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The scaling structure of the growth probability distribution in the surface layer of the general-
ized diffusion-limited aggregation model (q model) is derived by making use of the real-space
renormalization-group method. A conductance of the surface layer is defined and renormalized as
the growth-bond conductance. The renormalization-group transformation equation is derived for
the growth-bond conductance. The equation has a nontrivial solution which is a stable fixed
point. The growth probability assigned to each growth bond is represented by a random multipli-
cative process of the cell's growth probabilities evaluated at the fixed point. A hierarchy of gen-
eralized dimensions D(q) is calculated and the a fspectru-m is found for diffusion-limited-
aggregation. The dependence of the a-f spectra is found on the parameter 7) describing the
different dielectric breakdown models.

I. INTRODUCTION

Recently, there has been increasing interest in the
problem of geometrical structure in diffusion-limited ag-
gregation (DLA). ' The structure of the aggregates
strongly depends on the dynamics of the growth process.
It is well known that they have a strong measure of self-
similarity, which is characterized by the fractal dimen-
sions D. ' Several analytical attempts, including mean-
field theories" ' and position-space renormalization-
group methods, ' ' have been made to derive the frac-
tal dimension. It is clear, however, that an aggregate
cannot be fully characterized by its fractal dimensionali-
ty. The essential properties of kinetic aggregation pro-
cesses are described by the growth probability distribu-
tion for perimeter bonds (or sites) of these aggregating
clusters. ' ' Halsey et al. ' and Amitrano et al. ' cal-
culated the growth probability distribution on the perim-
eter sites of the aggregates numerically and found a
hierarchy of generalized dimensions D(q). They intro-
duced the a fspectrum to des-cribe the multifractal
structure. Coniglio proposed a mechanism which gen-
erates the multifractality, based on a multiplicative pro-
cess ' for the deterministic hierarchical model of the per-
colating cluster. Nagatani presented a real-space
renormalization-group (RG) method and found a ran-
dom multiplicative process of the cell s growth probabili-
ty under the RG transformation. The infinite exponents
D(q) and the a fspectrum were first -found from a
standpoint of the RG.

In this paper we present an improved RG method for
the multifractal structure in the DLA model. The RG
method is developed to calculate the scaling structures
in the generalized DLA model (g model). We derive the
a fspectra for the g mod-el from the real-space RG
method. We refer to the dielectric breakdown descrip-
tion of DLA. In general, aggregates grown on lattices
are viewed as a system of superconductor —normal resis-

tor networks for the dielectric breakdown models. The
growth occurs on the perimeter of the aggregate. In
these models the growth probability p; at the growing
perimeter bond i is given by p,. —(E, )" where E, i.s the lo-
cal electric field at the growth bond. We merely solve an
electrostatic problem for a superconducting cluster in-
side an infinite normal resistor network. We distinguish
between three types of bonds on the lattice: (a) super-
conducting bonds, (b) growth bonds which are normal
resistors at the perimeter of the aggregate, and (c) nor-
mal resistor bonds except for the growth bonds. For
later convenience we summarily explain the RG method
for DLA. Cover all the space of the square lattice by
cells of edge b (scale factor), each containing 2b bonds.
After a renormalization transformation these cells play
the role of "renormalized'* bonds. The dividing and re-
scaling of b (=2,3,—', ) cells for the DLA on the square
lattice are illustrated in Figs. 1(a), 1(b), and l(c). The
cells on the left-hand side are renormalized to those on
the right-hand side. The renormalized bonds are indi-
cated by the double lines in each figure. The renormal-
ized bonds are then classified into three types of bonds:
(a) break bonds which construct the aggregate, (b)
growth bonds which are on the perimeter of the aggre-
gate and can be successively grown, and (c) unbroken
bonds which surround the aggregate, except for the
growth bonds. The renormalization procedure is illus-
trated in Fig. 2. The break, growth, and unbroken
bonds are, respectively, indicated by the bold, wavy, and
light lines. If the cell is spanned with the break bonds,
then the renormalized bond is considered to be broken
[Fig. 2(a)]. If the cell is not spanned with the break
bonds and is a nearest neighbor to the cell with spanning
cluster, then the cell is renormalized as a growth bond
[Fig. 2(b)]. When the cell is constructed by unbroken
bonds only and is not a nearest neighbor to the cells
with spanning clusters, the cell is renormalized as an un-
broken bond [Fig. 2(c)]. We consider the growth bonds
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(b)
FIG. 3. AAn example of the renormalization of a part of the

