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We describe the structure factors of a fairly general family of self-similar deterministic arrays
(fractals). These are constructed recursively by an inflation method which imitates real physical
processes where large clusters are grown from smaller entities. An algebraic approach is used to
describe the behavior of the structure factors in the limit of arbitrarily large objects. These struc-
ture factors exhibit several scaling properties which reflect the self-similarity of the direct space

arrays.

I. INTRODUCTION

Structure analysis in condensed matter physics is fre-
quently based on the diffraction of visible light, x rays,
or neutrons depending on the length scales which are
probed. These scattering experiments provide valuable
information about two-body structural properties such
as the radial correlation function g(r). In particular,
they are well suited to investigate the power-law decay
of the correlations in scale-invariant systems in the ab-
sence of any characteristic length scale. Therefore,
scattering methods appear quite appealing to probe self-
similar structures encountered in various experimental
situations. Several recent works have dealt with x rays
and light-scattering-intensity measurements on various
physical systems such as silica gels or aggregates.!

In a previous paper,” we have described an experimen-
tal arrangement which performs optical scattering exper-
iments on planar self-similar arrays (fractals). The
diffraction patterns were shown to provide directly spa-
tial Fourier transforms of the real-space objects; applica-
tions to triadic Cantor bars and checkerboard fractals
were discussed in detail. Similar applications of spatial
Fourier transforms to Pascal-Sierpinski gaskets have also
been proposed recently by Lakhatia et al.®> In fact,
deterministic objects differ strikingly from random ob-
jects because their geometrical regularity can lead to
highly ordered diffraction patterns with orientational
symmetry and persistent long-range correlations; re-
ciprocally these characteristics provide valuable informa-
tion about the direct space sets.

The purpose of this work is to study the diffraction
properties of a fairly general family of deterministic
self-similar fractals constructed according to a recursive
inflation method which is described in Sec. II; in the
same section the corresponding structure factors, S, (k),
are derived analytically. The goal of Sec. III is to ana-
lyze the asymptotic behavior of S,(k) in the limit of
infinitely large arrays; we distinguish two different
classes of systems according to whether S,(k) vanishes
at large wave vectors, which reveals a lack of spatial
correlations, or is composed of Bragg peaks densely
filling all the reciprocal space. In Sec. IV, we demon-
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strate that the diffraction spectrum exhibits a bandlike
structure with, in some instances, orientational and
translational order; finally S,(k) is shown to exhibit
several noteworthy scaling relations which reflects self-
similarity in reciprocal space.

II. DIFFRACTION PATTERNS
OF RECURSIVE FRACTALS

A. Construction of recursive fractals

Many deterministic fractals can be viewed as the
infinite repetition in space of a unit cell arranged in the
sites of a lattice which usually exhibits some particular
properties like self-similarity, self-affinity, etc. A general
way of constructing such fractals proceeds according to
the recursive inflation method which follows; it is illus-
trated on Fig. | in a simple case. In the euclidian space
of dimensionality E, one starts at stage n =0 with a unit
cell, which is sometimes referred to as an initiator,* and
with a set of N points named generator;* each of the
sites of the generator is characterized by a vector u,
where I =1, ... ,N. The first-stage fractal consists of N
unit cells arranged at u;. At stage n =2, the generator is
scaled up by a factor &, and N first-stage fractals are ar-
ranged at §;u;. This procedure is continued iteratively
to infinity scaling up the generator by &, ---§,_, at
stage n and repeating the previous stage patterns at
& -+ &,_1u;. For convenience, in the following, we
designate a; the product &, - - - §; (ap=1). The factors
§; may be different, the only requirement being to avoid
overlappings of the unit cells. When all the inflation fac-
tors £; are chosen constant regardless of j, we have
a;=¢’ and the resulting set is self-similar with a similari-
ty dimension equal to D =InN/Inf. At stage n, one
gets an arrangement of N” unit cells situated at vectors
v such as

V=aou, +au, + 0t Fa, g,

where the indices /; run over 1 to N. It is worth noting
that in this inflation process, at each stage the smallest
scale remains the same, it is the size of a unit cell, €,
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FIG. 1. Construction of a recursive fractal. The generator
is drawn in the top right corner of the figure; the unit cell is a
square of side €. The first-stage array consists of eight unit
cells at u;. To build the n + l-stage array, the generator is
scaled up by a,=§&, -+ £, and eight n-stage arrays are ar-
ranged at a,u;. According to the relative values of € and
|u; | we obtain a set which is connected (the Sierpinski’s car-
pet when e=min( | u,; | ) or nonconnected.

while the largest scale L, increases as
L(n)~(ap+a;+ " +a, _s+a,_){sup}|u—u, | .

