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Cross sections of relativistic radiative electron capture by use of the strong-potential Born calculation
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The relativistically extended strong-potential Born (SPB) formalism is applied to the radiative elec-
tron capture process caused by the bombardment of a heavy and highly stripped charged particle
with relativistically high velocity. The results are compared with those by use of nonrelativistic SPB
calculations and with those by use of the relativistic Born calculation (Sauter s formula), which in-

cludes no distortion effects between a heavy projectile ion and an active electron. Even if the strong
distortion effects are taken into consideration, the shapes of photon angular distributions in the labo-
ratory frame still nearly depend on sin OJ (OL is the angle of the emitted photon) in the vicinity of the
angle of 90, which is the same as the results by use of Sauter's formula. The higher the charge of a
projectile ion becomes, however, the greater the discrepancy between the angular shape of our results
and that of Sauter's becomes at both smaller and larger angles than at 90'. As is expected, the mag-
nitudes of the differential and the total cross sections are drastically influenced by the distortion
effects ascribable to a large charge of a heavy projectile ion such as U '+. Our results are in good
agreement with recent experiments. In addition, the Coulomb off-shell factor introduced by the SPB
theory is found playing important roles in the case of the relativistic radiative electron capture pro-
cess because the results calculated by using the relativistic impulse approximation are too underes-
timated.

I. INTRODUCTION

The Coulomb parameter defined as v=za/U (in natu-
ral units, A'=c= 1, and ct is the fine-structure constant)
provides the criterion used to determine which approxi-
mation should be employed in the present problem of col-
lisions between charged particles. Here, Zo, represents
the coupling constant between an electron and a particle
with an electric charge of Ze, and v stands for velocity.
As is well known, under the condition that v(~1, the
(plane-wave) Born approximation is an excellent method
to calculate some physical quantities. In the case that
v51 or v) 1, however, the Born approximation breaks
down and then a much superior approximation must be
introduced. The strong-potential Born (SPB) approxima-
tion' can be applied to a much wider range of the
Coulomb parameter, namely, up to v 5 1, than the Born
approximation. Hence, the SPB theory is thought to be a
great deal more effective for the problems of collisions
caused by the bombardment of a projectile ion with a
large electric charge as well as with high incident velocity.

The Coulomb parameters of fully stripped xenon and
uranium ions amount to no less than 0.39 and 0.67, re-
spectively, even when these ions travel at the speed of
light. In this case, it is thought that the Born approxima-
tion no longer gives accurate information about collisions
in such regions of the Coulomb parameter. However,
apart from relativistic corrections, the SPB theory can
adequately compensate for the faults ascribable to the
Born theory. In this paper, we extend the SPB approxi-
mation relativistically in order to estimate the radiative

is transformed into the laboratory frame by virtue of the
Lorentz transformation

(der/dQt. )=(1—P )(1—PcosOL) (do/dQM), (1.2)

and then the following photon angular distribution can be
obtained:

(dtr/d&t ) ~ sin 8L (1.3)

In Eq. (1.1), 8M is the angle of the emitted photon in the
moving frame and P=

~

v
~
/c (c is the velocity of light).

AM and QL are solid angles in the moving and the labo-
ratory frames, respectively. To get Eq. (1.3), the follow-

electron capture (REC) processes brought about by heavy
ions with high velocity. Hereafter, we use "REC process"
to mean only "REC to the I( shell of the projectile atomic
states (K-REC)," unless otherwise stated.

By using the relativistic Born approximation proposed
by Sauter, it is indicated that the shape of the photon an-
gular distribution for the relativistic REC process depends
nearly on sin OL, where OL is the ang1e of the emitted
photon measured from the direction of the incident veloci-
ty v in the laboratory frame. The sin OL dependence of
the REC differentia cross section is thought to be com-
pletely due to cancellation between the retardation effect
of the emitted photon and the effect of the Lorentz trans-
formation from the moving frame to the laboratory
frame. ' ' That is to say, the differential cross section of
the REC process estimated in the moving frame

(do/de~) ~ sin 9M(1+pcosOM)
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ing relations have been made use of:

sinOM =(1—P )' sinOz/(1 P—cosOz ) and

l

'P~ &=(1+G~cVac)
l
@~ &

( +a
l

= ( @a
l
(1 + VacGac )

(2.2)

(2.3)

cosOM =( cosOz —P)/(1 —PcosOz ) .