surface layer of an aggregate. The lattice on the left-hand side
is renormalized to that on the right-hand side, according to the
rules of renormalization.

(c)
FIG. l. Illustration of the dividing and rescaling of b

(=23 3
, , 2 ) cells for the DLA on the square lattice. (a) A b=2

cell, (b) a b=3 cell, (c) from a b=3 cell to a b=2 cell. The
cell-to-cell transformation

construct the surface layer of the aggregates. Figure 3
shows an example of the renormalization of a part of the
surface layer of an aggregate. The lattice on the left-
hand side is renormalized to that on the right-hand side,
according to the rules of renormalization. We define the
conductance of the growth bonds as a conductance of
the surface layer. We note that the nonlocal nature of
the electric field is taken into account as the conduc-
tance of the growth bonds. We consider a renormaliza-
tion of the conductance of the growth bonds. If a cell is
renormalized as a growth bond, the cell's conductance
a„+& is then represented by the conductance O.„of the
growth bond within the cell after the (n +1)th renor-
malization transformation:

cr„+,——R (o„) .

The relationship (1) represents the renormalization-
group equation. Figure 4 shows a schematic behavior of
the renormalization function cr'=R (o ). This has a non-
trivial solution cr' (~1). At the fixed point cr* the
derivative dR/do has a positive value less than 1. The
equation (1) has a stable fixed point. After many repeat-
ed renormalizations, the conductance of the growth
bonds approaches the value ~* at the fixed point. This
represents a stable steady state. After renormalization,
the growth probability P;(L) on any growth bond i is
given by

P, (L)=pi3; Pii(L /b),
where L represents the size of the system, b is the scale
factor, and p&; indicates the growth probability of the
growth bond i within the cell P. The cell's gro th b-

bo]o ~

e s grow pro-
a i sty p&, is represented by a function of the conduc-
tance of the growth bonds. After many repeated renor-
malizations, the growth probability assigned to each
growth bond is represented by a random multiplicative
process of the cell's growth probabilities evaluated at the
fixed point. In the limit of L su%ciently larger, an
infinite hierarchy of generalized dimensions D (q) is
given by

(a) (c)
FIG. 2.G. 2. Illustration of the renormalization of a b=2 cell for

DLA. The renormalization procedure in the vertical direction
is shown. There are three types of bond: break bonds indicat-

br
ed by bold l~nes, growth bonds indicated by wavy lines and

roken bonds indicated by light lines. Examples of the distinct
configurations are shown in (a), (b), and (c), which are renor-
malized as break, growth, and unbroken bonds, respectively.

FIG. 4. A schematic behavior of the renorrnalization func-

tion o.'=R (o. ). This has a nontrivial solution o* (& 1). At the

fixed point cr* the derivative dR/do. has a positive value less

than 1. The fixed point is stable.
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D (q) = —(q —1) 'ln g p*'i /Inb,
C

(3)

where ( . ), indicates the configurational average and
p*, represent the cell's growth probability evaluated at
the fixed point. The partition of D(q) into a density of
singularities f (q) with singularity strength a(q) is intro-
duced:

0 ~//I lr I

i( 2)
(0)

XP

a(q) =d Idq [(q —1)D (q)],
f (q) =qa(q) —(q —1)D (q) .