In particular for a self-similar fractal we have L (n)
~£&"e. One sees immediately that a set is of zero Lebes-
gue measure if

N "ag+a,+ *** +a,_,+a,_;)f—>0 when n— + .

This inflation method of generating fractals is
equivalent to the construction by deflation (curdling con-
struction) usually employed in the mathematical litera-
ture.® Its advantage is to simulate the way in which real
clusters are grown from smaller entities. It applies
whenever the n-stage set can be entirely tiled by using
the previous stage set. We have named these particular
sets recursive fractals. These include many types of
well-known fractals such as Cantor sets, Serpinski’s
figures, some Koch islands, etc. Recursivity of fractals
allows direct analytical calculations of their diffraction
patterns. In some instances, generalizations to nonrecur-
sive fractals are straightforward; these will be published
elsewhere.

1 n—1

S, (k)=
Nﬂ

n

j=0 =Ilm=I+1

N N
II v +23 3 cos[27a ;k-(u; —u,, )]
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B. Diffraction patterns

In a real experiment, one measures the intensity which
is scattered in direction k by a n-stage fractal, I, (k),

I,(k)=N"S, (k)F (k) .

F (k) is the form factor, that is, the intensity scattered
by a unit cell, and N"F(k) would be the intensity
diffracted by N independent unit cells. Thus, the struc-
ture factor, S,(k), appears as a measure of the spatial
correlations between the sites over which the unit cells
are distributed. In general, at high frequencies, the form
factor smears out the structure of the diffraction spec-
trum while for low frequencies it can be neglected. In
the following we shall focus on the structure factor (or
power spectrum), S, (k),

S,,(k)zﬁ[ﬁ,,(k)ﬁ;‘(k)] : 2.1)
where p,, (k) is the Fourier transform of the n-stage mass
density at site r, p,(r), and g} (k) its conjugate. It is
worth noting that there is no complete correspondence
between the structure factor and the direct space sets;
indeed, S, (k) being the square modulus of the Fourier
transform of p,(r), it misses all the information about
the phases of the diffracted waves.

The structure factor of a recursive fractal can be cal-
culated analytically quite easily. Indeed the j stage mass
density at point r is related to the j —1 stage density
through the fundamental relation

N
Pj(r)=Pj-1(r)* 2 5(1'—0‘;—1“1) ’ (2.2)
=1
where % denotes a convolution product and 8 is the
Dirac distribution. The second term of the right-hand
side of Eq. (2.2) is a distribution function which will be
noted A;_(r). Finally, p,(r) is expressed as a convolu-

J
tion product of A; distributions,

P (r)=Anr) %A (r)% - - - %A, _(r) . (2.3)

Thus, the Fourier transform of the n-stage density,
pn(k), is

n—1

pn(k)=TT A;(k)
j=0

. ~ N 21Tiajk<u,
with Aj(k)= 121 e

(2.4)

Now, expressing the power spectrum of a A; distribu-
tion,
N R N N
A(KATK)=N+23 3 cos[2ma;k-(u;—u,)],
I=1m=I1+1

(2.5)
and combining (2.1) and (2.4), one finds easily that the
strug:ture factor is given by the generalized Riesz prod-
uct,
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This expression is quite general; it gives the structure
factor of any deterministic recursive fractal. The rest of
the paper will be mainly devoted to self-similar objects
where the inflation factors £; are taken equal to & at
each stage of the construction process (a; =&).