The angular dependence of the REC differential cross sec-
tion calculated by the present SPB formulation is expected
not to have so simple a form as Eq. (1.1) because the
effects of both strong distortions and retardation have
been included in a complicated manner. Hence, its angu-
lar shape in the laboratory frame will be modified to some
extent from the sin Oz dependence of Eq. (1.3). We ex-
emplify the deviation from the sin OL dependence in the
case of both Xe + +Be at 197 MeV/amu and U + +Be
at 422 MeV/amu in Sec. III.

In Sec. II we provide the theory of calculating the REC
process by virtue of the relativistic SPB approximation.
The results and the discussion are given in Sec. III. Here,
the theoretical results by the relativistic SPB calculation
(RSPB) are compared with the recent experimental re-
sults. Furthermore, by the comparison with the other
theoretical calculations, suck as the nonrelativistic SPB
(NRSPB), the relativistic Born (RB), and the relativistic
impulse approximation (RIA) calculations, it is estimated
to what extent the relativistic effects, the distortion effects
between the highly charged projectile ion and the active
electron, and the effects of the off-shell factors' introduced
by the SPB theory have an inhuence upon the relativistic
REC processes, respectively. The summary is included in
Sec. EV. We use the natural units throughout this paper,
unless otherwise stated.

respectively, where
l
+~ & and (C&a

l
are the (plane-wave)

Born wave functions of the respecitive channels, and the
relativistic Coulomb Green's functions Gq~ and Gq~ are
given as

Gac = & —g Hx —Vlcc+i ri
N

(2.4)

Gac = F. —g Hx —Vac +i q
N

(2.5)

Here, H~= iV—„a' '. +M~p' ' with M~ the mass of
the particle X, E is the total energy of the collision sys-
tem, V~~ and V~~ are the Coulomb potentials, and g is
the infinitesimal positive number.

Inserting the complete set [X„j into Eq. (2.2) leads to

l
%g & = g (1+Grec Vgc)

l
X„&(X„

l
0&„&

l

q(+)&(x
l

q& (2.6)

where by the subscript r we have suppressed all the states
of three particles such as spins and momenta. In the
second equality of Eq. (2.6), (I+G~c V~c)

l
X, & has been

replaced by
l
Pa+'&. The basis function

l
X„& is given by

the direct product of three plane-wave functions as fol-
lows:

II. THEORY l
X. & = II (2~) '"e ' ""uiv(K& )

N

(2.7)

A. SPB wave functions

It is, for the sake of simplicity, assumed that the col-
lision system we are now taking notice of consists of three
particles, namely, a projectile ion labeled 3, a nucleus of
a target atom 8, and an electron initially bound on 8 as
C. Furthermore, we define a collision channel as a label
of a particle acting as a spectator. That is to say, the
direct channel, A+(8 C), is represent-ed by the label of
A and the rearrangement channel, B+(A-C), by the la-
bel of 8. Dirac's y matrices of the particle X are defined
as y' '= ip( ~a' —' and y' '=p' ) u' ~ and p~ ) are the
a and the P matrices of X.

The transition matrix element of the relativistic REC
process is given as

Ta~c =e (a,+a
l y.'c'

l

e „&, (2. 1)

where
l
4'~ & and ( %a

l

are the three-body wave func-
tions of the channels 2 and B, respectively, and (%a

l
is

defined as (%a
l

=( l% a &) gz y4 '. a,* is the wave
function of the emitted photon. Hereafter, it is under-
stood that the summation and the direct product over the
three particles A, B, and C, that is, g~ „ac and

„ac, are simply denoted as g~ and P~, respec-
tively, unless otherwise stated. According to the SPB for-
malism,

l
4~ & and (4a

l
are approximated as'

where K~, x~, and u~(K~) are the momentum, the posi-
tion, and the spinor of X. Moreover, the Born wave func-
tion

l
N~ & is the solution of the differential equation

E QHx —Vac-
N

(2.8)

and is expressed as

l
@g &=(2') ~ e "ug(K)

X(2vr) ~ e /ac(xac) . (2.9)

(X~
l
@& & = Q ux(Kx)

N

&& uw (Kg )/ac(kac)5' (K—Kg )

X6' '(P —Kac), (2.10)

Here, K and P represent the incident momentum of 2
and the barycentric momentum of the composite particle
(B-C), respectively. /ac stands for the wave function of
(8 C). Xa, and x-ac are defined as follows: Xac

QB xB + Qcxc and xBc =xg —xg ~ with x/B ~B /
(Ma +Mc ) and ric = 1 gaia. By using E—qs. (2.7) and
(2.9), we get



36 CROSS SECTIONS OF RELATIVISTIC RADIATIVE. . . 583

where K~c ——Ka+ Kc»d &ac =ga Kc —pc K~.
pBC(kBC) is the wave function of the momentum repre-
sentation defined as

/Bc(kBc ) =(2~}-'"f dx e
'"" "yBc(XBc)

Moreover, after simple calculations,
~

1(jB+„'} is reduced
to

~

pg+„') =(2~) e uB(KB)

X(2~) '"e "' " p'A+c'(XAC, EAc, kAC) .