(4)

The a fspectr-um is found.
We begin, in Sec. II, by applying the real-space

renormalization-group method to the diffusion-limited
aggregation on the square lattice. We refer to the dielec-
tric breakdown description of DLA. We derive the scal-
ing structure of the growth probability distribution on
the surface layer of DLA from small-cell renormaliza-
tion techniques. In Sec. III we derive the scaling struc-
tures for the generalized DLA (2) model). The depen-
dence of the a-f spectra is found on the parameter 21

describing the different dielectric breakdown models.

II.- SMALL-CELL RENORMALIZATION FOR DLA

In this section we apply the real-space RG method to
the self-similar structure of DLA. When DLA grows on
the square lattice, the structure shows a crossover to an
anisotropic shape on large length scales. We define

g, as the crossover length. The self-similarity of DLA
breaks down for large sizes of the order of g, as well as
for small sizes of the order of the distance a between
nearest neighbors on the lattice. We apply the RG to
DI.A with the system length L smaller than the cross-
over length g, as well as larger than a. In real-space re-
normalization, we replace a cell of bonds by a single su-
perbond, provided that the linear dimension b of the cell
is much smaller than g, . The renormalized bonds are
classified into three types of bonds: break, growth, and
unbroken bonds. The growth probability distribution on
the surface layer relates to the cell's growth probability
and the conductance of growth bonds. We pay attention
to the growth bonds. We consider configurations of the
cell that it is possible to renormalize as the growth bond.
We derive the cell's growth probability from the renor-
malization of the growth bond conductance. We find
the generalized dimension D (q) and the a fspectrum. -

A. The simplest cell (2&&2 cell)

We start by partitioning the square lattice into 2&&2
cells which cover the lattice [see Fig. 1(a)]. We give at-
tention to the growth bonds which construct the surface
layer of the aggregate. We consider the conductance of
the cell that it is possible to renormalize as the growth
bond. If one considers the renormalization in the verti-
cal direction, we shall take periodic boundary conditions
in lateral direction. The constant voltage is vertically
applied [see Fig. 5(a)]. Figure 5(b) shows all
configurations of the cell that it is possible to renormal-
ize as the growth bond. Let us consider the

(2)

(a)
FIG. 5. (a) Boundary conditions in the renormalization in

the vertical direction. The constant voltage is vertically ap-
plied. The periodic boundary condition is taken in lateral
direction. (b) All distinct configurations of the 2)&2 cell that it
is possible to renormalize as the growth bond. The
configuration (1) is constructed by adding a break bond onto
the growth bond 1 or 2 in the configuration (0). In addition, by
adding a break bond onto the growth bond 2, 3, or 4 in the
configuration (1), the configuration (2) is constructed.

configurational probability C with which a particular
configuration a appears. The distinct configurations are
labeled by a (a=0, 1,2) in Fig. 5(b). The configuration
(1) is constructed by adding a break bond to
configuration (0). The probability with which a break
bond adds onto growth bond 1 or 2 in configuration (0)
is given by the growth probabilities po &

or po 2 of the
growth bonds 1 or 2 in the configuration (0). In addi-
tion, by adding a break bond to the configuration (1), the
configuration (2) occurs. The configurational probabili-
ties C are given by

C1 COV 0, 1+I 0,2) 2COP0, 1

C2 =C 1 (p 1 2+7 1 3+7 1 4 ) =3C ip 1 2

(5)

where po &

——po 2 and p, z
——p, 3

——p, 4. The configura-
tional probability Co is determined from the normaliza-
tion condition

C =CO+Ci +C2= 1

In general, the probability that a given growth-cluster
configuration of n bonds occurs is given by the product
of growth probabilities of adding a break bond at each
step. The configurational probability C is determined
by the growth probabilities p, of the cells. The growth
probability p, - on the growth bond i within the cell a is
proportional to the local electric field E, on the growth
bond. Consider the electrostatic problem for cells which
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p, , =(1+3o )/(4+3o ),
P1,2 P1, 3 pl, 4 1/(4+3'»

1

+2, 1
—P2, 2

—
2

(7)

where the o. indicates the conductance of the growth
bond, and the conductances of the break and unbroken
bonds are, respectively, given by infinite value and unit
value.

