
model the propagation is not smooth since the space is
discrete and the boundary layer has to reorganize itself
at each time step among the lattice sites in order to
satisfy Eq. (4.2). Obviously this effect is stronger for

1000 1000

R
500

R2

500

1000 2000 3000
0

10OO 2OOO 3OOO 4000

FICx. 8. Temporal evolution of the square of the radius of a circular nucleus for y =0.15, c =0, (a) a=0. l and (b) &=0.3.
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sharper boundary layers, i.e., for larger values of the e
parameter. While the overall motion of the boundary
may be a linear function of t', on a microscopic level
the motion can be a periodic or more complex function
of time. This aspect of the problem is currently under
investigation.

A more important phenomenon occurs for small
values of the diffusion constant y. Figure 9 shows the
critical value of y for the stability of disk-shaped nuclei.
In the shaded region, curved boundaries are found to be
stable in disagreement with the Allen-Cahn theory.
However, it is possible to avoid this problem, choosing a
value of y which guarantees instability of nuclei whose
size is comparable with that of the system. For example,
we have confirmed that any disk-shaped nucleus is un-
stable for y=0. 15 in a 100)&100 coupled map lattice.
This behavior is a consequence of the space discretiza-
tion and does not depend on the particular form of the
map. '

A further check of the Allen-Cahn theory entails the
calculation of the dynamic structure factor, which is
defined as

BALLL „

4ii

Lj~ 115 IJ

rr"r I

IL
(t i I)LLLL I

(III I

ll I

'

Ilr

xtr
I ~ II
''(('tI

t=40

=;
i~i

I

III
"

"II

L

t =64

1S(k, t)= —g exp(ik j)C(j., t),
J

(4.3)
gl' )L

with N the number of coupled maps, and C(i, t) is the
correlation function given by

c(j,t)=(X (j'x, t) (j'x+j, )) t.

J

(4.4)

t= 144
The angular brackets signify an average over initial sys-
tem states. In Fig. 10 the time evolution of one realiza-
tion of the phase-separation process is shown for @=0.2,
y =0. 15. The initial configuration was obtained by
selecting x (i, 0) =0, Vi (the unstable state) and adding
small-amplitude white noise. ' The motion of the curved
boundaries is evident. The structure factor was calculat-
ed by averaging over 60 difFerent realizations of the
phase-separation process and the results are reported in
Fig. 11 where the function 1 go[jSo(k, t)It

juris

plotted as a
function of kt' . The t' scaling for all the allowed k
values is satisfied for times longer than the time charac-

FIG. 10. Time evolution of a 100)&100 coupled cubic map
model for a=0.2, c =0, and y=0. 15. The color coding is

chosen to emphasize deviations from the stable, homogeneous
states and focus on the phase boundaries.
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FIG. 9. Critical value y, for the stability of nuclei of radius

FICs. 11. Quantity log(o[S(k, t)/t] as a function of kt' for
(a) t =60, {b) t =110, and (c) t =160. Note that at time t =60
the system has not yet relaxed to the Allen-Cahn regime. This
picture can be compared with the analogous one of Ref. 17
where the theoretical prediction of Ref. 16 is also reported.
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teristic of the relaxation to the stable states, and the
shape of the structure factor is in agreement with
theoretical predictions. ' A comparison of this type was
made earlier by Oono and Puri' for a system of coupled
hyperbolic-tangent maps; however, our calculation
shows that similar scaling results can be obtained with
noninvertible maps with nearest-neighbor coupling. This
obviates the need for a restriction to invertible discrete
systems as suggested in Ref. 17. A stability analysis of
the discrete model can provide information on the limit-
ed range of parameter values where effects specific to the
discrete nature of the problem come into play.

Another test of the scaling behavior of the system can
be made by studying the height of the peak in the struc-
ture factor at k =0 as a function of time. ' This entails
the calculation of the following quantity:

A'

S(O, t)=X —g x(i, t)
i=l

(4.5)

which not only yields information on the long-time evo-
lution, but also on the initial development of ordered
structures. The results of the simulations of S(O, t) and
log ~p[S (0 t) lt] are reported in Fig. 12 for different
values of e. ' Behavior on two different time scales can
be observed in Fig. 12. The first time scale ~0 character-
izes the relaxation of the coupled map system towards
the stable states. The second time scale corresponds to
the end of the sharpening process for the boundaries
separating the different phases; for times longer than io
the boundary motion is described by the Allen-Cahn
theory.

