
PHYSICAL REVIEW A VOLUME 36, NUMBER 12 DECEMBER 15, 1987

"Coulomb logarithm" for inverse-bremsstrahlung laser absorption

Stanley Skupsky
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299

(Received 26 November 1986; revised manuscript received 18 May 1987)

The "Coulomb logarithm" for inverse-bremsstrahlung laser absorption is examined for plasmas
of diferent ionic charge, spanning the classical and quantum-mechanical limits. Previously, this
term has not been calculated exactly for the conditions of interest in laser fusion experiments; it
has only been estimated from physical considerations. For short-wavelength irradiation (e.g. , 0.35
pm), uncertainties in the "logarithmic" factor can produce variations of 20—50% in the laser ab-
sorption coefficient. A more exact treatment of this term is presented here. For low-Z plasmas, a
modified Born approximation is used that reproduces previous results for long-range interactions
that cannot be described by a single electron-ion collision, and it simultaneously treats the short-
range electron-ion encounters. For high-Z plasmas, the Coulomb logarithm is calculated in terms
of the classical, nonlinear electron trajectory in a self-consistent electrostatic potential; strong ion-
ion correlations are treated by the nonlinear Debye-Huckel model. There are no indeterminate
quantities in the calculations.

I. INTRODUCTION

The classical coefficient for inverse-bremsstrahlung
laser absorption is proportional to a logarithmic factor
lnA, b characteristic of Coulomb collisions. The argu-
ment A;b generally is not calculated exactly but rather is
estimated from physical considerations. ' For low-
density plasmas ( & 10 cm ) 1nA;b is sufficiently large
(& 10) that the error in estimating A;b should produce
less than a —10% variation in the logarithm, which is
acceptable for most calculations. However, at the high
plasma densities characteristic of short-wavelength laser
irradiation (e.g. , —9 && 10 ' cm for 0.35-pm light),
lnA, & is &5, and uncertainties in lnA, b can produce
20 —50% modifications in the absorption coefficient. A
more exact treatment of this term is presented here for
both high- and low-Z plasmas. For low-Z plasmas, lnA
is dominated by quantum-wave effects, and for high-Z
plasmas, it is characterized by classical physics.

The first calculation of inverse bremsstrahlung in a
plasma was performed by Dawson and Oberman. Their
results showed very different behavior for high and low
frequencies ~ of the electromagnetic wave relative to the
plasma frequency co . The low-frequency limit of co in-
cludes the region around the critical density which typi-
cally dominates laser absorption, and this is the region
of primary concern here. The other limit co»co is al-
ready well understood in spite of the complication that
the usual collision picture does not apply: The electron-
ion (e-i) scattering time for distant collisions is long
compared to the period of the electromagnetic wave.
The electron-photon interaction distorts the e-i collision
process, and this produces an co dependence in the
effective Coulomb logarithm. The co dependence was ob-
taine~. by Dawson and Oberman and by Jones and Lee,
but with an additional indeterminant quantity k,„ that
resulted from use of linearized plasma equations, which
could not adequately treat the nonlinear electron trajec-

tory in close e-i collisions. However, this limit of co cor-
responds to relatively low densities where plasma shield-
ing and collective effects play an insignificant role in the
interaction, and the problem could be well approximated
by inverse bremsstrahlung for electrons scattering in the
pure Coulomb field of an isolated ion. The pure
Coulomb problem can be solved exactly, and an analytic
expression has been obtained by Sommerfeld for the
case of bremsstrahlung emission (which is related to in-
verse bremsstrahlung by detailed balance). The Sommer-
feld result gives guidance on the proper definition of
k,„ in the plasma calculations for co »co~.

In contrast, for the low-frequency limit, near the criti-
cal density (co-co ), plasma shielding is very important.
As a result, the potential is no longer Coulombic, and
the Sommerfeld solution does not apply. However, the
collision approximation of factoring out the parameters
characterizing e-i scattering is now valid, because the
collision time is short compared to the period of the
electromagnetic wave (and because the Dawson-
Oberman calculation has shown that collective plasma
processes do not significantly effect the absorption
coefficient). The validity of the collision approximation
is examined in Sec. IV for low-Z plasmas where an ana-
lytic solution is obtained over the entire range of cu. The
collision approximation is then used for high-Z plasmas
which require a numerical calculation.

To illustrate why bremsstrahlung from high- and low-
Z plasmas should be treated diff'erently (and to demon-
strate the source of uncertainty in the determination of
lnA), we consider an example of the momentum-transfer
cross section for electron-ion scattering, which is the
process characterizing inverse bremsstrahlung near the
plasma critical density. At the simplest level of approxi-
mation, we use only the result for small angle deflection
of an electron incident on an isolated ion. Small
momentum transfer bp -(1—cosg) is inversely propor-
tional to the square of the impact parameter b. In-
tegrating over all impact parameters, the total change in
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momentum is

(bp ) —f Ap 6 db —f 6 'db =In(b, „/b. ;„),
where maxirnurn and minimum values of b were intro-
duced to prevent divergences of the integral. The diver-
gence at large b is due to an incomplete statement of the
problem. In a plasma, the ion will be shielded by sur-
rounding electrons and ions, and the range of interaction
will be limited to about the Debye length A.D. (For in-
verse bremsstrahlung at low density, another mechanism
can also affect b „;the collision time must be shorter
than the period of the wave. ) At the other limit of im-

pact parameter, the divergence at small b obviously re-
sults from breakdown in the approximation of a near-
linear electron trajectory. An exact treatment of the
electron hyperbolic trajectory in a pure Coulomb poten-
tial (Appendix A) shows that b;„can roughly be
identified with the impact parameter for 90 scattering.
A complete model for lnA must simultaneously treat
both limits of the impact parameter. One such model,
which is valid over a limited range of conditions, is to
replace the Coulomb potential by a Debye-shielded po-
tential. (The treatment in Secs. III and IV is more gen-
eral. ) Once the potential diff'ers from the Coulomb form,
then quantum-mechanical and classical treatments of the
scattering can be different, and at this point high- and
low-Z calculations deviate.