We consider the conductance o.„+& of the cell renor-
malized as the growth bond at the ( n + 1 )th renormal-
ization stage [see Fig. 5(b)]. The conductance o „+, of
the cell with configuration a is renormalized as follows:

cro „+,——2cr„/(I+o.„),
o, „+,——o „+3o „/(1+ 3cr„),
o 2, n+&

——2o n

(8)

can be renormalized as the growth bond. The electric
fields on the growth bonds within a cell are determined
by the conductance of growth bonds and the
configuration of the cell. In the configuration labeled by
a [see Fig. 5(b)], the growth probabilities p, of growth
bonds i are given by

1

P0, 1 P0, 2

TABLE I. Values of Dq for DLA obtained from the RG
transformations shown in Figs. 1(a), 1(b), and 1(c).

D
D 4

D
D
D
Do
D,
D2
D3
D4
D5
D6
D

Fig. 1(a)

2.947
2.846
2.695
2.454
2.058
1.526
1.096
0.934
0.845
0.792
0.752
0.721
0.504

Fig. 1(b)

4.654
4.388
3.990
3.341
2.303
1.482
1.095
0.956
0.863
0.802
0.759
0.726
0.525

Fig. 1(c)

7.572
7.025
6.204
4.858
2.722
1.406
1.093
0.992
0.892
0.821
0.771
0.736
0.560

the vertical direction. The distinct configurations are la-
beled by a (a=0, 1,21,22,31,32,33,41,42,43,44,51,52,6) in
Fig. 6. The configuration (1) is constructed by adding a
break bond onto growth bonds 1, 2, or 3 in the
configuration (0). In addition, by adding a break bond to
the configuration (1), the configurations (21) and (22)
occur where the configuration (21) is constructed by add-
ing a break bond onto the growth bond 1 in the

The (n +1)th renormalized conductance cr„+& of the
growth bond will be assumed to be given by the most
probable value

o„+,——exp(Colnoo „+,+C, incr, „+,+Chino 2 „+~),
(9)

(o)

~/~2

(1)
J, x&

where C represents the probability of a particular
configuration a. The relationships (8) and (9) present the
renormalization-group equation o „+,——R (o „). Equa-
tions (5)—(9) are simultaneously solved. We find a stable
fixed point o.*=2.326 from o' =R (cr*). At the fixed
point, we evaluate the cell's growth probability p*, on
the growth bond i within the cell a from Eq. (7). We
calculate the generalized dimensions D (q) from Eq. (3)
where the configurational average is taken by using Eq.
(5) evaluated at the fixed point. The exponents D (q) are
plotted as curve a in Fig. 7. The values of D(q) are
shown in Table I. One calculates the a fspectrum via-
Eq. (4). We display the relation between a and f as
curve a in Fig. 8.

B. 3&3 cell

We extend the renormalization transformation of the
2X2 cell to that of the 3&3 cell. Partition the square
lattice into 3&&3 cells which cover the lattice [see Fig.
1(b)]. We pay attention to the growth bonds. We con-
sider configurations of the cell that it is possible to re-
normalize as the growth bond. When one performs the
renormalization procedure of the cell in the vertical
direction, the constant voltage is vertically applied and
periodic boundary conditions are taken in the lateral
direction. Figure 6 shows all configurations of the cell
that it is possible to renormalize as the growth bond in

i,&z

(21) (22)
~x4. x~2 Qxg

~&z
-~™

~1 2~ 3)
I ~ I I II

(31) 2 ~
(32) „~ (33)

x~2

(r2)
3 y A)

x2

~(z', ~J ~

II

(52) (6)