It is possible to give a simple description of the behav-
ior of S(O, t) for t ~ro The dy. namics is dominated by
the exponential growth of the order parameter during
the relaxation to the stable phases. Even for large values
of y the diffusion process has only a marginal effect on
the temporal evolution. If one considers the extreme
case of a lattice of decoupled (y =0) cubic maps, the ex-
ponential growth of the behavior of the structure factor
on the ~0 time scale can be approximated by

(4.6a}

where fL(p)=(1+a)p is the linear approximation to the
cubic map. The initial condition p in Eq. (4.6a) is an
average quantity which takes into account the distribu-
tion of initial order parameter values near the unstable
state:

(4.6b)

1 C
wo ———ln

p
(4.7)

The variation of wo with e ' is confirmed by the results
of simulations shown in Fig. 13.

We note that the evolution described by Eq. (4.6) is
completely deterministic and is in agreement with
Langevin equation simulations' in the limit of low tem-
peratures. The behavior of the coupled map model in
presence of noise and the connections with renormaliza-
tion group theories' is presently under investigation.

V. NUCLEATION

Domain growth occurs by a different mechanism when
c is not equal to zero. Due to the symmetric character
of the cubic map, it is suScient to examine positive
values of c. Suppose c has a value close to the tangent
boundary,

c =+2
3/2

6

3
(5.1)

Here p; is a random variable taken from the chosen
noise distribution. For large N, p is just the standard de-
viation of the noise distribution.

The interpretation of the origin of the short-time
(t &ro) behavior of S(O, t) is supported by comparison of
Eq. (4.6} with results of simulations, which is presented
in Fig. 12(b). A simple estimate of the time ro may be
obtained from the linear map fL(p) by computing the
time it takes to reach some prescribed value C:

4 5—

4Q-
C:

3 5—

I

50 100 150
I

50 I00
I

I 50
t

FIG. 12. Temporal evolution of the quantities (a) S(0,t) and
(b) G(t}=log,o[S(O,t}/t] for @=0.2 (1), a=0. 15 (2), @=0.1 (3),
a=0.075 {4), and @=0.05 {5). In panel (b) the early-stage
curves obtained by Eq. (4.6) are also reported. The ordinate
scale is arbitrary.

I

-3.0 -2.5
Cn 6

I

-2.0

FICi. 13. ~0 as a function of e on a log-log scale. The
straight line has a slope of —1.
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v = —3xo+1 /2 (5.2)

where xo is the unstable fixed point of the cubic map,
Eq. (2.2). Although the measured propagation velocity
is closely approximated by Eq. (5.2), there are systematic
differences (cf. Fig. 15) which have their origin in the
persistence of stationary solutions for small values of c
for the discrete model.

A simple description of the nucleation growth can be
accomplished by assuming that all lattice sites are in ei-
ther one of the stable states. Clearly such a description

Hi
IIT

in Fig. 1; there is a strong asymmetry in the quartic po-
tential, and the unstable state lies close to one of the
stable states. Consider an initial configuration in which
seeds of the more-stable phase are randomly distributed
in a sea of the less-stable state. When c is very close to
the tangent boundary, perturbations of any size will
grow. Figure 14 shows the time evolution for such a
case when the initial probability of seeding p is equal to
0.005. The single-site perturbations form growing disk-
shaped regions whose diameters increase at a nearly con-
stant velocity v which is approximately equal to the
propagation velocity of waves in the one-dimensional
continuous case:

implies a somewhat arbitrary classification of sites in the
boundary layer as belonging to one of the two stable
states. Introducing the subscript M (L) to represent the
more (less) -stable state, the temporal evolution of the
fraction of sites in the more stable state NM(t) can be de-
scribed by the following approximate rate equation:

dN~(t)
dt

= A (t)[ 1 NM (—t)], (5.3)