In a classical calculation for electrons scattering in a
Debye-Huckel potential, Liboff found the expected re-
sult: b „=AD and b;„=b9O plus a small correction
factor, for the limit XD ~~b9o However, this approach
is only valid for b9o. greater than the electron de Broglie
wavelength k, otherwise the calculation must be per-
formed quantum mechanically. Typically in low-Z,
high-temperature plasmas, b 9O is not large enough
(b9o. -Z) to justify a classical calculation of electron-ion
scattering. A quantum-mechanical calculation can be
performed relatively simply using the Born approxirna-
tion for those cases when the electron kinetic energy is
much larger than the potential energy. This approxi-
mation is valid for forward scattering (large impact pa-
rameters), but for low-Z, high-temperature plasmas, the
kinetic energy remains sufficiently large relative to po-
tential energy, that the Born approximation is also valid
down to the small impact parameters of interest for lnA.
Calculation of lnA with the Born approximation for a
Debye-Huckel potential gives the expected result:
bm» ——A.D and bfQIp kq plus a small correction factor
(Appendix B). In general, electron scattering in high-Z
plasmas can be calculated from the classical electron tra-
jectory, and low-Z, high-temperature plasmas require a
quantum-mechanical treatment, with the Born approxi-
mation being valid for very low Z. A more detailed cal-
culation of the Coulomb logarithm is given in the follow-
ing sections, without assuming a Debye-Huckel form for
the e-i potential.

For low-Z plasmas, a modified Born approximation is
used to treat the quantum-mechanical electron-photon
and electron-ion interactions. Previous Born approxima-
tion calculations have not explicitly treated the effects

of the surrounding plasma on the bremsstrahlung pro-
cess. The new features here are that the time-dependent
response of the plasma is modeled by including the plas-
ma dielectric function as part of the Born-approximation
treatment of the e-i interaction, and an explicit treat-
ment of ion-ion correlations replaces the usual assump-
tion that the electrons scatter in an average electrostatic
potential determined by the average positions of neigh-
boring ions (e.g. , a Debye-Hiickel potential). Since the
ions are moving several orders of magnitude slower than
the electrons, Auctuations around the average ion posi-
tions will not be smoothed during the collision, and use
of an average potential may not be accurate. For this
calculation, the inverse bremsstrahlung rate is calculated
for an arbitrary ion configuration. The rate is then aver-
aged over all ion configurations using the Debye-Huckel
two-body correlation function (but this does not produce
a static Debye-Hiickel potential). This approach recov-
ers the frequency dependence of lnA, & obtained by
Dawson and Oberman, but it does not contain their in-
determinate quantity k „,which results from close col-
lisions. Close collisions, corresponding to —90' scatter-
ing, are well-described by the Born approximation in
terms of the electron de Broglie wavelength, for the low-
Z, high-temperature plasmas.

The Born-approximation calculation shows that near
the plasma critical density, inverse bremsstrahlung can
in fact be calculated from the rate of electrons scattering
in an average electrostatic potential, but with the addi-
tion of a small correction term resulting from ion corre-
lations. The correction term is extrapolated here into
the higher-Z region and used to calculate inverse brems-
strahlung from an average potential, where the Born ap-
proximation is no longer valid. For Z greater than —10,
the Born approximation is not valid over the entire
range of scattering angles that determine lnA; the
quantum-mechanical treatment must include nonlineari-
ties due to strong distortion of the electron wave func-
tion by the central ion, and in general a partial wave cal-
culation is used. ' '" However, at high Z, in the region
of density and temperature of interest for laser absorp-
tion, the minimum impact parameter is no longer
characterized by the de Broglie wavelength but by the
classical impact parameter for 90' scattering, and a
quantum-mechanical treatment is in fact not required.
The Coulomb logarithm could be calculated using the
classical nonlinear electron trajectory, and that is the ap-
proach taken here for moderate and high-Z plasmas.

For moderate-Z ions, the Debye-Hiickel model ade-
quately describes the scattering potential over the range
of impact parameters contributing to lnA. The Coulomb
logarithm has been previously calculated for this poten-
tial over both the quantum-mechanical' and classical
regions with the approximation A &~1. We extend those
calculations to the high-Z region by including the effects
of strong ion-ion correlations, and numerically evaluat-
ing the electron trajectory in the resulting electrostatic
potential. The ion correlations are described by a non-
linear Debye-Huckel model, which merges smoothly
with the previous large-A results.

The outline of this paper is as follows: The physical
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parameters and background material related to lnA;b are
discussed in Sec. II. In Sec. III, the Born-approximation
result, Eq. (29) is derived in terms of the plasma dielec-
tric function. [The reader not wishing to follow the
derivation of Eq. (29) can proceed to Sec. IV where the
results are discussed. ] In Sec. IV, the results are divided
into "high-Z" and "low-Z" parts because of the
difference in techniques used, and the transition from
one to the other is discussed. Section IV A examines the
new Born-approximation results, which apply to low-Z
plasmas such as (CH)„, and comparison is made with
earlier work. Section IVB discusses the transition re-
gion between the classical and quantum-mechanical lim-
its, appropriate for moderate-Z plasmas, and it also
discusses the relation between lnA;b and lnA„. Section
IV C presents the new results for high-Z plasmas that in-
clude strong ion-ion correlations described by the non-
linear Debye-Huckel model. A phenomenological fit to
the results over the entire range of Z is presented in Eq.
(46). Finally, the results are summarized in Sec. V.