FIG. 6. Construction of the distinct configurations of the
3&& 3 cell that it is possible to renormalize as the growth bond.
The distinct configurations are labeled by a
(=0,1,21,22, 31,32,33,41,42,43,44,51,52,6). An arrow from the
configuration a to the configuration P indicates the construc-
tion of the configuration P by adding a break bond onto a
growth bond in the configuration cz.
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configuration (1), and the configuration (22) is construct-
ed by adding a break bond onto the growth bonds 2, 3,
4, and 5 in the configuration (1). The configurations (31)
and (32) occur when a break bond is added to the
configuration (21). When a break bond is added to the
configuration (22), the configurations (32) or (33) appear.
Here the configuration (31) is constructed by adding a
break bond onto the growth bonds 2 or 3 in the
configuration (21). The configuration (32) is constructed
by adding a break bond into the growth bonds 4, 5, 6,
and 7 in the configuration (21) or by adding a break
bond onto the growth bonds 1 and 2 in the configuration
(22). By applying this procedure repeatedly, one can
count the distinct configurations. The configurational
probability C with which the configuration a appears is
given by

C1 = 3po, 1Co, C21 ——p» C, ,

C22 4p 1,2 C
1 ~ C31 2p 21,2 21

C32 p21 4 21+ p22 1 22~ C33 p22 3 22

C41 ——2p31 3C317 C42 3p» 5C31+2p32 2C32 7

C43 ——2p 31 7 C31+p 32 3 C32 ~ C44 = 3p q2 4C32 + 3p 3~ 1
C

C51 2p42, 3 42 + p43, 3 43 ~ 52 p42, 5 C42 +4p44, 2 C44

C6 =3ps2, 3Cs2

where the p, indicates the cell's growth probability on
the bond i in the cell within the configuration a: For ex-
ample, p22 3 is the growth probability on the growth
bond 3 in the configuration (22). The configurational
probability Co is determined from the normalization
condition

g C =Co+C&+C2&+ ' ' +Csz+C6=1 .

on the growth bonds within a cell are determined by the
conductance of growth bonds and the configuration of
the cell. The nonlocal nature of the electric field is tak-
en into account as the conductance of the growth bonds.
In the configuration labeled by a [see Fig. 6], the cell's
growth probabilities p, of growth bonds i are given in
the Appendix. At the (n +1)th renormalization stage,
the conductance o.

n +1 of the cell with the
configuration a is renormalized as follows:

oo „+,——3cr„/(1+2o„),

o, „+i
——o „(10+7cr „)/( 2 + 8cr „+3cr„),

o ~i „+i cr——„(7+9cr„+2o'„)/(1+5cr„+2a„),
o i2 „+i cr „——(20+ 33o'„)/(4+21cr„+ 12a „),
o „„+,=a „(9+52o.„+68o„

+24o „)/(1+15o „+28o „+12o „),
o,2 „+,=o.„(21+64a„+38cr„

+6a „)/( 3 + 21cr „+26cr „+6cr „),
cr 3, „+,= 3cr „ /( 1+o „),
O41, n+1=3~n ~

cr 42 „+,=o „(7+22o „+12cr„)/( 1 + 8cr „+6o.„),
o ~3 „+&

——2o' „+3a' „ /( 1+3cr „),
cr44 „+,——o.„+4o„/(1+2cr„),

~51,n +1 3n

a» „+,—2a„+3a„/(1+3a„),
O6, n+1=3~n

The cell's growth probability p, is proportional to the
electric field E; on the growth bond I'. . The electric fields

I I I I I I I I I I I I I

0,8—
gC

a
c(q =ca)

b(q =co)

a(q =co)

0
—5

I I I I I I I I I I I I I I

0 5 10
0

FIG. 7. The generalized dimension D(q) of DLA obtained
by the RG transformation of the three different cells; the
curves a, b, and e indicate, respectively, the results of the 2X2
and 3X3 cells and the cell-to-cell transformation. The cell-to-
cell RG transformation shows the successful improvement.

