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To study the stationary probability distribution of master equations in the large-system-size lim-

it, we introduce a kind of master Hamiltonian which is similar to the Fokker-Planck Hamiltonian
suggested by Graham et al. in the study of Fokker-Planck equations in the weak-noise limit. The
general procedure to associate the potential of the master equation with a certain separatrix of the
master Hamiltonian system is described. With some solvable models we show how the smoothness
of the potential of the master equation is related to the integrability of the corresponding master
Hamiltonian system.

The study of stationary probability distributions of
Fokker-Planck equations which do not manifest detailed
balance turns out to be of great interest, and has re-
ceived much attention. ' In many physically interest-
ing cases the noise, represented by the difFusion term of
the Fokker-Planck equation, is very small, and then the
limit of weak noise is desirable. In this limit the station-
ary probability distribution —or, more precisely, the log-
arithm of the distribution —appears to be a good candi-
date of a nonequilibrium potential. ' Recently, Graham
and his co-workers have shown that in the weak-noise
limit the Fokker-Planck equation becomes equivalent to
the Hamilton-Jacobi equation of a certain Hamiltonian
system in which the potential

Po(x )= —lim Ieln[p( x, e)] Ie~o

plays the role of the action on a separatrix at energy
zero. " This approach sheds new light on the study of
the Fokker-Planck process.

In practice, many important physical and chemical
systems cannot be modeled by Fokker-Planck equations,
although they can often be successfully modeled by mas-
ter equations in which variables may take discrete
values. ' Therefore, in order to construct a complete
stochastical theory of nonequilibrium systems we should
study the master equation as well as the Fokker-Planck
equation thoroughly. However, the master equation,
lacking detailed balance, is much less known than the
Fokker-Planck equation. In Ref. 13 I succeeded in solv-
ing the potential of the one-dimensional master equation
without detailed balance, in the leading order of system
size. In Ref. 14 the system-size expansion of the station-
ary probability distribution has been obtained systemati-
cally. The Lyapunov property of the potential was
shown in Ref. 15, and a comparison between the master
equation and the Fokker-Planck equation in the one-
dimensional case was presented in Ref. 16.

The main purpose of the present work is to extend
Graham's theory to the master equation. First, we
reduce the stationary master equation to a Hamilton-
Jacobi equation, in the large-size limit, and define a mas-

ter Hamiltonian. The relationship between the station-
ary probability distribution of the master equation and a
particular separatrix of the master Hamiltonian system
will be formulated. Then, all the approaches dealing
with the Fokker-Planck equation based on the Hamil-
tonian formalism, " including calculation of the sta-
tionary probability distribution by specifying the separa-
trix of the Fokker-Planck Hamiltonian system and dis-
cussion of the smoothness of the potential according to
the smoothness of the separatrix in cases for which the
explicit form of the potential is not available, can be ap-
plied to the master equation. The presentation is organ-
ized as follows.

In Sec. I I present briefly the basic equation of the sta-
tionary probability distribution of the multidimensional
master equation, in the leading order of the system size.
In Sec. II the master Hamiltonian approach is formulat-
ed. Section III investigates several solvab1e examples
with which I show how the new approach works. The
general relationship between integrability of the master
Hamiltonian and the smoothness of the potential wi11 be
briefly discussed at the end of the presentation.

I. BASIC EQUATION

It is well known that detailed balance, which provides
a strict constraint on the master equation, exists in equi-
librium. In the following we treat the master equation
lacking detailed balance. Then we are dealing with
nonequilibrium systems, taking equilibrium systems as
special cases.

A nonequilibrium system may undergo a stochastical
process described by a master equation

P(X, t ) = g P(X r—, t )M(X ——r, r)a
c}t

—g P(X, t )M(X,r),

where X and r are q-dimensional vectors,

X=(X„X~,. . . , X ), r=(r„r2, . . . , r ),
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and the notation g, indicates the summations over all
the components r, , i =1,2, . . . , q,

P2 l
1

The large-size limit for the master equation is analogous
to the weak-noise limit for the Fokker-Planck equation.