electron-heating time by inverse bremsstrahlung. The
results below use T, = T, for simplification, but the
modification of the shielding distance for unequal tem-
peratures is straightforward. Often, only the electron
contribution to shielding is used [i.e., Z=O in Eq. (2)],
which is based on the approximation of a uniform, ion
background. But more realistic models, that include
ion-ion correlations, show that the ion contribution to
shielding can be dominant, as discussed below. For im-

pact parameters much larger than the shielding distance,
e is-cattering (and hence, inverse bremsstrahlung) is
negligible. Besides shielding, an additional factor enters
into the determination of b,„; the electron collision
time should not be much longer than the period of the
electromagnetic wave, otherwise the interaction would
be almost adiabatic and very little energy would be
transferred to the electrons. The interaction time for an
electron with an impact parameter b is roughly b/v„
where v, =(T, /m)'~ . Combining these two factors, the
maximum impact parameter is approximated by

II. PHYSICAL PARAMETERS AND DEFINITIONS
b,„=mi n[A, D, v, /rp), (3a)

which is characteristic of the detailed classical result.
Often only the high-frequency limit (low density) of the
plasma calculation is quoted, i.e., b,„=v, /co. This is
not valid near the critical density where a majority of
the laser light is absorbed. Near the critical density, A.D
more closely characterizes the maximum impact parame-
ter; it is approximately a factor (Z+I)'~ smaller than
vt/

The choice of A, D as the shielding length is only valid
when it is much larger than the average-ion radius RQ
defined as (4mn; /3) ' . For high-Z plasmas, A,D can
become smaller than Rp, and strong ion-ion correlations
must be considered for evaluating the plasma shielding.
In this case, often the larger of Rp and A, D is used. '
This condition will be denoted here by an asterisk, i.e.,

AD =[4~n, e ( I/T, +Z/'r;)] (2)

where n, is the electron density, T, the electron temper-
ature, T; the ion temperature, and Z the ionic charge.
Typically, T, can be two to three times larger than T, ,
as the e-i equilibration time can be much longer than the

Following is a discussion of the physical parameters
that should characterize lnA, b. A detailed calculation of
the term is presented in Secs. III and IV. Since inverse
bremsstrahlung is the process of light absorption in-
duced by electron-ion collisions, the Coulomb logarithm
generally is written in terms of the classical impact pa-
rameters characterizing e-i scattering,

lnA =ln(b, „/b;„)+C,
where b,„ is the maximum impact parameter, b;„ is
the impact parameter for 90' scattering, and C is a num-
ber containing the remainder of the term, which is gen-
erally on the order of 1. For laser absorption, a correct
calculation of lnA should include (i) the response of plas-
ma electrons to laser light in the presence of electron-ion
scattering, (ii) plasma shielding of interacting charged
particles, (iii) ion-ion correlations, and (iv) nonlinear or-
bit dynamics or quantum-mechanical wave effects for
close collisions that result in -90' scattering. Various
approximations have been used to determine the param-
eters in Eq. (1); no single approximation has determined
all parameters self-consistently over the entire range of
interest. (Of course lnA would be well-defined in a com-
plete quantum-mechanical calculation. )

The classical plasma calculation for laser absorption
has determined b, in terms of the plasma Debye
length A,D and the laser frequency cu. Physically, these
parameters play the following role. In a plasma, each
ion is shielded by neighboring electrons and ions; for a
low to moderate-Z, high-temperature plasma the charac-
teristic screening length is the Debye length

b*,„=mi nm[ax[A DRpI v /coI (3b)

The minimum impact parameter b;„ in Eq. (1) is left
indeterminate in the classical plasma calculation. It is
often approximated by the impact parameter b9Q for 90'
scattering of an electron in a Coulomb potential (Appen-
dix A),

b9Q Ze /mv2 2 (4)

where v is the electron velocity. If b9Q is smaller than
about the de Broglie wavelength, then quantum-
mechanical effects must be considered. Typically, the
quantum-mechanical "minimum-impact parameter" is
defined as

A. =A/2mv .

The parameter b;„becomes

b,„= ma[xb9pk I (6)

and is evaluated here at the effective velocity given by
the energy relation

—mv =—T



5704 STANLEY SKUPSKY 36

Other choices of the relation between U and T are possi-
ble, but they would simply result in a modification of the
nonlogarithmic term C. The region where b;„=A, will
be denoted here as quantum mechanical, and the remain-
ing region will be called classical.

It is convenient to define a standard Coulomb loga-
rithm lnA, to compare with the new results discussed in
Sec. IV. We use

lnA, = ln( b,„lb, „) (8)

with Eqs. (3) and (6) defining the impact parameters, and
with C from Eq. (1) set equal to zero. We denote the
classical and quantum-mechanical limits of A, as A, and
A, respectively. The classical limit of Eq. (8) is

lnA, =1 n(12vrn, k D) (9a)

evaluated near the critical density n, with A.D & v, /cu and
with the approximation Z =Z + 1. For high density, A,
is modified by Eq. (3b) in which case the average-ion ra-
dius is used as the shielding distance,

A,*=A,m aIxI, R /AD ) .

In the quantum-mechanical limit, Eq. (8) becomes

lnA =In(&12mT IfikD ),

(9b)

(10)

Parameters Characterizing In A

{n =9 X10 cm )

10
Quantum

Mechanical

0.6)
Ol

Ac 10

where kD = 1/~D.
Boundaries characterizing the different regions are

sketched in Fig. 1, for Z versus T, at a plasma electron
density of 9&10 ' cm . Temperatures around 1 keV

are typical of laser irradiated plasmas. The boundary
between the quantum-mechanical and classical regions is
determined by the condition b9o kq Except for the
lowest-Z materials, lnA is in the classical region and can
be determined by classical orbit dynamics. Even for
(CH), (Z —3) at T& 1 keV, lnA is nearly classical. For
moderate and high-Z materials, Fig. 1 shows that ap-
proximations based on a linearized Debye-Huckel model
may not be adequate, as kD (Ro. At high Z, approxi-
mations based on A ~&1 are questionable.