(2. 1 1)

XAC=JAXA+gcxc XAc=xc —xA, KAc=KA
+Kc, and kAC=(AKc —/CUBA, with gA =MA/
(MA +Mc) and gc =1—gA. In Eq. (2.11),
p Ac (x Ac,' E Ac, k Ac ) is the off-shell Coulomb wave func-
tion defined as

O'A+C(XAC, EAc, kAC)

(1+gAc VAc)(2m) e ' uA(KA )uc(Kc)

gAc=[EAc —(hc+ I'Ac)+&n] (2.13)

%Ac(XAcieAc~kAc ) —u A (KA }pAc(XAc~sActkAc )

(2.14)

where

&p Ac (x Ac is Ac kAc )
(+j

The off-shell energy of c.AC is given as EAc=E —(KB
+MB)' —(gAa' ' KAC+kc~ 'KAc) —hA. hA and
hc are expressed as hA i——V„„a'"'+MAp'"' and

hc = i V—„„a' '+Mcp' ', respectively. The second
term of the expression of cz~ is the intermediate energy
of 8 and the third the translational energy of the two-
body system A+C. If hz is allowed to be approximated
as hA = —a'"' kAC+MAp'"', EAC is reduced to
EAc =E—(KA +MA }' —(KB+MB}', where
/ca' 'KAc has been dropped because it is negligibly
smaller than (Aa'"' KAc. As a result, Eq. (2.12) be-
comes

(2.12) = (1+gAc VAC )(2') e " "'uc(Kc } . (2.15)

where Inserting Eqs. (2.10) and (2.11) into Eq. (2.6), we can get

~

q A } (27r) g f dKCuB(KB)/AC(XAC~EAC&kAC) QN uN(KN} uA(KA )ABC(kBC)
SPlnS

X exp i g KN. R exp[i( gAMBK—AC+MA KB) x/M]

X exp[i [MBKAC —(MA+Me)KB]. r/MI (2.16)

where the summation of Eq. (2.16) with respect to r has been replaced by g,„;„,j f gN dKN. g,z,„, means the
summation over the spin states of all the three particles A, 8, and C. The total mass of the collision system gN MN has
been represented as M. In Eq. (2.16), we have obtained that KA =K and KB ——P —Kc by virtue of the momentum-
conserving 5 functions. Moreover, we have had the replacements x=xAc, r=xBc, and R=( gN MNxN)/M. At this
stage, we approximate the integrand of Eq. (2.16) except for /BC(kBC) by setting kBC =0, that is, KB =gBP and
Kc =gcP. Thus,

~

qi A } is reduced to

l

q'A ~ (2~) g 9B uB(KB)4'A'C'(X EAC kAC) Q uN(KN) uA(KA)/BC(r)
SPIns N

X exp i g KN. R exp[i(MBK —gBMAP). (r —/Ax)/M] .
N

(2.17)

By the way, it can be assumed that the relativistic off-
shell Coulomb wave function y'A+CI of Eq. (2.15) is approx-
imated as'

with the Coulomb parameter vAc =ZAa(
~
kAc

~

+Mc) /
~

kAc
~

&Ac(x'kAC) of Eq. (2.18) is the rela-
tivistic (on-shell) Coulomb wave function defined as

+Ac(x;CAc~kAc ) MAc(vAc) eAc)g Ac(xrkAc ) (2.18) Ip Ac(x;kAc } ( 1+gAc VAc )(2~) e uc(Kc )

by following the SPB theory. Here, MAc(vAc, eAC), the
off'-shell factor, has the form

MAC(vAc, eAC)=e "'r(I+ivAC)( lkAc l' —2~Ac)

X /4kAC
f

Here,

gAC = [(kAc+Me }'"—(~c+ VAc }+&a]

g 'A+c' of Eq. (2.19) can be further reduced to'

(2.19)

(2.20)
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y ~+c(x kac)=(2m) X(vwc)e

&& [1+y c
y '(k' +M') ' '(V„/2)]