In the large-size limit we may expand the stationary
probability distribution as

By means of the Kramer-Moyal expansion, Eq. (1.1) can
be transformed to a partial dial'erential equation' '

P(x)=N exp[ —u(x)],
u ( x) =u()(x)/E+ u ) (x) +

(1.7)

'n

&& [A„(x)p(x,t)], (1.2)

where

E= I/6, p(x, t ) = IMP(x, t ),
r

A„(x)= g g r,
' m(x, r), m(x, r)=M(X, r)/0,

r i

with N being the normalization constant and
lim, 0(eN)=0. We assume that the master equation
has a unique time-independent solution which is ap-
proached from any given initial state. It is well known
that p(x) has an essential singularity for E~O In. many
cases the logarithm E ln[p( x)/N ] may be regular at
@=0. However, it is not always so. In certain cases,
ln[p(x)/N] may include terms like 1n(e)f (x) because of
which u, (x) and some other terms in (1.7) may be diver-
gent. We do not intend to consider this matter in detail
in the present work, but simply rewrite uo(x), the so-
called potential, as

(1.4)

The derivative (()/()x)" represents

gn 1 2

f(x, t)—n '
nl

'f(x, t)
Bx Bx ' . Bx '

1 2 q

(1.5)

A common approach is to truncate the infinite terms
of Eq. (1.2) to the second order of e, and then to reduce
the master equation (or the Kramers-Moyal expansion)
to a Fokker-Planck equation. Unfortunately, this ap-
proach does not work. ' ' ' Provided the system size is
very large, the local properties of the stationary proba-
bility peaks, such as the positions of the peaks and the
widths of the peaks, of both equations are identical.
However, the global properties, such as the relative
heights of the peaks, for both equations are completely
diferent, even if the limit of large size is taken. Hence,
all the infinite terms in the Kramers-Moyal expansion
have to be taken as a whole, and the approach used for
the Fokker-Planck equation cannot be directly applied
to the master equation. How can one treat the infinite
coupled equations in (1.1) or, equivalently, the partial
differential equation (1.2) which contains infinite terms
and defies any truncation?

Fortunately, the difhculty may be largely reduced by
taking the large-size limit. In physica11y and chemically
interesting cases and in most practical systems, the size
of the systems A is found to be very large

Q» 1, X, )&1,

with 0 being the size of the system and x, ,
i =1,2, . . . , q being the concentrations of the variables.
The notations n, n~, and Q" are defined, respectively, as

Xn,n=(n), n2, . . . , nq), n!=Q (n, !), 0"=II

uo(x)= lim [
—eln[p(x)])

g~o (1.8)

g m(x, r) jexp[r Vuo(x)] —1I =0, (1.9)

where the vector Vuo(x) reads

Vu()(x) = (u(') (x),u ()(x)„.. . , u II(x) },
with

au, (x)
u()(x) =

BXI-

In Ref. 15, we have proved that the potential defined by
Eq. (1.9), if it exists, must be a Lyapunov function of
the corresponding kinetic equation,

dx = A)(x)=(A())(x)yA(2)(x), . . . y A( )(x)),dt

(1.10)

A(;)(x)= g r;m(x, r),

i.e.,

du()(x)

dt
=Vuo(x). A, (x) &0,

where the equality holds only for

Equation (1.8) rules out terms such as 1n(E). Conse-
quently, the divergence problem due to in(e) no longer
exists. Nevertheless, both Eqs. (1.7) and (1.8) give no
difference to uo(x).

Inserting Eq. (1.7) into Eq. (1.2), keeping the leading
terms of the system size, exchanging the summations
over n and r, and summing n, a rather compact equation
for uo(x) then follows:

while the concentrations of the variables are finite,

x,- =X;/0 finite .

au, (x)
=0, i=1,2, . . . , q .