III. ASYMPTOTIC STRUCTURE OF S, (k)
FOR INFINITELY LARGE FRACTALS

A. Conditions of diffraction

In this paragraph, we are concerned with the behavior
of structure factors S, (k) in the limit n — + « for vari-
ous inflation factors &. Similar problems have been ex-
tensively studied in the mathematical literature in con-
nection with the classification of the direct space sets in
sets of uniqueness and sets of multiplicity for tri-
gonometric series.” A list of relevant articles includes
works of Kahane and Salem,® Salem,” and Salem and
Zygmund'® to which we refer the readers for the termi-
nology and some of the results used thereafter. Two
different classes of fractals will be distinguished accord-
ing to whether the spectrum vanishes at large k when n
increases (which reveals destructive interferences be-
tween scattered waves), or whether it consists of a set of
Bragg peaks of nondecreasing intensity which densely
fills the reciprocal space.

To find the conditions required for diffraction, let us
consider the quantities I’Sj(k)&}‘(k) defined in formula
(2.5) after normalization by their values at k=0
[Aj(O)A}'(O)=N2]. One sees immediately that
Ogﬁj(k)ﬁf(k)/aj(O)K}’(O)g 1; in particular, it is equal
to unity if and only if

cos[2mEk-(u; —u,,)]=1 Y(,m)

or in other words if, for each couple of indices (/,m),
there exists an integer s,,, such that

Ek-(u,—u,,)=s,, - (3.1)

For an infinite set (in the limit n — o) two different situ-
ations are encountered. (a) Both the inflation factor £
and the vectors u; of the generator allow condition (3.1)
to be satisfied for every j > j,, that is, an infinity of fac-
tors in the product (2.6) are equal to unity. Then, the
structure factor S,(k) is nonzero at wave vector k. (b)
S, (k) vanishes otherwise in the limit 7 — .

B. Study of one-dimensional symmetrical Cantor sets

The diffracting condition (3.1) differs strikingly from
the well-known Bragg condition which applies to period-
ic crystals. In particular, it requires several conditions
concerning both the inflation factor £ and the vectors of
the generator. Conditions for £ can be inferred from the
study of particular sets. Let us begin with the so-called
“symmetrical Cantor sets” which are generated taking a
linear unit cell of width € as initiator and two symmetri-
cal sites at u;==te(£—1)/2 as generator [Fig. 2(a)]. To
avoid overlappings between the unit cells we have to
choose £>2. The structure factor of this symmetrical
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FIG. 2. Cantor sets at stage n =3; the unit cells are thin
lines of width e; the inflation factor is £=S5; the generators are
shown at the top. (a) is a symmetrical Cantor set
(D =1n2/1n5), (b) is a general Cantor set (D =In3/In5).

Cantor set reduces to the series

n—1
S, (k)=2" T[] cos’[m&/(&—1)ke]

(3.2)
j=0
and the diffracting condition becomes
IsEN, E(E—1ke=s Vj . (3.3)

First we take £=2; in the limit n — o, the unit cells are
distributed on a periodic lattice with € spacing; conse-
quently, S,(k) exhibits an infinite repetition of Bragg
peaks at ke=s (s€N). This structure reflects the
translational invariance of the direct space set. In gen-
eral, when £ > 2, different cases have to be considered ac-
cording to the properties of &.

(i) € is an integer. Suppose that there exists integers j,
and s, for which equation (3.3) is satisfied at wave vector
k, i.e., §J°(§— 1)ke=sq; then £ being an integer, it holds
for any j > j,- Thus although the direct space set is non-
periodic, the structure factor S,(k) is composed of
Bragg peaks of nonvanishing intensity at ke=s/
(E—1)é" !, sEN. The intensity of each diffraction spot
can be calculated directly from (3.2). The brightest
peaks correspond to wave vectors of the form shown in
Eq. (3.3) where the index is a multiple of £. They
deduce themselves from one another through similarity
transforms of ratios £. Several examples will be ex-
plained in detail in Sec. IV on Figs. 3 and 4.

(ii) & is an irreducible rational number. Then if (3.3)
holds for j, at wave vector k, in general it is no longer
satisfied for j>j,. The structure factor of the corre-
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FIG. 3. (a) and (b) are representations of the structure fac-
tors S,(k)/S,(0) of the Cantor sets shown, respectively, on
Figs. 2(a) and 2(b) (n =1, 2, 3, and 4 from top to bottom). For
clarity, only the two outer edge bands have been represented.

sponding set vanishes when n — + . This result has al-
ready been demonstrated by Bary.!! Thus, in the asymp-
totic limit n — o there is no scattered intensity except in
the central peak.