&& &Fi(iv~c 1;i(
I
k~c

I I

x
I

—kac'»)

Xuc(K, ), (2.21)

where X(v~c ) =e " I (1 i v—~c ).
By employing Eqs. (2.8) and (2.9), we find that the

wave function /ac must be satisfied with

the Dirac equation for the hydrogenlike atom (8-C) given
as

(Ei ~c IBC)qac=O ~ (2.23)

with E; =Me[1 —(Zaa) ]' . E; is nearly equal to
E—(K +M~ )' —[(riaP) +Ma]'~, because E=(K~
+My )' +[P +(Ma+Me —Eb;„d) ]', where
stands for the binding energy of the composite particle
(8-C). By following the same procedure as that which
led from Eq. (2.19) to (2.21), qrac can be approximated
as11

tE —(K +My)' [(—gaP+iV, ) a' '+MBP' ']

—pc P a' ' —bc —Vac ]/ac =0 . (2.22)

f'Bc(r) = [1+y4 'y' ' (2M'c ) 'Vr]gac(r)uc(gcP)

(2.24)

Dropping iV, a' ' and q~P a' ' because it is negligibly
small and approximating gaP. a' '+MBP(8) to be
[(riaP) +Ma]', the solution /ac of Eq. (2.22) is re-
duced to ua(gaP)pac(r), where @ac(r) is the solution of

where yzz is the solution of the Schrodinger equation for
(B C). -

According to the approximations made from Eqs.
(2.14)-(2.24), we can reach the objective relativistic SPB
wave function that

I
0 q ) =(2n) exp i g KN R (2~) expti[(Ma+Me)K —MaP]'(par —x)/M IM&c(vwc E~c)&(vac)

N

x[i+y~ 'y' ' (k~c+Mc) ' '(V./2)]iFi(i»c I'&(
I k~c I I

x
I

—k~c»)

X[i+y4 y' ' (2Mc) 'V.]pBc(r) g uN(KN)
N

(2.25)

where use has been made of pN g,~;„,uN(KN)uN(KN) =1, with Kq ——K, Ka =gaP, and Kc =ricP.
Similarly, taking the same procedure by which the resultant formula of Eq. (2.25) has been obtained, we can get

('Pa
I

=(2m) exP i g KN. R —(2m) exPIi[(M~+Mc)K' —MBP'] (gq x r)/M—
I

N

X gu (K' )[1+y„' 'y' ' (2M ) 'V„)]q'„"'(x)M*(,E )X'( )[1+y,'c'y' '(k' +M') —'"(V,/2)]
N

X iFi(ivac, 1 "(
I
kac

I I
r

I + kac'r)) . (2.26)

The various notations employed in Eq. (2.26) are defined
as follows. K' and P' represent the recoil momentum of
B and the barycentric momentum of the composite parti-
cle (A-C), respectively. The intermediate momenta K'~,
Ka, and Kc are approximately given by K'q =gqP',
ICB =K', and Kc =gcP', and kac are defined as
kac=gaKc —gcKB. The off-shell factor Mac(vac, vac)
is provided as

e I'(1+ivac )(kac —2EBC )
I
4kac

I

with

vac =Zaa(kac+Mc ) ' /
I
kac

I

p'~c(x) is the solution of the Schrodinger equation for the
hydrogenlike atom ( A -C).

In addition, the wave function of the emitted photon a '
is given as

3/2 p 1/2 —« '[&+[My /M~x+[Mg/M]f']

(2.27)

where co and k are the energy and the momentum of the
photon.

B. Cross section

Inserting Eqs. (2.25), (2.26), and (2.27) into the transi-
tion matrix element T of Eq. (2.1), we obtain

Eac E—(Kg +My )'i —(Ka +——Ma )' TREc
& REcg(3)(K+ P K~ P' (2.28)
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where

=(2coM )
' (2m') eCwc(vac )Cac(vac )

X ug (0)up (K)ug(K')up(rigP)

&& uc(0)Ic(q p, k)uc(i)cP) . (2.29)

In Eq. (2.29), the moving frame P'=0 has been chosen
as the frame of reference and we have defined
that Cwc(vwc) =Mac(vwc ewe)N(vac ) and Cac(vac)
=Mac(vgc, E~c)N'(v~c). AM represents the photon en-
ergy in the moving frame. Moreover, Ic(q, p, k) has the
form

Ic(q, p, k)= f f dxdre' '*e'q'I I+y& 'y' '[V„/(2m)]Iy'q~*(x)