Although the quantum-mechanical region (low Z) is
relatively small, it is of considerable importance, because
low-Z ablators are required for dir-ct-drive laser fusion.
In this region, an accurate expression for lnA can be ob-
tained in a relatively simple fashion by using the Born
approximation. This approximation is applicable when
the kinetic energy of the interacting electrons is much
larger than the potential energy at approximately a
de Broglie wavelength from the ion, i.e.,
—,'mu & Ze /(A'/mU), or using Eqs. (5) and (7),

T & Z235 eV

corresponding to a low-Z, high-temperature plasma.
(This condition is equivalent to b90 & A. . ) As discussed
in Secs. III and IVA, the Born approximation deter-
mines all parameters in the interaction: the classical re-
sult for 6 „ is recovered in the Born approximation
when the Coulomb potential is modified by the plasma
dielectric function; b;„ is obtained in terms of the
de Broglie wavelength; and C ——1. Results similar to
these were obtained by Cauble and Rozmus' who used a
modified Coulomb potential that phenomenologically ac-
counted for quantum wave effects in close electron-ion
collisions.

The Born-approximation model is applicable to laser
absorption for (CH) (Z —3), but is invalid for Si02
(Z=10) and for higher-Z materials at the keV the tem-
peratures characteristic of laser plasma interactions. We
extend the calculation of lnA into the higher-Z region
(Sec. IV B) by relating the inverse-bremsstrahlung
Coulomb logarithm lnA, b to the logarithm for electron-
ion scattering lnA„ in a shielded electrostatic potential.
The Born approximation shows this relation to be

0.4
lnA, b(Born) =lnA„(Born)+ —,'+ 0 ( —,

'
)

Z
(12)

Classical

0.2

0.0
0

I

10
I

15
I

20 25

FIG. 1. Different regions and parameters characterizing
lnA =1n(b,„/b;„). In the shaded region, the de Broglie wave-
length, Eq. (5) determines b,„;in the remainder b90, Eq. (4), is
the appropriate minimum impact parameter. For Z greater
than -25, the Debye length A.D, Eq. (2) becomes comparable
to the average-ion radius Ro and strong ion correlations be-
come important in determining b „. „;approximations based on
A)) 1 may become inaccurate.

near the critical density. The term —,
' is the result of

averaging lnA, b over all ion positions, compared to sim-

ply using an average electrostatic potential (Debye-
Hiickel) in the calculation of lnA„, as discussed by Hub-
bard and Lampe. ' Equation (12) is extrapolated into
the high-Z region, beyond the validity of the Born ap-
proximation, according to

lnA, b
——InA„+ [InA, i, (Born) —lnA„(Born)], (13)

which is similar to Eq. (7) in Ref. 12. This extrapolation
is probably the largest source of uncertainty for high Z.
The term —,

' makes a 25%%uo contribution to lnA, b for
Z=50. Using Eq. (13), lnA;b can be determined by cal-
culating e-i scattering in a spherically symmetric poten-
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tial. An expression for lnA„. that spans the quantum-
mechanical and classical limits has been obtained by
Williams and DeWitt, ' for moderate Z. However, their
results depend on the approximate solution by Liboff
for electrons scattering in a linearized Debye-shielded
potential with A »1, and is not valid at high Z.

For high-Z materials with A less than —10, the poten-
tial around an ion can no longer be described by the
linearized Debye-Hiickel model, and stronger ion-ion
correlations must be considered. Such correlations were
examined by Cauble and Rozmus, ' but with a model
that produces only the quantum-mechanical minimum
impact parameter. This is valid only at low Z where the
strong ion correlations occur at very low temperatures,
not characteristic of the laser absorption region. In this
paper, strong ion-correlation effect are examined at the
higher temperatures achieved in coronal plasmas.
Strong ion correlations do not occur in the low-Z
quantum-mechanical plasmas, but they do occur in the
high-Z classical plasmas. A nonlinear Debye-Huckel
(NLDH) model' ' is used to prevent the close approach
of neighboring ions, which is the main effect of strong
correlations. The Coulomb logarithm is evaluated by us-
ing the classical electron trajectory in the NLDH self-
eonsistent electrostatic potential. This model is con-
venient for considering electrons and ions at different
temperatures, and it merges smoothly with the low-Z
(large A) results of Liboff for a linearized Debye-shielded
potential.

The starting point for the calculation is Boltzmann's
equation for the change in the electron distribution func-
tion f due to inverse bremsstrahlung,

plasma efFects but not the close electron-ion encounters,
which is reflected by an indeterminate quantity k,„ in
the effective Coulomb logarithm.

(ii) A second approach, based on the Born approxima-
tion, places both the laser electric field and e-i collisions
into the term W, in terms of an inverse bremsstrahlung
transition rate, and E is set equal to zero. Close e-i col-
lisions are now treated accurately (within the range of
validity of the Born approximation), and the collective
plasma effects of (i) are recovered by using the plasma
dielectric function to modify the vacuum Coulomb po-
tential around an ion. There are no indeterminate pa-
rarneters in this model, ' ' but its validity is limited to
very low ionic charge.

(iii) The third model assumes that electron oscillation
in the laser electric field does not modify e-i scattering
and can be separated from it: the laser electric field is
included in E, and e isca-ttering (in an electrostatic po-
tential) is in the term W. This model is used for high-Z
plasmas.

The different models are discussed and compared belo~.
In Sec. III, lnA, b is derived in the Born approximation,
and the results are discussed in Sec. IV A for low Z. For
Z greater than —10, quantum-mechanical effects on e-i
scattering are negligible, and W can be evaluated using
the classical trajectory of an electron in a self-consistent
potential based on model (iii). Results for medium and
high-Z materials, based on this model, are discussed in
Secs. IVB and IVC.