(iii) & is irrational. The behavior of S, (k) depends on
the algebraic or transcendental nature of §. Indeed there
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exists a particular set of algebraic numbers £ for which
§" can be approximated by an integer, that is,
|§"—[£"]| converges towards zero as n increases'? ([z]
denotes the nearest integer to z). These numbers are
called Pisot-Vijaraghavan (PV) numbers; the PV number
class is composed of the algebraic numbers defined by
the condition that all their conjugates have their moduli
inferior to the unity.'? (Algebraic numbers are roots of
polynomial equations with integer coefficients; the degree
of an algebraic number z is the degree of the lowest-
order polynomial equation satisfied by z; the roots of this
polynomial equation are called the conjugates of z. Note
that integers are trivial PV numbers; in this paragraph
we are concerned with irrational PV numbers.)!® Clearly
when £ is a PV number, since & can be approximated by
an integer [£/] from a certain value j, of j, the
diffracting condition (3.1) is satisfied for any j > j,. Re-
ciprocally, it has been shown’ that if S, (k) does not van-
ish, £ is necessarily a PV number. In conclusion, just as
in case (i), S, (k) is a dense set of Bragg peaks of nonvan-
ishing intensity if and only if £ belongs to the PV num-
ber class.

C. General Cantor sets and higher-dimensional sets

Here we are concerned with the generalization of the
preceding results to any self-similar array. Clearly, £
needs to be a PV number as previously; however, this
condition is not sufficient and additional requirements
concerning the vectors of the generator have to be
satisfied. Let us make conditions (3.1) explicit for arbi-
trary one-dimensional sets [Fig. 2(b)]. For a given £ the
diffracting condition holds at a wave vector k if and only
if the periods of the cosine terms in the expression
ﬁj(k)ﬂf(k) are commensurate, that is, if their ratios are
rational numbers. When & is an integer, this is
equivalent to choosing the N(N —1)/2 quantities
|u;—u,, | tobe commensurate. More generally, when &
is an irrational PV number we consider a special set of
numbers, which is called the field of £ [the field generat-
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FIG. 4. Representation of the structure factor Ss(k)/Ss(0) for the Sierpinski’s carpet of similarity dimension In8/In3 (only the
peaks of intensity greater than 2 10> have been drawn). The whole spectrum is deduced through translations from the first Bril-
louin zone constructed from (t;,t,). The bandlike structure of the spectrum appears clearly; the boundaries of the two outer edge

bands are drawn in dashed line.
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ed by an algebraic number z is Q (z) where Q denotes the
set of rational numbers; it consists of all numbers of the
form 3 ,q;&/ where ¢;€Q]. Clearly when |u;—u,, |
belongs to the field of &, since the coefficients g; are ra-
tional and &’ can be approximated by its nearest integer

~

[£’], the periods of the cosine terms in ﬁj(k)A}‘(k) are
commensurate provided that j is large enough. Recipro-
cally it has been demonstrated that £ belongs to the PV
number class and | u; —u,, | EQ(§) are sufficient condi-
tions to construct a set with a nonvanishing structure
factor.’ For higher-dimensional systems the generaliza-
tion is straightforward: in an arbitrary basis, all the
components of |u;—u,, | have to satisfy the same con-
ditions as just derived for general one-dimensional sets.
In conclusion, the asymptotic behaviors of the structure
factors of infinitely large recursive fractals depend on the
algebraic properties of the inflation factor £ and of the
relative positions of the sites of the generator. In Sec.
IV we shall restrict ourselves to the study of nonvanish-
ing structure factors, i.e., when all the conditions de-
tailed in this part hold.