NM(t)=1 —(1—PRO)exp[ rrpv (2—Rot +vt )], (5.5)

which contains the exponential dependence characteris-
tic of a nucleation process. A similar law was obtained

where 3 (t) is the total surface area covered by the
more-stable state, and A ( r ) is its time derivative. If
each disk-shaped region grows linearly with time we
have

A (t) =-pm. (RO+vt) (5.4)

where Ro is the initial radius of a seed of the more-stable
state. Equation (5.3) simply expresses the fact that the
rate of growth of regions of the more-stable phase is pro-
portional to the intrinsic growth rate of the seeds times
the fraction of sites which remain in the less-stable
phase. Substituting Eq. (5.4) in (5.3) and integrating, we
obtain
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0.28
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FIG. 14. Temporal evolution of a 100&&100 coupled cubic

map lattice for @=0.3, c =0.063, and y=0. 15. The black
(white) color corresponds to the more (less) -stable phase. The
initial state is given by seeding the uniform less-stable state
with the more-stable state with probability p =0.005.

FIG. 15. Comparison between simulations of the cubic map
lattice (dashed line) and Eq. (5.2) (solid line), for the velocity v

of a one-dimensional kink for (a) @=0.2 and a=0.3 and (b)
@=0.2 and c =0.1.
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in the context of ring propagation in an excitable medi-
um 2o, 2& In the excitable-medium cellular automaton,
the velocity of propagation is unity and does not appear
explicitly in the calculation.

One can use Eq. (5.5) to approximately calculate quan-
tities averaged over the lattice, and we again focus on
the k =0 value of the structure factor, S(0,t). Letting
xL and x~ be the values of the order parameter in the
less- and more-stable states, respectively, one obtains

G.4—

C) 0.2—
Cf)

S (0, t) =N [NMxM +xL, (1 NM —) ] (5.6)

which exhibits a minimum for

—XL
XM ——

(xM —xL )

at the time t given by

(5.7)
0—

I

50 IOO
I

(50

Ro

Ro2+ 2
V

1 XL
ln

2
vrpv (xM —xl )(1—mpRO)

1/2

(5.8)

FIG. 16. Structure factor S(0, t) (divided by Ã) for the nu-
cleation dynamics shown in Fig. 14. The thick line represents
the simulation on a 100&100 cubic map lattice, averaged over
30 initial realizations; the thin line is the theoretical result, Eq.
(5.6). The initial time is set equal to rd. Note the initial
discrepancy due to discretization effects.

The time t will be positive provided

Ro(
i /2

XM

'ITp
(5.9)

x (i, r +1)=I'(x (i, r) )+4y[x (j,&) —x (i, &)],
(5.10)

x (j, t +1)=f (x (j, t))+y[x(i, t) —x (j,t)],

which relates the initial radius of a nucleus with the
seeding probability p.

Since the mean-field theory outlined above assumes
that all order-parameter states on the lattice can be
classified as belonging to either of the stable states, its
validity is restricted to large values of the parameter e
where the boundary layer is sharp. However, Eq. (5.5)
provides a good approximation to the dynamics even in
the case of small e. A comparison between the theory
and the simulation is shown in Fig. 16 for the case of
p =0.005. The theory will fail for large p due to correla-
tion effects; the growth of a site will be delayed or ac-
celerated depending on its neighbors. In Fig. 17 the
form of the map x (i, t) and of its first nearest neighbor
x (j, t) are shown in the case of a single-site perturbation.
Even if the late-stage dynamics corresponds to disk
growth, the perturbation initially shrinks until the feed-
back inhuence of the nearest neighbors vanishes. This
corresponds to a "tangent" behavior of iterates of the
first-nearest-neighbor map, which spend many time steps
in the vicinity of the near-tangency. At a critical value
c„;, of the parameter c (-0.0624 for y =0.1), the be-
havior of the perturbed site and its neighbors is ex-
changed; the single-site disturbance is then absorbed by
the sea of the less-stable phase through a tangent mecha-
nism. For values of c larger than c„;„the dynamics is
well approximated by the two-dimensional system:

+

~M

+

~~
xC

0
X (&, t)

0
x(], t)