X Il+y4 'y' .[V,/(2po)]I iFi(ivBc I ~ (I p 'I

I
r

I
+p'r))(e'y' ')

X I 1+y4 y [V*/(2po)]I iFi(&vqc, 1;i(
~ p ~ ~

x
~

+p.x))[1+y4 'y' '[V,/(2m)]Iggp(r), (2.30)

where q, q', p, and po have been defined as q= K' —gzp,
q'= —K, p= —gage& —qcq =myv, and po
=(p +m )'~ =my, with m=Mc and y=(1 —v )

respectively. Here, v is the relative velocity of the present
collision system defined as v= —P/[P +(M~+m) j'

We approximate Ic(q, p, k) up to the first order with
respect to V„/(2po) and V,/(2m). That is to say, =2vra (a +b) (2.40)

Equations (2.32)—(2.37) can be estimated by virtue of
the Nordsieck integrals'

I,= dre-'~'I+'q' r -'

X iF1(ivBc 1 i(
I p I I

r
I
+p'r))

Ic(q~p k)=SAN +y4 %M —y4 A' (2.31)
and

where we have employed the abbreviated notations such
as Q=O. y' I (O=e, U, and V). U and V are defined as
U=B'3+CA' and V=BR'+C'3, respectively, where

dr e ggg I jFj r (2.32)

/x/+lq x X
—1

&& iFg(ivgc, 1;i(
/ p / /

x
/

+p.x))

=2na " (a'+b') (2.41)
B=(2m) ' f dre'q'[V~sc(r)j ~F~(r),

C=(2po) ' f dre' 'cpiic(r)[V, iF((r)],
A'= f dxe' "y'gc'(x) gi(x),
B'=(2m) ' f dxe'~'"[V„y'~c*(x)] iFi(x),

(2.33)

(2.34)

(2.35)

(2.36)

A = —N(BI, /BA, ) (2.42)

where a =(q +1, )/2, b =p q —iA
~ p ~, a'=(q' +k' )/2,

and b'=p q' —iA,
'

~ p ~, with A, =mZ&a and A, '=mZ&a.
By the use of Eq. (2.40), A and C are given as

C=N(2po) '
i p i

(BI,/Bp), (2.43)

C'=(2po) ' f dxe'q "y'qc*(x)[V„ iFi(x)] . (2.37)

Here, we have used the abbreviations for the conAuent hy-
pergeometric functions iFi(x)=iFi(ivqc, 1;i(

~ p ~ ~

x
~

+p.x)) and iFi(r)= iFi(ivac, 1;i(
~ p ~ ~

r
~

+p.r)). 3, B,
and C are quantities dependent upon one another and
connected by the identity

iqA+2mB+2poC=O . (2.38)

iq' 2 '+ 2m 8'+ 2po C' =0 . (2.39)

Likewise, A ', B', and C' are connected with one another
by

respectively. Likewise, we get

A
' = —N'(BI„/M, ')

and

C'=N'(2p )
'

i p i
(BI„/Bp) .

(2.44)

(2.45)

Here, N and N' are the normalization constants of y~~
and y'~c given by N=(X /n)'~ and N'=(A'/~)'~, re-,
spectively. B and B' are obtained by using Eqs. (2.38)
and (2.39).

The photon angular distribution in the moving frame is
provided as follows:

(der/dQM)=2(2m)
~

v
~

' f dco~co~ f dq(
~

r
~

)5(AM —AM' —v.q) . (2.46)
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(It E
I

)=8—'y (2.47)

The factor 2 in front of the right-hand side of Eq. (2.46) is
attributed to the summation with respect to the directions
of polarization of the emitted photon. Inside the energy-
conserving 6 function, coM' stands for the peak energy
of the photon given as cpM''=m(yg —g'), with g=[1-
(Zza) ]' and g'=[I —(Zza) ]', and yv. q represents
the Doppler-broadening effect of the photon spectrum.
Moreover, (

I

t
I

') is defined as

Jg ——y
—2 (2.55)

Jc = g S;(q,p, k),
i =1,2

where

S&(q, p, k)= —2(1+y ')Re[(e U)(e.V)*]

(2.56)

respectively. After performing simple trace calculations of
Jc, we get

splns

where we have taken the average with respect to the initial
spin states and the summation with respect to the final

spin states of the three particles. Equation (2.47) is ex-
pressed by employing Eq. (2.29) as

&It "I'&=(2 ) ( '/2 )Ic( „, )I'gJ

and

—[2/(m y ) )Im[(e.p)(e U)* 32 ']

S2 ( q, p, k ) = [( 1 —y
'

) /2 ] I
4

+ [(I+y ')/2]
I
U+ V

I

'

+(my)-'Im[[p. (U+V)*]gg ] .