IV. SCALING PROPERTIES OF STRUCTURE FACTORS

A. Reciprocal space construction
of an n-stage structure factor

Several scaling relations can be derived for nonvanish-
ing structure factors. Indeed for self-similar arrays,
since a; =¢£’, we obtain from (2.4)

Aj(k)=A4,; , (k). (4.1)
In addition we have
S, . 1(K)=N"1S,(k)A,(k)A *(k) . 4.2)

From (4.1), (4.2), and (2.5) we find easily the two follow-
ing relations:

S, 1(K)=N"1S,(Ek)Ay(k)A (k) , 4.3)
A, (kA *(k)
S, (£k)=S, (k)— (4.4)

AokAZK)

Relations (4.2) and (4.3) describe how structure factors
generated at successive stages deduce themselves from
one another. For clarity, we begin with the spectra of
sets constructed with integer inflation factors (§EN).
The situation when £ is an irrational PV number is only
slightly different; &/ being approximated by its nearest in-
teger [£/] once j is large enough, all the following results
remain unchanged at low spatial frequencies. Demon-
strations are illustrated on Figs. 3 and 4 in the case of
Cantor sets and Sierpinski carpets. Obviously, the orien-
tational symmetries of the diffraction spectra reflect
those of the corresponding generators in real space. In
addition, one has to notice [see relation (2.6)] that struc-
ture factors are invariant over translations of vectors t

such as
3s,, EN, &t-(u;—u,,)=s,, Vjand Y(,m). (4.5)

When £ belongs to N, it is sufficient that
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35, EN, t-(w,—u,)=s;,, VY(,m), (4.6)

from which the vectors t can be calculated easily. It is
convenient to define primitive vectors for the reciprocal
space. In two dimensions a basis (t;,t,) is composed of
two independent vectors joining a bright central peak to
its nearest neighbors deduced through the translations
just defined (Fig. 4). When £E N, it is worth noting that
t; and t, only depend on the generator and are indepen-
dent of the stage of the construction. Because structure
factors are invariant over translations, their whole varia-
tions can be inferred from limited domains of the re-
ciprocal space, which correspond to the first Brillouin
zones constructed from (t,t,).

A first-stage structure factor, S,(k), is simply the
spectrum of the generator; in simple cases it is composed
of a single peak, the width of which is in inverse ratio to
the largest scale in direct space but in general S,(k) ex-
hibits secondary maxima (Fig. 3). To describe a second-
stage structure factor, we consider separately two
different subdomains obtained by dividing the support of
S (k) into one center region and one edge region which
is symmetric about k=0. Over the center region which
is obtained by scaling down the support of S,(k) by a
factor £, we recover the variation of S,(k) apart from a
reduction in the intensities. At each stage n, a similar
division of the previous stage center region generates in
turn a new center region and an edge region B, _,.
S,(k) exhibits n —1 edge regions the boundaries of
which deduce themselves from one another by similarity
transforms of ratio 1/&. This reciprocal space division
reflects exactly the self-similar growth of the real space
set by a factor £ and gives evidence for the bandlike
structure which is observed. In Sec. IVB we shall see
that the edge regions play a central role with respect to
the scaling properties of S, (k). Since the structure fac-
tor must satisfy simultaneously translational invariance,
symmetry about O and self-similarity, on the boundary
between B; and B, |, quantities like Kj(k)A}‘(k) with
Jj=I,n must be either minimum or maximum; after
derivation

3s;,, EN, 2&k(u,—u,,)=s,,, j=in . (4.7)

The boundaries of the edge bands are determined direct-
ly from this relation.

B. Scaling relations

Let us first be interested in the intensity transmitted at
k=0; the unit cell being supposed of characteristic
length scale € we have

I,(0)=N?"|F(0)| ~N%¢f .

For an n-stage self-similar fractal of size L, we know
that L ~£&"¢; so we find easily that I,(0) can be ex-
pressed as a function of the largest and smallest scales, L
and e,

I (O)QLZDGZ(E_D] .

n

(4.8)

A direct space determination of the squared mass ac-
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cording to Minkowski’s procedure would lead to the
same expression; we simply recover the fact that I,(0)
measures the square of the total mass embedded in the
object. In view of this, one can determine D by compar-
ing the intensity transmitted for different-stage fractals
or more simply by measuring the intensity transmitted
through variable size portions of an object. This last
procedure can be extended directly to random fractals.
In the following we concentrate on scaling properties
when k is different from 0. Relation (4.3) relates two
successive stage structure factors; at low spatial frequen-
cies, i.e, for k such that |k|e<<1l, we have

J
<S,,(k) )“NZB,. B

I=1 m=Il+1
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Ay(k)A 2(k)~N? and finally (4.3) leads to

S, . 1(k)=~NS,(£k)~£PS, (£k) , 4.9)
where D is the similarity dimension. Now we consider
the ratio S,(£k)/S, (k) which expresses how structure
factors scale for different spatial frequencies. For
|k |e<<1, from relations (4.4) and (4.9), we deduce
S, (£k)/S,(K)=~N %A, (k)A*(k). In order to break up
the fine structure of S, (k) we now calculate the mean
value of the ratio S,(£k)/S,(k) over the bands B,
defined previously,

N N
N+23 3 cos[2mEk(u,—u,,)] |d%k .