BXI.
(1.12)
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At the first glimpse, Eq. (1.9), which governs the po-
tential of the master equation in the large-system-size
limit, is completely difFerent from the equation

g g Q„(x) +g IC(„)(x) =0,ay ay ay

(1.13)

which governs the potential of the Fokker-Planck equa-
tion in the weak-noise limit. In the study of the
Fokker-Planck equation of nonequilibrium systems, an
important ideal is to separate the drift into two orthogo-
nal parts, the circulation and the gradient of the poten-
tial, ' which are analogous to the reversible and the
dissipative currents in thermodynamical systems, respec-
tively. The orthonormality between the circulation and
the gradient is an important fact in describing the rela-
tionship between the potential of the Fokker-Planck
equation and the drift force. For the master equation
[cf. Eq. (1.9)] no circulation can be properly defined and
then no simple relationship between the potential and
the transition probabilities can be found.

Nevertheless, an important similarity between Eqs.
(1.9) and (1.13) is implied. Due to Eqs. (1.9) and (1.11),
the potential, evolved by the deterministic equation
(1.10), decreases as time increases. As t ~ ao, uo(x) will

approach one of its minimal values while the trajectory
of Eq. (1.10) approaches one of its attractors. In the lim-
it sets (they may be attractors, repellors, and saddles;
from another point of view, they may be fixed points,
limit cycles, and so on; the limit sets which have frac-
tional dimensions will be excluded from our considera-
tion in this presentation), we have

(1.14)

dx;

dt
= g r;m (x, r) exp(r. p), (2.2a)

dp;

dt
= g m '(x, r )[exp(r p) —1], (2.2b)

am(x, r)m'x, r =
C)X .

Now we are in the position from whence the relationship
between the trajectory of the deterministic equation in
the 2q-dimensional Hamiltonian phase space and the po-
tential of the master equation (1.9) can be described.

It is apparent that the q-dimensional sheet Q),

Here and henceforward we write the action of the sys-
tem directly by uo(x). Actually, only the special action
of the Hamiltonian system at zero energy and con-
strained by the boundary condition (1.14) is really relat-
ed to the stationary probability distribution of the origi-
nal master equation. Since the Hamiltonian is derived
from the master equation, we shall henceforth refer to it
as the master Hamiltonian. For an actual stable system,
the stationary probability distribution should be normal-
izable. In the present paper we assume that the normali-
zation condition is automatically valid. Whenever an
unnormalizable probability distribution appears it is al-
ways implied that we consider only a local problem.

The Hamiltonian (2.1) has a very strange form. It has
no obvious analogy to any real mechanical system, and it
is rather different from the Fokker-Planck Hamiltonian.
Thus, we cannot regard (2.1) as a meaningful energy; it
is only a formal representation of the master equation.
On the other hand, Eq. (2.1) shows how useful the Ham-
iltonian formalism initiated by mechanics is.

The canonical equations of the master Hamiltonian
system are given as

II. MASTER HAMILTONIAN

Equation (1.9) can be regarded as a Hamilton-Jacobi
equation. The Hamiltonian reads

H= pm(x, r)[exp(r. p) —1], (2.1)

with

p= b»p2

~, =au, (x)yax, .

where I denotes the limit sets. (In somewhat weakened
form, I may be replaced by 2, which denotes the at-
tracting points. ) The same boundary condition has been
found for the Fokker-Planck equation and plays a key
role in the Fokker-Planck Hamiltonian description.
According to Eqs. (1.13) and (1.14), Graham et al. , sug-
gested a mechanical analogy to relate the potential of the
Fokker-Planck equation to a separatrix of a certain
Hamiltonian system. It is obvious that Eqs. (1.9) and
(1.14) fit the essential condition of the analogy.