(2.57)

(2.58)

with C(vac &ac)=Cwc(&wc)Cac(vsc). Here,

Jg ——2 'Tr g up (0)up (0)
spins ofA

ug (K)up (K)
spins ofA

(2.48)

(2.49)

Here, gc P has been replaced approximately by —p.
Re( ) and Im( . ) represent the real and the imagi-
nary parts of ( ), respectively.

Inserting Eqs. (2.54)—(2.56) into Eq. (2.48) yields the
resultant formula

& It"'I'&=(2~) 'a(y'~M) 'l«v~c, vBc) I'

Jg ——2 'Tr u~(K')u~(K') x [S&(q,p, k)+S2(q, p, k)], (2.59)

and

spins of 8

spins of B
ug ( rig P )up ( rig P ) (2.50)

uc(0)uc(0) Ic(q p k)
spins of C

(&)

x y uc(7JcP)uc(7)cP)
spins of C

(&l

x Jc(q, p, k) ' (2.51)

Equations (2.49)—(2.51) can be carried out by using the
Casimir operator

spins of N
uN(KN )uN(KN)=( —&KN y +&Npy4

+MN )/(2KNp),

with ICNp=(KN+MN)' . Therefore, J~ and J~ are re-
duced to

and

Jg =(Kp+Mg )/(2Kp)

Js = [(Mg + m )/Pp]~,

(2.52)

(2.53)

respectively, where Kp ——(K +M~)' and Pp=[P +(Mg
+m ) ] ' . In Eq. (2.53), we have approximated K',
which is equal to q+gzP, to qzP by dropping q. Since

I
K

I
&~M~ and P= —(Ms+m)yv in the moving frame,

J~ and J~ are further reduced to

(2.54)

and

where the fine-structure constant o. is defined in the Heav-
iside unit as a=e /47r. At the sight of Eqs. (2.57) and
(2.58), it is found that S~(q, p, k) is dominant to S2(q, p, k)
because the former includes the factor ascribable to the di-
pole radiation, namely, the factor of sin 6j~ with
0~ = cos '[(k v)/(

I

k
I I

v
I
)]. In other words, taking

the nonrelativistic approximation that
I

v
I

is allowed to
approach zero leads S2(q, p, k) to zero. Thus, apart from
the ultrarelativistic energy range, in general, S~(q, p, k) has
greater contributions to (

I
t

I
) than S2(q, p, k). Sub-

stituting Eq. (2.59) into Eq. (2.46), we obtain the angular
distribution for the REC process in the moving frame.
Furthermore, we can reach the objective differential cross
section in the laboratory frame by employing the Lorentz
transformation of Eq. (1.2) and the energy of the emitted
photon in the laboratory frame ~L given by cu L

=y '(1
I

v
I

coseL, ) 'AM.

III. RESULTS AND DISCUSSION

Firstly, we investigate the angular shapes of the emitted
photon for the relativistic REC processes. The normal-
ized differential cross sections and the deviation from the
differential cross sections at 90 multiplied by sin OL are
indicated for the collision of 197 MeV/amu Xe "+ on Be
in Fig. 1 and for that of 422 MeV/amu U + on Be in

Fig. 2, respectively. In the practical calculations, the
effective nuclear electric charge of Be is set to be 1.95 by
using the Slater rules. Thus, the magnitude of the opti-
mized orbital exponent of a Be valence electron is 0.98.
We compare the results of the present relativistic SPB cal-
culation with that of the relativistic Born calculation by
Sauter. In the case of the Xe +-Be system, the angular
shapes of both calculations are nearly subjected to sin OL
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FIG. 1. Angular shape of REC photons and the ratio to
sin'OL normalized at OL. =90' in the 197 MeV/amu Xe' +-Be
collisions. Solid lines, the present calculations. Dashed-dotted
curve, the relativistic Born calculations of Sauter (Ref. 2) ~ Ex-
perimental results are quoted from Ref. 4.

over all the ranges of the emission angles, in spite of the
fact that the maximum values of the differential cross sec-
tions are both at 91'. Our theoretical results are in good
agreement with the recent experiments by Anholt et al. ,
except for the two measured points at both 120' and 135 .
Thus, the effects of the Coulomb distortion between an
Xe + ion and an active electron at the incident energy
197 MeV/amu seem not to play quite an important role
to determine the shape of the angular distribution of the
emitted photon. The Coulomb parameter for this case is
0.72.