III. BORN APPROXIMATION

For low-Z elements where the Born approximation is
valid, the transition rate W in Eq. (14) is calculated in
terms of a transition amplitude

~

a
~

according to ' '
—W(v~v+bv)f (v)] .

Bf e

Bt m
E.V„f=jd b—U [ W( v bv - -- v )f ( v bv )— —

(14)

The electric field E and the two-body interaction W can
take on different meanings according to the particular
model of the laser-plasma interaction. Three models are
considered.

(i) The first model by Dawson and Oberman treated
all electron-ion scattering in terms of a self-consistent
electrostatic potential, which was included in E together
with the laser electric field. Close two-body interactions
were considered negligible, and the term W was set equal
to zero. This approach is able to calculate the collective

I

W(v -=v+6,v)d b, v

= V(2ir/iii)
~

a
~

5(+Aco+E E+k )d k/(2ir)—

where p and k are wave numbers related to the electron
momentum (irip=mv and 6k=mb, v), E is the electron
energy fi p /(2m), V is the plasma volume, and the +
sign corresponds to absorption and emission. The am-
plitude

~

a
~

is calculated from second-order perturba-
tion theory in terms of both the operator for photon ab-
sorption (and emission) H i, and the operator for
electron-ion scattering H2,

a =V J[(p+k (H, )
p'+k, hco)(p'+k, %co (H

) p, %co)/(E E„)—
+(p+k

/
Hi

f

p')(p' [Hi f p, fico)/fico]d p'/(2') (16)

The photon momentum is neglected here compared to
the electron momentum. Induced emission is obtained
by replacing co with —co. The processes being con-
sidered are shown schematically in Fig. 2. The electrons
are described by plane waves

~p)=V ' exp(ip r iE t/R) . —

The photon interaction term is

(p'
~

H&
~ p, %co ) = —V '(iiie /mc) A p5(p —p'),
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Born Approximation for Inverse Brernsstrahlung where A is related to the laser electric field by
E= —c '3 3 /3t, and E=Eoe™.The electron-ion
scattering term H2 is related to the vacuum electrostatic
potential V(r), modified by the plasma dielectric func-
tion' e. The vacuum potential is

X

V(r) = —Ze
/r —r

(19)

ion I' QJ

I,

II
II
I

II

eIectron photon

Absorption

(p+k
~
H2

~
p) = V 'V(k, lcd)/ (k, bcd), (20)

where V(k, hco)=(p+k
~

V(r)
~
p) and bed=(E~+~

E)/—IIi. Using

where the summation is over all ion positions. The re-
sulting e-i matrix element is

2 ~ ident
—ik r.

V(k, lcd) =4irZe e' 'g e
k J

(21)

p+ k

Induced
Emission

together with Eqs. (16), (18), and (20), the transition rate
in Eq. (15) is obtained,

W(v~ v+iiik/m)d Irik/m

=6(+co—v.k —IIik /2m)
2 '2

477Ze e
X

k E(k, )corn co

FIG. 2. Schematic of the processes contributing to inverse
bremsstrahlung in the Born approximation. Momentum
transfer by the photon is neglected.

X g exp[ik (r —r;)]d k/(2ir)' . (22)
IJ

Substituting the different rate processes into the rhs
(right-hand side) of Eq. (14), we obtain the change in the
distribution function from inverse bremsstrahlung,

2 2
df 1 2Ze k Ef [[f(v A'k/m)6—(cd —v k+6'k /2m) f (v)6(co —v. k ——erik /2m)]/

~

e(k, )cd~

m~2 k

—[f ( v —erik lm )6 ( —co —v k + haik l2m )

+f (u)6( co —v. tc ——Irik /2m)]l
~

e(k, —co)
~ ] V ' g exp[ ik (r —r, )—]d k,

(23)

exp

where the first two terms in [ ] account for photoabsorption and the last two account for induced emission.
To proceed, we assume that the electron distribution function f is Maxwellian, which is a good approximation for a

low-Z plasma with short wavelength illumination. We separate v into a component parallel to k, vII, and a component
perpendicular v~. Using the relations for vII from the 6 functions, Eq. (23) reduces to

df 1 2Ze fico (. k.E m ~ Ak

T ~ " k&e(k cd) 2T k 4m

X $ exp[ —ik. (r —r, )][6(co vk+fik l2m —6(co —v. k——Irik l2m)]d k,
lj

(24)

where we have used Ace « T; replaced k by —k in
the last two terms in [ ] in Eq. (23); used the
relation' e( —k, —co) =e*(k,cd); and assumed f (u)
=f (u~ )exp( —mv

II

l2T).

The expression (24) clearly conserves electrons, i.e. ,

f (Bf/cd), bd v=0, because after integration over uII, the
5 functions cancel. To find the rate of energy increase
from photon absorption, we evaluate
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Bf —mU dUat= at,. 2
(25)

/pe
X exp — + . (27)k' 4m'

Factoring out the laser intensity I ( = cEO /8m ) from the
rhs of Eq. (27), we are left with the absorption
coefficient.

The integral in Eq. (27) is identified as lnA, b; it is the
same as the classical expression except for the exponen-
tial factor exp[ —(Rk) /8mT]. This additional factor is
characteristic of quantum-mechanical plasma calcula-
tions and has the effect of preventing divergence of the
integral for large k (corresponding to small impact pa-
rameter). The usual divergence at small k, i.e., large im-
pact parameter, is eliminated by both the Debye shield-
ing in e(k, (o) and the frequency dependent exponential.
The integral can be evaluated analytically if e(k, co) is re-
placed by its static result, '

e( k, co ) = 1+k, /k (28)

This approximation introduces only 3. few percent error
compared to the exact result which was evaluated nu-
merically.