H=O . (2.3)

Equation (1.14), the boundary condition, may be used to
fix the q —1 invariants other than the Hamiltonian.
Then Eqs. (1.9) and (1.14), from which the potential may
be solved, determine a q-dimensional hypersurface Q2.
According to Eqs. (2.2a) and (1.14), in all the limit sets
of the deterministic equation the momenta associated
with the potential must vanish. Consequently, a clear
mechanical picture is the following: In the 2q-
dimensional phase space, the deterministic motion takes
place on the q-dimensional plane p, =0, while the sta-
tionary master equation (in the large-size limit) charac-
terizes motion on other q-dimensional subspace Q2
which intersects the sheet of the deterministic dynamics
in all the limit sets [x(l ),p=0]. All the limit set points

pi 0, l =1~2, . . . , q

is an invariant subspace of Eq. (2.2). In this subspace
the trajectory of the master Hamiltonian is exactly the
deterministic path of the kinetic equation (1.10),
x;= g, r, m(x, r). For the stationary probability distri-
bution, Eq. (1.9) corresponds to the Hamilton-Jacobi
equation at zero energy,
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are the stationary solutions of the Hamiltonian canonical
equation (2.2). Moreover, they are hyperbolic points in
2q-dimensional phase space. Therefore, the surface Q2 is

a separatrix of the Hamiltonian system which connects
all the limit sets of the, deterministic dynamics. This
mechanical picture is just what one has obtained for the
Fokker-Planck Hamiltonian system.

It is difficult to treat Eq. (2.2) due to the fact that the
momenta p, appear in the exponents. The canonical
equations can be considerably simplified by making use
of the generating function

x; lns, (2.4)

to transform the original coordinates and the momenta
x; and p; to new coordinates and the momenta s; and w;
as

w, = —x;(I ), (2.10)

which are the stationary solutions of Eq. (2.9). Equation
(2.10) is the boundary condition under which the special
action associated with the potential can be identified.
Again, Eqs. (2.8) and (2.10) define a q-dimensional
separatrix in (s, w) representation.

In the preceding discussion, we approached Eqs. (2.6)
and (2.8) by a type of transformation that seems to be
merely a mathematical trick. In fact, the transformation
is physically meaningful. Defining a generating function
of the probability distribution as

ing the plane p, =0 in the old representation. The deter-
ministic motion takes place right in this plane. [Replac-
ing s, , w, by 1 and —w, , respectively, Eq. (2.9b) may
reduce to Eq. (1.10).] Equation (2.5) transforms the 2q-
dimensional limit set points [x(l ), p=0] to s; =1 and

p;= lns;,
w;= —x, /s; or x, = —s;w; .

The master Hamiltonian can be rewritten as

H= g m( —s;w;, r) gs ' —1

r J

(2.5)

(2.6)

F(s, t ) = g II s; 'P(X, t )

n i

and then an accumulating generating function as

%(s, t ) =e ln[F(s, t )],
we find the stationary %(s) as (readers may check it
directly)

An important advantage of Eq. (2.6) is that the master
Hamiltonian is polynomial whenever the transition prob-
abilities are polynomial. [Suppose the master equation
(1.1) represents chemical reactions g&, R; (j )X;
k.~ g',t, R; (j )X;, j= 1,2, . . . , n, where k are constant

and r, (j ) =R, (j ) —R, (j ). The arguments s, can never
appear in denominators though some of ri may be nega-
tive. ] The new momenta are associated with a new ac-
tion as

w;=, i =1,2, . . . , q
Oil(s)

s;
(2.7)

since the transformation (2.5) is canonical. The problem
of solving uo(x) is equivalent to that of solving rI(s}
from

H(s, w)=0 . (2.8)

The canonical equations of the master Hamiltonian (2.6)
read

si = —g s;m'( —s;w;, r) g s, ' —1

r J
(2.9a)

dw.

dt
r,. —1

rm —s w, , r s,
'

r J (J+i)

+ g w, m'( —s, w, ,r) gs, ' —1

r J
(2.9b)