In the case of the U +-Be system of Fig. 2, the nor-
malized differential cross section by the relativistic SPB
calculation is somewhat greater than that by the relativis-
tic Born calculation at angles both larger and smaller,
above all at larger, than 90'. At the sight of the upper
graph of Fig. 2, the deviation from the sin OL dependence
becomes drastic as the emission angle goes from 90' to
180', which is thought to be mainly due to the large dis-
tortion effects between an U + ion and an active electron.
In this case, the Coulomb parameter between the two par-
ticles amounts to no less than 0.94. Nevertheless, the an-
gular shape is still nearly dependent on sin OL in the vi-

cinity of 90, the contributions from which, in fact, deter-
mine the main part of the REC total cross section.

Figures 3 and 4 indicate the absolute values of
the differential cross sections for the Xe +-Be and the
U +-Be systems, respectively. The differences between
the RSPB and the RB calculations are mainly attributed
to the Coulomb distortion effects of the active electron

~ ~
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FIG. 2. Same as Fig. 1 for the 422 MeV/amu U +-Be col-
lisions.
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FIG. 3. Angular distributions of REC photons for the 197
MeV/amu Xe +-Be collisions. Solid lines, the present calcula-
tions. Dashed-dotted curve, the relativistic Born calculations of
Sauter (Ref. 2). Experimental results are quoted from Ref. 4.
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against the highly charged projectile ion. These effects
reduce the results by the plane-wave Born calculations
at 90' by 2.3 times for Xe +-Be and by 4.7 times for
U +-Be, respectively. The experimental results are also
plotted in the former case.

We provide the total cross section for the Xe "+-Be and
the U +-Be systems versus the incident velocities and the
Coulomb parameters between the projectile ions and ac-
tive electrons in Figs. 5 and 6, respectively. Several
theoretical curves are obtained by the NRSPB, the RB,
and the RIA calculations as well as by the present relativ-
istic SPB calculations. The cross section by the RIA can
be obtained by replacing C(vqc, viic) of Eq. (2.59) with
X(v~c)X(v~c), in other words, by removing the effects of
the Coulomb off-shell factors from the RSPB cross sec-
tion. Figures 5 and 6 include two types of the relativistic
SPB calculations, one of which comes from Eq. (2.59).
We refer to it as the relativistic SPB calculation I (RSPB-
I) for convenience. The other, which is referred to as the
relativistic SPB calculation II (RSPB-II), is defined as
what is obtained by multiplying the cross section derived
by using Eq. (2.59) by y . The factor y is ascribable to
Jii of Eq. (2.55). In a word, the effect of the Lorentz con-
traction based on the target nucleus B traveling in the
moving frame is neglected in the RSPB-II.

Comparing the results by the RSPB-I with the NRSPB
shows the magnitude of the relativistic effects. Likewise,
the difference between the results by the RSPB-I and by
the RB indicates the magnitude of the distortion effects.
The total cross sections by the RIA are found too un-
derestimated for both cases of Figs. 5 and 6. The
discrepancies between the RSPB-I and the RIA are main-
ly due to the Coulomb off-shell factors representing radia-

FICx. 5. Total cross sections for the Xe' +-Be collisions vs the
incident velocity U/c and the Coulomb parameter between an ac-
tive electron and the projectile ion v. Solid lines ( ), the
present calculations (RSPB-I). Dashed chain lines (———
——), the relativistic SPB calculations without the Lorentz con-

traction factor based on the motion of a target nucleus in the
moving frame (RSPB-II). Dashed-dotted lines ( —.—.—~ ), the
relativistic Born calculations of Sauter (RB). Dashed lines
( ———), the nonrelativistic SPB calculation of Ref. 7 (NRSPB).
Dotted lines (. . ), the relativistic impulse approximation cal-
culations (RIA). Experimental results are quoted from Ref. 5.

tive transitions from the Rydberg states of the electron-
projectile binding system into the fina1 state of the K she11.
The SPB wave function includes the contributions from
intermediate bound states as well as from the continuum
states. The former contributions are absent in the impulse
approximation (IA) wave function. As compared with the
experimental results, it is found that the Coulomb off-
shell factors play significant roles to enhance the intensity
of the REC cross section. The RSPB-I cross sections of
the 197 MeV/amu Xe + -Be and 422 MeV/amu U + -Be
systems are 4.5 and 6.0 times greater than the RIA ones,
respectively.