By using relation (4.7) which ensures that 2£"k(u; —u,, )=s;,, V(/,m) on the boundaries of B,, it is easily found that
the second term of the integral is zero. Finally we have the following result:

S.(EK\ .,
< S,(k) )_’5 ’

(4.10)

which is analogous to the relation expected for random self-similar arrays without any geometrical regularity.

There also exists a scaling relation between (S,(£k)) and (S,(k)).

Indeed from (4.4), assuming that

Ry(k)A 3(k)~N? (since |k|e<<1) and replacing A, (k)A *(k) by its value, we find

2 N X n
<S,,(§k))=§-”<s,,(k))+m fBiSn(k)z S cos[2mE"k(u; —u,,)1d %k .

I=1 m=I+1

Let us call 8S, the right-hand side integral. In the range
O0<«< |k|e<<1, S,(k) is a set of symmetrical Bragg
peaks centered at wave vectors k given by
k(u;—u,,)=s/£""! (s€EN) and nonvanishing between
k—8k and k+8k (|8k| <<0). They can be approxi-
mated by step functions of width 28k centered at wave
vectors k (a step function is constant between k —8k and
k + 8k, zero outside). In addition the cosine terms in
8S, are maximum in k and exhibit whole numbers of
periods between k—8k and k+8k. Thus we have
8S, ~0 and

(S,(Ek)) =E"2(S,(k)) . (4.11)

This expression is a direct consequence of the self-
similarity of the direct space sets. On Fig. 5, we have
plotted (S,(k)) versus k for a Sierpinski’s carpet (k is
the mean radius of the edge bands); clearly relation
(4.11) holds in a large range of wave vectors except at
low frequencies where a significant deviation due to
finite size effects is observed.

V. SUMMARY AND CONCLUDING REMARKS

We have presented solutions for the diffraction spec-
trum of a general family of deterministic self-similar ar-
rays which are generated by means of a recursive
inflation method. This construction imitates the way ac-
cording to which real clusters are grown from smaller
entities. The only limitation is that the n-stage sets are
entirely tiled without overlappings using the sets gen-
erated at stage n —1. Generalizations to objects con-

[
structed with two iterative rules or involving overlap-
pings are straightforward.

The behavior of the structure factors in the asymptot-
ic limit of arbitrarily large sets depends on the algebraic
properties of both the inflation factor and the relative
positions of the sites of the generator. Two classes of
systems have been distinguished according as their struc-
ture factors vanish or are composed of Bragg peaks
densely filling the reciprocal space. All the arrays used
in the literature to investigate physical phenomena on
fractals belong to the second class characterized by

<S (k> 8"

-6

8|

3 3 3 3
k

FIG. 5. logg-log; plot showing the variation of (Sq(k)) for
the Sierpinski’s carpet of similarity D =In8/In3. At large
wave vectors the points fall perfectly on a line of slope —D
showing that the scaling relation (4.11) holds perfectly; devia-
tions are observed at small wave vectors because of finite-size
effects.
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strong constructive spatial correlations. In view of this
it seems useful to raise the question of the relevance of
this classification with respect to other physical proper-
ties of deterministic fractals.

We have studied in detail the case of nonvanishing
structure factors; because of the geometrical regularity
of the corresponding direct space sets, these are highly
ordered diffraction patterns with orientational symmetry
and translational invariance. Self-similarity is responsi-
ble for the existence of a bandlike structure in the
diffraction patterns and leads to several scaling relations.
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In the same way it would be of interest in further studies
to know whether this particular spatial spectrum has
special implications in the physical properties of the ar-
rays.
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