From Eq. (2.9) it is easily verified that the q-dimensional
plane

s;=1, i =1,2, . . . , q

becomes the invariant plane in (s, w) phase space, replac-

lim 4(s) = —il(s),
a~0

Lo(x, x)= gp;x; H, — (2.11)

where p may be replaced by x via the canonical equa-
tions,

BH(x, p)
~p;

(2.12}

The potential can be represented by the extremum prin-
ciple

x(t =0)
uo(x, E )= min Lo(x, x)+C(E ) . ,x(E. )(t = —oo )j

uo(x) = min I uo(x, E ) I,
J

J=1,2, . . . , n (2.13a)

(2.13b)

where the minimum in (2.13a) is taken over all paths
starting in attractor E for t~ —oo and ending in the
point x at t =0. The constant C(E ) is the value of the
potential on the jth attractor. The solutions of Eq.
(2.13a) [or Eq. (1.9)] may not be unique; then, the
minimum in (2.13b) requires one to take the absolute

if the limit exists. Thus, in (s, w} representation the
master Hamiltonian (2.6) is related to the behaviors of
the spectrum of the stationary probability distribution of
the master equation. In the subsequent sections we will
not proceed further with this affair, but use both repre-
sentations alternatively for the sake of mathematical
convenience.

By a Legendre transformation we may formulate the
Lagrangian associated to the Hamiltonian
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minimum among all uo(x, EJ) in any given x. Finally,
uo(x) is a single-valued function. At all points where
the minimum is transferred from one branch to another,
the first derivative of uo(x) may be discontinuous while
the potential itself remains continuous. These arguments
were originally postulated by Graham et a/. , for the
Fokker-Planck equation. We expect that it is true for
the master equation.

In spite of the great difference between the master
equation and the Fokker-Planck equation, both equa-
tions can be treated identically by Eqs. (2.3) and (1.14).
The approach used for the Fokker-Planck equation can
be applied to the master equation. The master equation
differs from the Fokker-Planck equation only in the form
of the Hamilton-Jacobi equations, namely, by Eqs. (1.9)
and (1.13). The smoothness of the potential of the mas-
ter equation is related to the smoothness of a separatrix
of the master Hamiltonian. An integrable Hamiltonian
may guarantee the smoothness of the separatrices, and
hence the smoothness of the potential. However, in
mechanics we know that smooth separatrices are
structurally unstable and integrable Hamiltonian systems
are really exceptional among all Hamiltonian systems.
Arbitrary weak perturbations (not of exceptional form)
may destroy the smoothness of separatrices. Thus, we
may expect that master equations which represent none-
quilibrium systems and have smooth potentials must be
exceptional. Equations (2.1), (2.2), and (2.13) provide a
useful method to calculate the potential of the master
equation by studying the master Hamiltonian system.
The dynamics of Hamiltonian systems have been studied
much more extensively than that of the master equation
lacking detailed balance. In recent years, there appear
numerous works dealing with Hamiltonian dynamics,
both numerically and analytically. Thus, the master
Hamiltonian formalism may appear to be a remarkable
new approach in the study of the stationary probability
distribution of nonequilibrium master equations.

with

T= exp
duo(x )

dx

In Ref. 14 we have proved that Eq. (3.2) has one and
only one positive solution which can be associated with
the potential of the master equation.

It is we11 known that one-dimensional stationary
birth-death master equations can be solved exactly
without taking the large-size limit. However, in general,
one cannot obtain an exp1icit form of the stationary
probability distribution if the master equation does not
manifest detailed balance. Here and in Ref. 14 we
succeed in obtaining the explicit solution of the station-
ary distribution by taking the large-size limit.

B. Master equation
with linear transition probabilities

+ g B,[exp(p, ) —1]+g c,x, [exp( —p, ) —1] .