The results by the RSPB-I are, in general, rather small,
by y times, in comparison with those by the RSPB-II.
The reductions of the RSPB-I results arise from consider-
ing the Lorentz contraction factor of the target nucleus
traveling at the velocity of

5

v
~

in the moving frame.
From the theoretical point of view, this factor can by no
means be neglected. As the velocity increases, the
RSPB-II cross sections get away from the RSPB-I ones
and approach the RB ones gradually. It is usually as-
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effects are thought to be somewhat important in the range
of the nonrelativistic incident energy. We exemplify the
cases of collisions of a F + ion at the velocity of 10 a.u.
on target atoms with the effective nuclear charges
Zg =27/16 (He), 1.95 (Be), and 0 (a free electron), respec-
tively. The ratios of the total cross sections of the F +-He
and the F +-Be systems to the total cross section of F +

impinging on a free electron amount to 1.6 and 1.3, re-
spectively. As is expected, such effects of the target nu-
cleus are small, but not negligible in the nonrelativistic en-
ergy region.

IV. SUMMARY

0

0
0.6 0.8

&lc

FIG. 6. Same as Fig. 5 for the U +-Be collisions. The exper-
imental result is quoted from Ref. 4.

sumed that the REC is the inverse process of the pho-
toelectric effects of atoms ' ' besides the Compton profile
reOecting the initial momentum distribution of a target
electron. The present RB cross sections are obtained on
the basis of such a model. According to this conventional
model, a target nucleus is regarded as playing no role oth-
er than loosely binding an active electron. Such an as-
sumption is though to be satisfactory, at least in the case
of the nonrelativistic energy range. The effects of the
Lorentz contraction coming from the target nucleus
reduce the total cross sections of the RSPB-II by 1.4 and
2.0 times in the case of Xe +-Be at 197 MeV/amu
(v=0. 55) and U +-Be at 422 MeV/amu (v=0.71), re-
spectively.

Finally, we mention the target nuclear charge depen-
dences of the REC total cross sections. It is well known
that the REC differential and total cross sections are in-
dependent of the effective charge of a target atom, ' which
is important only to estimate the full width at half max-
imum (FWHM} of the photon spectrum based on the
Doppler-broadening. In the general case of the REC pro-
cess, the target nuclear charge is smaller than the projec-
tile one. Thus, the Coulomb parameter v~~ is usually
smaller than v~c. In the case of the collisions of 197
MeV/amu Xe +-Be and 422 MeV/amu U + on Be,
especially, vzc &&vz~ 0. Hence, it is quite possible to
neglect the effects of the distortion and the Coulomb off-
shell factor caused by the target effective charge in the
range of the relativistic incident energy. However, these

We summarize the present article as follows:
(i) The SPB wave function has been extended in the

case of the relativistic Coulomb three-body problem.
Moreover, on the basis of this wave function the cross sec-
tion of the relativistic REC process has been calculated.

(ii) The shapes of the angular distributions are nearly
subjected to the sin OL dependence in spite of strong dis-
tortion effects caused by the projectile ions in both the
case of 197 MeV/amu Xe + and that of 422 MeV/amu
U + colliding on Be. However, the absolute values of
the photon angular distributions are drastically influenced
by the distortion effects.

(iii) The total cross sections for the Xe +-Be and the
U +-Be systems have been calculated by use of several
methods such as the nonrelativistic SPB, the relativistic
Born, and the relativistic impulse approximations, as well
as the present relativistic SPB approximation. Comparing
the results of the relativistic SPB calculations with those
by others leads to estimating the degrees of the magni-
tudes of various effects such as the relativistic corrections,
the distortions, and the Coulomb off-shell factors included
within the relativistic REC processes. Especially, the
effects of the Coulomb off-shell factors play outstanding
roles. Without them the cross sections are too underes-
timated in the comparison with the experimental results.

(iv) We have introduced the Lorentz contraction factor
based on the motion of a target nucleus in the moving
frame. This effect modifies to some extent the magnitude
of the REC cross section derived on the basis of the mod-
el that the REC is assumed to be only the inverse process
of the photoelectric effect of an atom.

(v) The effects of the Coulomb distortion and the
Coulomb off-shell factor between an active electron and a
recoiling target nucleus have some inAuences on the REC
process in the nonrelativistic energy region.

(vi} As a whole, our theoretical results by the relativistic
SPB calculations are in good agreement with the experi-
mental ones.
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