Using the static approximation for e(k, co) and the
condition A'co «T (characteristic of the laser irradiated
plasma), the integral in Eq. (27) becomes

The summation over ions in Eq. (24) is evaluated using
the thermal equilibrium ion-ion correlation factor, '

k +k
g exp[ i—k. (r —r,)]=n;, (26)

VJ i ' ' (1+Z)k 2+k 2

where k, is the reciprocal of the electron Debye length
(k, =4m n, e /T). Substituting into Eq. (25), we obtain

BE 16 Ze 1 f( 0) E2
Bt 3 mco m

1 k, +k
X

~

e(k, co)
~

(1+Z)k, +k

response), Eq. (29), is evaluated for Z —3 at conditions
relevant to 0.35 pm irradiation (Sec. IV A).

(2) In Sec. IV B, the relation [Eq. (13)] between InA, b

and lnA„ is discussed in terms of an extrapolation from
the Born approximation result. Based on this relation,
lnA„can be calculated in the classical region (Z& 10) by
evaluating the trajectory of an electron in a shielded
electrostatic potential. This has been done previously,
using the approximation A » 1 (which is appropriate for
moderate-Z plasmas), and no improvements are present-
ed where this approximation is valid.

(3) The approximation A » 1 is removed in Sec. IV C,
by numerically calculating the electron trajectory in a
self-consistent electrostatic potential determined by the
nonlinear Debye-Huckel equations. This approach qual-
itatively models the onset of strong ion-ion correlations
as high Z is approached, and it merges smoothly with
previous results at moderate Z.

A phenomenological fit to the results over the entire
range of Z is presented in Eq. (46).

A. Low Z

Two features characterize the Coulomb logarithm for
laser absorption in low-Z materials: (1) the plasma
shielding distance A,D is sufficiently large, that the colu,
contribution to b,„can introduce an ~ dependence to
A [Eq. (3a)]; and (2) the impact parameter for 90' elec-
tron scattering is sufficiently small that quantum wave
effects can contribute to b;„[Eq. (6)]. The first effect
has been calculated by Dawson and Oberman. Both
effects are simultaneously addressed by the modified
Born approximation result derived in Sec. III. To com-
pare the Born-approximation result with Dawson and
Oberman, we examine two limits: (1) absorption near
the critical density [(o—1 in Eq. (29)], and (2) absorption
at very low density (co»1). It is the latter limit which
is most often quoted, ' but it is the former which is most
relevant to laser fusion experiments.

In the high frequency limit (co»1) appropriate for
low density absorption, both exponential integrals in Eq.
(29) approach zero, leaving

1nA,.b(Born) =lnAq+ln[(Z + 1) /co] —y+ —,'ln( —, ) lnA, b =ln(4T/%co) —y . (30)

a ~/2e" E (co /2)
2Z

2Z
'+ co /2(z+ 1(E (

—2/2(Z 1 ) )CO + 7

(29)
where lnA is the standard quantum-mechanical
Coulomb logarithm defined in Eq. (9), y is Euler's con-
stant ( y =0.577), E1 is the exponential integral, and
co=m/co& (where (oz is the local plasma frequency: or in
terms of the critical density, (o =n, /n).

IV. RESULTS

(The same result has been obtained for bremsstrahlung
emission in the Born approximation with fico&&T, for
a pure Coulomb potential. ) To compare with the
Dawson-Oberman result, lnADo, the indeterminate quan-
tity k,„(=1/b;„) in Ref. 3 is replaced by the suggest-
ed quantum-mechanical expression, k,„=(m T) ' /
A. The result is listed in Table I A. The difference from
Eq. (30) is lnA, &

—lnADo =0 75, representing a 15%
correction for conditions attained in short-wavelength
laser irradiation of (CH)„, characterized by lnA = 5.

For the region around the critical density ((o —1), Eq.
(29) reduces to

In this section, we discuss the following results. lnA, b =lnA + —,'ln( —,
'

) ——,'y — ln(Z +1), (31)

(1) The new Born-approximation result (with plasma where we have also assumed Z'~ /$&&1. This should
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TABLE I. Quantum-mechanical limit of lnA, b (T & Z 35 eV). The effective Coulomb logarithm is
written in terms of A, [Eq. (10)] and a remainder C. The expressions for C are compared.

Numerical value

Dawson and Oberman

Cauble and Rozmus

Bremsstrahlung (Acg » T)

lnA;b (Born), Eq. (30)

A. co » co& '. lnA = ln(Aqcoz /co)+ 21n(1+Z)+ C
——' ln( 6) —y /2

—' ln( ~/3 ) —y
-'ln( —, ) —y
-'ln( —) —y2 3

—1.18

—0.55

—0.43

—0.43

B. co=co: lnA=lnA — ln(1+Z)+ —0 (1/2)+C1 1

2Z Z

Dawson

Cauble and Rozmus

lnA„-(Born), Eq. (36)

lnAtb(Born), Eq. (31)

—21n( 12)
—' ln(6/~)

—,
' ln( —,

'
) —y/2 ——,

'

( —', ) —y/

—1.24

—0.32
—0.49
—0.49

be compared with the co«~ case of Dawson in Ref.
21, lnAD, listed here in Table I B, and evaluated at
co=re . (When the effects of ion shielding are included,
the results for large and small co are no longer equal at

as they were in Ref. 3, which used only electron
shielding. The co«co result is the one that best ap-
proximates the correct solution for co=co&. ) Again, the
suggested replacement k,„=(mT)' /fi was used, with
the same result for the difference in solutions:
lnA, b

—lnAD=0. 75. In this region that dominates laser
absorption, the cu dependence of lnA, -b is found to be
negligible.