The corresponding canonical equations,

dx;/dt = —g A;Jx; exp( —p;+p )

J+1

+ g AJ;x exp( —p, +p, )

J+)

+B; exp(p, ) —C;x; exp( —p; ),
dp;/dt = —g A, [exp( —p, +p, ) —1]

(3.3)

First, let us consider a q-dimensional birth-death mas-
ter equation which has linear transition probabilities.
The master Hamiltonian is expressed in the form

H= g g A; x, [exp( —p;+p ) —1]

III. EXAMPLES —C;[exp( —p, ) —1], (3.4)

In this section we apply the general approach stated in
Secs. I and II to certain solvable models and discuss the
potentials of the master equations and the conserved
phase-space functions of the corresponding master Ham-
iltonian systems.

look complex. By the transformation (2.5), the master
Hamiltonian is considerably simplified. In (s, w) repre-
sentation the Hamiltonian becomes quadratic,

H= g g A;Jw, (s, —s;)+ QB, (s, —1)

A. Gne-dimensional master Hamiltonian

A simple solvable model is a one-dimensional master
equation. The general form of the master Hamiltonian
1S

+ gC;w;(1 —s, ) .

Defining

s,'=s,. —1,

(3.5)

H = g m (x, r )[exp(rp ) —1) . (3.1) one may rewrite the Hamiltonian and the Hamilton-
Jacobi equation as

It is, of course, integrable at any value of energy. At
zero energy duo(x )/dx can be worked out by solving the
algebraic equation and

H =w.M.s'+8 s' (3.6)

g m(x, r)(T" 1)=o, — (3.2)
Vg M.s'+B.s'=0

respectively, where

(3.7)
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is =isi, $2) + ~ ~ )sq)

W=(N|)WP). . . ) Wq )

where D ' is the transpose of D. The coordinate trans-
formation (3.9) transforms Eq. (3.7) to

anal an aYI'= a„a„' a,,
H = g m„h„+B„'h„=0, (3.12)

and

B=(Bi,B 2,
. . . , B q),

M, . =A, , i&j; M;;= — Q A; —C; . (3 8)
j(~i)

M can be easily diagonalized by a similarity transforma-
tion with D as

M =D -'MD,

L„=m„h„l„+B„'h„,@=1,2, . . . , q . (3.13)

The separatrix represented by Eq. (2.8) and the boundary
condition (2.10) is determined by

which is just the Hamilton-Jacobi equation in (h, 1 ) rep-
resentation. Thus, the second point is proven
(aql/ah „=1„).

The complete set of integrals is, obviously,

m, 0
~ ~ o m I

0

0 (3.9)

L„=O,
which gives rise to

0 0

= g (m, h, l;+B,'h,. ), (3.10)

(The transformation may be nonunitary since A;J &Ai, ,
in general. ) Here we assume that the eigenvalues
m &, mz, . . . , mq, are different from each other. If some
of them are degenerate, one has to work a little more
with the transformation. Nevertheless, there is no essen-
tial difficulty. The Hamiltonian is diagonalized by D

H =w. DMD '.s'+ B.DD '.s'

and

with

g
ah P

g(s) = —g g;(s; —1),

g; = Q D ';„B„'Im„
. P

(3.14)

with

h=D 's', I =wD

Transforming (s, w) back to (x,p) we obtain

p; = ln(x;/g, . )

dN(s, w)
dt

aÃ aH
Bs; Bw;

aN aH
aw; as;

aN , aH
'" Bh tv glP p v V

aN , aH
'~ ah„

alP V l P V

D-1 D ~ aX BH
Bl Bh

1 V P
)

aX aa aX BH
Bh„81„8l„Bh„ (3.1 1)

and
B'=BD .

The q-dimensional transformation (3.9) has very special
properties. On the one hand, it induces a canonical
transformation in the 2q-dimensional Hamiltonian phase
space; on the other hand, it does not change the action.
[Remember that the transformation (2.5) does change
the action. ] The first point preserves the Poisson brack-
et. Given any phase-space function N(s, w)=N(h, l ), we
have

that produces the stationary probability distribution

p(x)=gp(x;)

=g(+n/(2~g; )

&& exp I [x, —g, —x; In(x; /g; ) ]A I ), (3.15)

or, equivalently,

P(X)= g [exp( —g, Q)(g;0) '/I;t], (3.16)

which is a production of q-Poisson distributions of which
each argument has its average

X, =g, Q=Q g D ';„B„'Im„.