FIG. 8. The a fspectra of DLA obtained by-the RG trans-
formation of the three different cells; the curves a, b, and e
represent, respectively, the results of the 2)&2 and 3&(3 cells
and the cell-to-cell transformation.
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We assume that the (n + 1)th renormalized conductance
o.„+& is given by the most probable value:

a„+,=exp g C ln(o „+,)

a
(12)

The relationships (11) and (12) present the
renormalization-group equation o„+&——R (a„). Equa-
tions (10)—(12) and (Al) —(A14) are simultaneously
solved. We find a stable fixed point o.*=2.213 from
o'=R(cr"). At the fixed point, we evaluate the cell's
growth probabilities p*; from Eqs. (Al) —(A14). We cal-
culate the generalized dimensions D (q) from Eq. (3)
where the configurational average is taken by using Eq.
(10) evaluated at the fixed point. The exponents D(q)
are plotted as curve b in Fig. 7. The values of D (q) are
shown in Table I. The a fspectru-m is calculated from
Eq. (4). The relation between a fis displa-yed as curve b
in Fig. 8.

C. Cell-to-cell transformation

Until now, we have considered the conventional RG
approach of transforming from a system of cells to a

I

new system of bonds. However, one can consider a
transformation in which one passes from a system of
cells of size b, to a system of cells of size b2. Such a
"cell-to-cell" transformation enables one to have a re-
scaling length b, /b2. We here consider the 3)&3 cell to
the 2)&2 cell transformation. This cell-to-cell transfor-
mation is illustrated schematically in Fig. 1(c). We
define o„+,(b, )=R (b, ;o„) to. be the renormalized con-
ductance of the growth bond for a cell of size b
(j = 1,2). Then the renormalization-group equation is
given by

R (b~;cr„+, ) =R (b, ;o.„), (13)

where for b&
——3 and bz ——2 the R (b, ;cr ) and R (bz , cr ) is',

respectively, given by Eqs. (11) and (12) and by Eqs. (8)
and (9). The fixed point is given by R (bz, o" )

=R (b„.o.*). We define the cell's growth probability
p, (b )for a cel.l of size b (j =1,2). The p;(b, ) and
p, (bz) are, respectively, given by Eqs. (Al) —(A14) and
by Eq. (7}. We obtain the exponents D (q):

I

D(q)= —(q —() ')n (xp" (~b&))

(happ(

z))b
I J

1n( b, /b 2 ) . (14)

The exponents D(q) are plotted as curve c in Fig. 7.
The values of D(q) are shown in Table I. The a fspec--
trum is displayed as curve c in Fig. 8. This cell-to-cell
RG transformation shows the successful improvement.
These results of D(q) and the a-f spectrum are close to
the values obtained numerically by Amitrano et al. '

III. THE GENERALIZED DLA {gMODEL)

Niemeyer, Pietronero, and Wiesmann proposed a
very interesting dielectric breakdown model. In this

model the growth probability P, at the growing-
perimeter bond i is given by P, —(E; }"where E; is the
local electric field on the perimeter bond i. When the
parameter g equals 1, one recovers the DLA model.
The structure of the aggregate changes drastically with
varying g. This g model has a generalized form of the
DLA. We apply the real-space RG method to the gen-
eralized DLA. The application procedure is straightfor-
ward. When we calculate the cell's growth probability
p, , the relationship p, -E, is replaced by p; -(E; )".
We obtain the cell's growth probability for the g model.

TABLE II. Values of D~ for q model obtained from the RG
transformation shown in Fig. 1(c).

-, T I I I I I I I I I I I I I

8—

D
D 4

D
D
D
Do
Dl
D~
D3
D4
D5
D6
D

g =0.4
3.015
2.657
2.215
1.770
1.473
1.369
1.331
1.222
1.215
1.193
1.171
1.151
1.026

g =0.8
6.086
5.592
4.856
3.700
2.179
1.404
1.360
1.079
1.006
0.944
0.897
0.861
0.657

g=1.2
9.011
8.408
7.502
5.999
3.346
1.399
1.048
0.898
0.778
0.703
0.656
0.626
0.477