Equation (31) is similar to the result obtained by
Cauble and Rozmus' who did not use the Born approxi-
mation but rather a modified Coulomb potential which
approximates quantum effects at small distances. The
main difference numerically is that they obtain the factor
kq/(k~+0 ), where k is the thermal deBroglie wave
number (2mm T)' /fi, instead of the factor
exp( —A' k /8mT) in Eq. (27). Their resulting Coulomb
logarithm differs from the one here by only -0.1 for
Z=3. Cauble and Rozmus note that there is a substan-
tial difference between their results (with linear, Debye-
Hiickel ion correlations) and the Dawson-Oberman re-
sults from Ref. 3 which indeed did not include the ion
contribution to shielding. However, if comparison had
been made with Ref. 21 instead, where Dawson has re-
moved the assumption of a random ion distribution and
imposed Debye-Huckel correlations, then very little
difference would have been found (using the cu «co~ re-
sult for the region around the critical density). The
remaining difference could be removed by modifying the
choice of k,„, which does not depend on ion correla-
tions.

The relationship between lnA;b and the classical high
and low-frequency limits is shown in Fig. 3 over the den-
sity range from O. ln, to n„ for a 1-keV plasma with
n, =9X10 ' cm . Although lnADo(co «co ) was de-

B. Moderate Z

To extend the calculation of the inverse-
bremsstrahlung Coulomb logarithm to moderate and

Density Dependence of In A

(Z = 3, T = 1 keV, nc = 9 X 10 )

6

Do (cu )+ cup)
~ ~ ~ ~ ~ ~ ~ ~ ~ W ~ ~~ ~ ~ ~ ~ ~ ~

In As

~ ~ 0

I

0.4
n/nc

I

0.6
I

0.8

FIG. 3. The density dependence of lnA;b(Born) for Z=3,
T=1 keV in terms of the critical density n, (9X10 ' cm ).
Compared are Eq. (8) for InA„ the Dawson and Oberman (DO)
result (Ref. 3) for ~&&co~, and Dawson's (D) result (Ref. 21)
derived for co &&co~ but evaluated at the cu & co~ density indicat-
ed. Over the region shown, lnA;b is best approximated by the
co &&co~ result. Only at densities below -0.1n, does 1nA;b
reach the co »co~ result.

rived for n & n„ it is evaluated here at the subcritical
density indicated. Over this density range where laser
absorption predominantly occurs, lnA;b is well approxi-
mated by the cu « co result. Only at densities well
below O. ln, does lnA, b approach the high-frequency lim-
it. Use of the high-frequency limit around n, results in a
-20% error for low Z.
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high Z, we first examine the relationship between lnA;b
and the Coulomb logarithm for electron scattering in a
shielded, electrostatic potential around each ion, lnA„.
The change in the distribution function due to e-i
scattering is found from Eq. (14) with the transition rate
8'written in terms of the e-i cross section o. ,

W(v —v')d v = Un; cr(8, v)d Q . (32)

Since only elastic scattering is considered, we have

~

v'
~

=
~

v
~

and v.v'=u cos8. There are a number of
approximations implicit in using Eq. (32) with Eq. (14)
to calculate inverse bremsstrahlung. (1) Modification of
the scattering by the laser interaction, which produces
the co dependence in b,„, has been neglected. (2) The
time-dependent response of the plasma is neglected. (3)
The static response of the plasma is approximated with a
self-consistent electrostatic potential, i.e., the potential
rather than the transition rate is averaged over ion posi-
tions. The contributions of the first two processes were
found to be small or negligible for (CH) (Z —3) near n,
and to further decrease as 1/Z (Secs. III and IV A). The
third approximation is discussed in more detail below.

Equations (14) and (32) are now used to extract an ex-
pression for lnA, b in terms of o. We treat the laser elec-
tric field in Eq. (14) as a perturbation of the form E=EO
cos(cot) and expand the electron distribution function as

f (v)= fo(u)+Eo. vf'(U), (33)

The dimensionless quantity o. is defined as

where the zeroth-order distribution fUnction is a
Maxwellian normalized to the electron density. (The
zeroth-order distribution function can deviate from a
Maxwellian at high laser intensities for high-Z materi-
als, but this effect will not be considered here. ) The laser
absorption rate is evaluated in Appendix A, yielding the
following quantity as the effective e-i Coulomb logarithm
appropriate for inverse bremsstrahlung:

lnA„= —,
' dv u v

1 o. O, u 1 —cosO d cosO ou du .—j.

(34)

Comparing Eqs. (31) and (36), one difference is that
lnA, b has an co dependence; however this dependence
was found to be small near the critical density for Z=3
and to further decrease for higher Z (Sec. III A). The
only other difference is that lnA, b has the term
C;b

——ln(l+Z)/2Z compared to C„=—,
' in lnA„. This

difference arises because lnA, b was averaged over ion po-
sitions, whereas for lnA„ the electrostatic potential was
averaged. These two terms, C;b and C„, have the same
limit for Z ~0, but they rapidly diverge for nonzero Z.
For Z=3, C,b is already reduced to 0.2. This term
represents perhaps the greatest source of uncertainty in
relating lnA;b to lnA„, and further investigation is re-
quired to determine the magnitude of the error. For the
remainder of this paper, Eq. (13) will be used to extrapo-
late into the high-Z region, beyond the limit of validity
of the Born approximation.