In fact, Eq. (3.16) is the exact stationary solution of
the master equation, though we started from the equa-
tion of the large-system-size limit. Usually to solve a
master equation is much more difficult than to solve a
Fokker-Planck equation corresponding to the same ki-
netic equation. However, for the present model, the re-
sult of the master equation is even much simpler than
that of the Fokker-Planck equation, of which the sta-
tionary probability distribution cannot be factorized if
the arguments in the drift force are coupled to each oth-
er. In the stationary solution (3.16) various arguments
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k)

X~~Y,
k2

k3

Y~L+Z,

are decoupled and the probability distribution is factor-
ized, though the arguments are coupled to each other in
transition probabilities.

The model is exactly solvable. Here, by studying the
model in detail we manifest clearly the way by which the
master Hamiltonian approach works. Moreover, the
method for solving the stationary probability distribu-
tion of the master equation by diagonalizing the Hamil-
tonian is completely new, and obviously much easier
than that of directly solving Eq. (1.9).

A multidimensional equation with linear transition
probabilities can be very complex if it is not of the
birth-death type. Let us study a set of chemical reac-
tions

The following q first integrals

L;= pm(x, , r, )[exp(r p, ) —1], i=1,2, . . . , q

are manifest. The potential is the sum of uo, (x, ),

uo(x)= duo, (x, ),

where uo;(x, ) is the solution of the Hamilton-Jacobi
equation L, =0. Hence, the problem is substantially one
dimensional.

If the arguments in the master equation are coupled to
each other the problem becomes nontrivial, and in par-
ticular, if the coupling is on one direction the problem
may be solvable. Let us consider a master Hamiltonian
with two degrees of freedom,

k4

A~Y,
Given

k5 k6

Z~X+ Y, Z~B
H=H, +H, +H, ,

in which

H
&

——g m, (x, r, )[exp(r, p, ) —1],
k, =o., k3 ——k5=1, k2 ——k4 ——y,
k6 ——(b —1), A /II=1,

we may specify the master Hamiltonian and the corre-
sponding canonical equation by the standard procedures.
Owing to the linearity of the transition probabilities, the
equations in the three-dimensional coordinate space
(s„s,s, ) are independent of the momenta [cf. Eq. (2.9)].
They read

sx = —o(s„—s ),
dt

Hz ——g mz(y, rz)[exp(rzpz) —1],

and

H3 ——g g m 3(x,r, , rz )[exp(r &p & +rzpz ) —1] . (3.19)

The coupling of the master equation which is represent-
ed in H3 is only on the direction x~y. The following
three cases of Eq. (3.19) will be discussed, respectively.

de =ps„s, +ys —s
dt

(3.17)
1. H&+H3 is a birth-death master Hamiltonian

and linear in x

dSz
Sx Sy

—6Sz
dt

where P= 1. Replacing P=1 by P= —1, Eq. (3.17) is
just the well-known Lorenz equation, ' which is a typical
model for showing chaotic behaviors. We have not yet
investigated Eq. (3.17). In this paper we are only re-
stricted to solvable systems. However, it is obvious that
with (3.17) no explicit constant of motion other than en-

ergy can be found. It is not surprising if one finds the
potential of the master equation nonsmooth for such a
seemingly simple model.

C. Multidimensional master equations
with nonlinear transition probabilities

To date there is no general way to discuss the master
equation of this kind, even in the large-size limit. We
can only cite some especially simple models as our solv-
able examples.