--- '7=0,4

0
—5

I I I I I I I I I l I I I

0 5 10

FIG. 9. The generalized dimension D(q) of the generalized
DLA (g model). The curves indicate, respectively, the results
for g =0.4, 0.8, and 1.2.
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We find the fixed point and the generalized dimensions
D(q) by using the cell-to-cell renormalization transfor-
mation presented by Sec. IIC. The values of D(q) for
the g model are shown in Table II. For g=0.4, 0.8, and
1.2, the exponents D(q) are plotted in Fig. 9. The a f-
spectra are displayed in Fig. 10. As the parameter g in-
creases, the a fspe-ctrum becomes a more smooth con-
vex shape.

0.8—

0—
IV. SUMMARY

APPENDIX

In this appendix we present the cell's growth probabil-
ities in the renormalization transformation of the 3)&3
cell.

1

P0, 1 +0,2 J 0, 3 (A 1)

By making use of the real-space renormalization-
group method, the set of generalized dimensions is de-
rived in relation to the cluster structure of surface layers
in diffusion-limited aggregation. The RG transformation
equation is derived for the conductance of the cell which
consists of the surface layer and is renormalized as the
growth bond. The equation has a nontrivial solution
which is a stable fixed point. The growth probability as-
signed to each growth bond is represented by a random
multiplicative process of the cell's growth probabilities
evaluated at the fixed point. A hierarchy of generalized
dimensions D(q) is calculated and the a fspectra a-re

found for the generalization DLA (71 model).

-08—
2 =1.2

FIG. 10. The 0, fspectra o-f the 77 model obtained from
D (q) of Fig. 9 for g =0.4, 0.8, and 1.2.

p32 1
——(3+21cr+26o +6cr )/(21+64o +38cr2+6o.3),

p32 2 p32 6 ——(3+ 13o + 3cr )/(21 + 64cr + 38cr +6cr )

(A6)

p 32 3
——( 3+ 1 1o + 6o ) /( 21 +64cr +38o 2+ 6o 3 ),

p32 4 p32 5
—p32 7 ( 3+2cr )/(21 + 64o + 380. +6o )

p1, ——(2+50 )/(10+7cr ),
P1,2 =P1,3 =P1,4 =P1, s = (4+0 ) /(20+ 140 );
p2, , ——(1+50 +2o )/(7+ 9cr +2o ),
p21 2 ——p21 3

——(1+2o )/(7+9o +20 ),
2

P21,4 P21, 5 P21,6 P21 7
= 1/(7+9o +20 )

p22 1
——p22 2

——(4+ 150)/(20+ 330),

P223 P224 P225 ( +0)/( +330 )

p31, ——p31 2 ——(1+15cr+28o 2

+ 12cr ) /( 9 + 52cr + 68o.2+ 240. ),
p31 3 =p31 4 =( 1+80'+60 )/(9+520'

+68o +240- ),
p31 5 ——p3, 6 ——p3, s

——1/(9+52cr+68o +24cr ),
p31 7 p„9=( 1 +3o.)/(9+ 52cr +68o + 24cr')

(A2)

(A3)

(A4)

(A5)

+33 1 7332 +333 3

+41, 1 741,2 I 41,3

p4, ,
——p42 2

——(1+So +6o. )/(7+22o +12cr ),
p42 3 p42 4

——( 1 + 3o )/(7+22o'+. 12cr )

p4, , ——p, 2 6=P42 7=1/(7+220'+12cr );2

p43 1
—p43 2

——( 1+3cr)/(5+6o )

p43 3 =p43 4 =p43 5
= 1 /(5+ 60' )

p 44 1
= ( 1 + 20 ) /( 5 +2o' ),

P44, 2 P44, 3 P44, 4 P44, s = 1/(5+2o')
1

~51, 1 +51,2 +51,3 3

P52, 1 P52, 2 ( 1+30)/(5+60)

P52, 3 P52, 4 P52, 5 I /(5+60)
1J61 J62 I 63

(A7)

(AS)

(A9)

(A10)

(Al 1)
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