FIG. 17. Initial dynamics of a single-site perturbation of the
more-stable state in a sea of the less-stable state for the per-
turbed map x(i, t) (a) and for its first-nearest-neighbor map
x ( j, t) (b). The arrows indicate the direction of evolution.

which assumes a homogeneous structure of the lattice
around the perturbation. By using this two-dimensional
map, one can approximately evaluate the delay time 'Td

which it takes the perturbed site to reestablish the initial
value of the order parameter. For example, in the case
of Fig. 16, ~d is found to be approximately 25 time itera-
tions. However, for values of c closer to c„;„
diverges and the two-dimensional description given by
Eq. (5.10) breaks down. The fate of the single-site per-
turbation is then affected by the behavior of the second
or third nearest neighbors and a larger system of cou-
pled maps is necessary to describe the dynamics. Obvi-
ously, in the case of two-site perturbations the delay
time ~d is shortened and the nucleus will start to grow
earlier than in the case of an isolated seed. In the case
of a large probability of seeding, initial coexistence of
seeds of different sizes is possible, giving rise to a more
complex temporal evolution; Eq. (5.3) is not valid in this
case. However, this effect is reduced if the initial seeds
have a size Ro larger than one lattice spacing.
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R2

200

lOO

which can describe both shrinking and growing of the
nucleus, depending on the initial condition. Figure 18
shows a comparison between Eq. (5.13) and the simula-
tion for the case of shrinking nuclei. Analogous agree-
ment has been found for the growing case.

The above results establish the usefulness of the cubic
map lattice for studies of nucleation growth in systems
with nonconserved order parameter. This case is espe-
cially important in view of the fact that some chemical
systems, like the iodate-arsenous acid system, are of
this type, and are thus amenable to study through the
use of discrete models.

VI. DISCUSSION

0 500 i 000 1500

FIG. 18. Temporal evolution of the square of the radius of a
disk-shaped nucleus for @=0.15, @=0.1, and c =0.001 (thick
line) compared with the results of Eq. (5.13) (thin line).

R = ——+v,
R

(5.1 1)

where the velocity U is given by Eq. (5.2) if the nucleus is
large enough. Hence, the critical radius R, is

A different situation is found for values of c far from
the tangent boundary, Eq. (5.1). In this case the size of
the initial nucleus has to exceed a critical value in order
for growth of the nucleus to occur. This situation has
been extensively studied in the past and estimates of the
critical radius R, of the nucleus have been given. Here
we study nucleation phenomena in the discrete model
and compare the results with some of the theoretical
predictions; we concentrate especially on dynamical as-
pects of the nucleation process. A simple estimate of the
critical radius which is based on continuous-time dynam-
ics can be determined in the following way. Consider a
disk-shaped nucleus of radius R of the more-stable phase
embedded in a sea of the less-stable phase. The curva-
ture the nucleus gives rise to contraction (cf. Sec. IV),
which is counterbalanced by a linear growth due to the
different stabilities of the two phases; thus,

The results presented in this paper have shown that
coupled map lattices exhibit interesting phase-separation
phenomena when the isolated maps comprising the lat-
tice possess bistable steady states. As for their continu-
um counterparts, the dynamics of domain boundaries
separating equivalent states obeys Allen-Cahn scaling for
long times, while domain growth or shrinkage occurs by
a nucleation mechanism when the states are not
equivalent. The discrete nature of the model can have
important consequences in some circumstances, for ex-
ample, the existence of stationary boundaries separating
inequi valent states for certain parameter ranges.
Nonetheless, with a suitable rescaling of system parame-
ters the model faithfully represents most features of the
phase-separation process, and is attractive due to its sim-
plicity and ability to be simulated easily.

This class of models can be extended to investigate
other related phenomena. Systems with more than a sin-
gle order parameter present interesting features, especial-
ly those connected with the structure of the discrete sta-
tionary interface, since several stable and unstable mani-
folds enter the description. Discrete models of this type
often appear in biological applications, where more com-
plex phenomena may occur. There may be coexistence
of more than two stable homogeneous states, and the
coexisting states need not be simple stationary states.
The phase structure and dynamics can be investigated
using the techniques presented in this paper.

R, =—
v
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