The first apparently solvable model of this kind is the
decoupled master equation. The master Hamiltonian is
given by

H = g g m (x;, r, )[exp(r;p; ) —1] . (3.18)

H =a(s, —1)—w, (sz —s, ) —w&(1 —s, )

P'2+ g m2( —s2w2, r2)(s2 —1) (3.20)

The canonical equation for w& is independent of all the
other arguments

dw)

dt
= —a —2w&

that can be integrated as

L„=(a+2w, )exp(2t) .
Apparently, the separatrix is defined as

2w&+a =0,

(3.21)

The general forms of H&, H3 are specified by

H, =a [exp(p, ) —1]+x[exp( —p, ) —1],
H3=x[exp( —p, +pz) —1] .

The second constant of motion besides the Hamiltonian
can be easily found in (s, w) representation [cf. Eq. (2.9)]
in which the Hamiltonian is formulated as
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or, more specificly, by

L, =a(s, —1)—2w&(1 —s, )=0, (3.22a)

Equation (3.22a) yields

P(X)= exp( —a Q/2)(a Q/2) IX! .

L2 ——x(s2 —1)+ g m2( —sqw2, r2)(s2' —1)=0 . (3.22b)

Unlike Eq. (3.22), the stationary probability distribu-
tion in this case is no longer factorized. The potential is
not associated with any value of the constant Lz. There
is no general way to define the separatrices from time-
dependent constants of motion, and we are not able to
find the explicit form of the potential. However, due to
the fact that the master Hamiltonian system is inte-
grable, we may conclude the smoothness of the potential
without really solving it. It is emphasized that this con-
clusion can not be obtained directly from Eq. (1.9).

Equation (3.22b) is a one-dimensional Hamilton-Jacobi
equation which has been generally solved in Sec. III A.
The constant x in L2 is nothing but the average concen-
tration of x, x =a /2. It should be noted that neither L,
nor I.2 is the first integral. They remain constant only
on the separatrix. The main nontrivial result is that the
stationary probability distribution is still factorizable in
this one-directionally coupled model and x enters the
stationary probability distribution of y in such a way
that it takes its average value.

To date, only a few examples of master equations
without manifest detailed balance are known to be solv-
able. It is, of course, interesting to find new kinds of
solvable models. Now, for the first time, the master
equations of the type of Eq. (3.20) are solved in the
large-system-size limit. The solution is obtained by
finding a certain separatrix of the corresponding master
Hamiltonian system [cf. Eqs. (3.22a) and (3.22b)].

3. General case

For the general one-directionally coupled master equa-
tion [cf. Eq. (3.19)], we can find neither the second con-
stant of motion nor the explicit form of the potential.
Provided the stationary solution of the master equation
is p(x, y ), the distribution

p(x)= f p(x, y)dy

can be evaluated by solving

L
&

= g m &(x r& )I epx[ ~rd u( ox)/tlx ] 1 I

+ g g m 3(x, r&, r2) I exp[r&duo(x ) ldx ]—1 I =0,
1 2

to(x ) =X exp —f [duo(x )/dx ]dx

2. Hz+Hz is a birth-death master Hamiltonian
and linear in x

The Hamiltonian now becomes

—w, (sz —s, )+a(s2 —1)—w2(1 —sz) . (3.23)

Lit =(sz —1) exp( —t) . (3.24)

Now it is the equation of sz that is independent of the
others,

d$2 = —(1 —s2),
dt

which gives rise to a new time-dependent constant of
motion,

with N being the normalization constant.
To conclude our presentation, some remarks are

necessary. In our solvable models, we always find that
integrability of master Hamiltonians ensures the smooth-
ness of potentials. However, complete integrability is a
much stronger requirement than that of the existence of
a smooth potential. For the Fokker-Planck equation,
Graham et al. have shown that a system possessing a
smooth potential (or, a smooth separatrix) is not neces-
sarily integrable, even at H =0. It may be the case for
the master equation.

Most master equations of interest are not solvable.
For practical purposes, one has to resort to various per-
turbation procedures. On this aspect, the understanding
of the master equation is much less than that of the
Fokker-Planck equation. Moreover, the numerical
detection on the integrability of the master Hamiltonian
has not yet been started. There is a wide field to be ex-
plored.
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