Using Eq. (13), lnA, b is now evaluated for moderate Z
plasmas (A»1), using a previously calculated expres-
sion for lnA„. Liboff obtained a result for lnA„by cal-
culating the classical trajectory of an electron in a Debye
shielded potential. The result corresponding to Eq. (34)
1s

lnA„(classical) = lnA, + ln —', —2y ——,
' (37)

which is valid for A»1. Inserting into Eq. (13), we ob-
tain for A~&1 and co=co

lnA b(classical) = lnA, b(Born)+ln(A, /Aq ) ——', y+ —,
' ln( —,

'
)

=lnA, —2y+ln( —', ) — ln(1+Z)1
(38)

in the classical region.
It now remains to treat the transition region between

the quantum-mechanical and classical limits, for
moderate-Z plasmas. The transition region, as a func-
tion of Z, is sufficiently small (Fig. 1) and the logarithms
are sufficiently slowly varying, that generally only a few
percent error is made by simply using

lnA =min I lnA(classical), lnA(Born) )

A more exact treatment is obtained using the transition
formula derived by Williams and De%'itt, '

o =cr(0, U)lo, (180', U) (35) lnA„= lnA„(classical) —
—,
' e'Ei(z), (40)

lnA„. (Born) =lnA + —,'ln( —,') —
—,'y —

—,
' (36)

in terms of o.„the cross section for 180' scattering in a
pure Coulomb potential: o, =(Ze /2mv ) . The first
velocity moment of the distribution function is required
for inverse bremsstrahlung. (Other e iprocesses su-ch as
electron diffusion would require higher-order moments. )

Equation (34) is a general expression spanning the
Born and classical limits. Its accuracy can be tested in
the quantum-mechanical limit by using the Born approx-
imation to evaluate o.(O, U) in a Debye-shielded potential
and then comparing the result with lnA, b (Born) of Eq.
(31) which did not make any assumptions about the po-
tential. The calculation of lnA„(Born) is performed in
Appendix B, with the result

z =—', e ~(Aq/A, ) (41)

In the limits of large and small z, the classical and
quantum-mechanical limits are obtained, respectively.
For the example of Z=3, n, =9&(10 ' and T=1 keV,
the interpolation parameter z is -0.4, which is only
marginally in the quantum-mechanical limit. The result
is lnA„= lnA„(Born) —0.35, representing about a 7%
correction to the Born approximation, at these condi-
tions.

where E& is the exponential integral, y=0.577, and z is
related to the ratio A and A, [defined by Eqs. (9) and
(10)] according to
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C. High Z

V' V= 4vre(—Zn; n, )—,

n, =Z ( n, )exp(e V/T, ),
n; = ( n, ) exp( eZV/T—, ),

(42)

(43)

(44)

with the boundary conditions V( ac ) =0,
V(r -.0)=Ze/r. The Fermi-Dirac form of the electron
distribution function was also used, because n, can be-
come large (and degenerate) near the nucleus; however
the degeneracy effect on lnA was found to be
insignificant for the conditions considered here. If Eqs.
(42) —(44) are linearized in terms of V, the usual Debye-
Huckel shielding length is obtained. However, lineariza-
tion is not valid within the average ion-sphere radius R o
where V becomes large. Near the central ion, Eq. (44)
forces the ion density of neighboring ions to rapidly ap-
proach zero, and only electrons remain for shielding.

The classical trajectory for an electron scattering in an
arbitrary potential V(r) is given by

For high Z, where A is less than —10, we continue to
use Eq. (13) to calculate 1nA, &

from e i-scattering in an
average, self-consistent, electrostatic potential, but we do
not assume that the potential is given by the linear
Debye-Hiickel model. In this region, corresponding
roughly to Z& 25, Fig. 1 shows that it would be ques-
tionable to use XD as the shielding distance, or to use ap-
proximations dependent on A »1. Here we evaluate
lnA„by numerically calculating the electron trajectory
in the nonlinear Debye-Hiickel potential to determine
the relationship between the impact parameter b and the
scattering angle 0. Using o. d cosO=b db, the double in-
tegral in Eq. (34) is calculated numerically, and finally,
lnA, &

is evaluated from lnA„using Eq. (13).
The electrostatic potential V(r) was calculated from

Poisson s equation, without linearization,

el is -50/o low and would not be applicable in this re-
gion. ) This suggests the applicability of using the
NLDH model to calculate lnA„over the entire classical
region, at the conditions considered here.

To test the numerical procedure, comparison was
made with the free-free Gaunt factor calculated by
Lamoureux et al. " They performed a quantum-
mechanical partial wave calculation of bremsstrahlung
emission, produced by 1 keV electrons in a Ce (Z=55)
plasma at an ion density of 8.6/10 ' cm . The Gaunt
factor G is related to the Coulomb logarithm by
G =(m'' /3)lnA. Lamoureux et al. observe that G is
relatively insensitive to the shapes of potentials with
roughly the same range, as above. Their effective lnA in

the soft photon limit is 1.2. The classical model used
here is in close agreement predicting 1.3 for the NLDH
potential.

The NLDH results for lnA, b, as a function of Z, are
presented in Fig. 4 for T= 1 keV and in Fig. 5 for
T=0.5 keV (both are at the critical density 9 X 10
cm for 0.35 pm light). Also shown in the figures are
(1) lnA„ from Liboff's calculations corresponding to the
moments in Eq. (34), (2) lnA, defined in Eq. (9a) which
uses the Debye length A,D as the shielding distance, and
(3) lnA, which uses the average-ion radius as the shield-
ing distance whenever it is larger than A, D [Eq. (9b)). We
make the following observations. The deviation between
lnA, and lnA,' becomes apparent for Z greater than
—10, corresponding to the region of Ro & A.D in Fig. 1.
Both lnA (Liboff) and lnA, have the wrong functional
form in this region, and they would become negative at
higher Z or lower T. [The two are related by Eq. (37).]
Nevertheless, over the region shown, lnA, is able to ap-

Inverse Bremsstrahlung In A

9=sr+2 f [1—V(1/u)!E —(bu) ]
'~ b du,

0
(45)

where 6I is the scattering angle, b is the impact parame-
ter, and u is the inverse radius between the electron and
the ion. The upper limit to the integral is given by the
zero of the square-root factor and corresponds to the
distance of closest approach.

This nonlinear Debye-Huckel model for the ions is
valid for values of the ion-ion coupling parameter I
( =Z e /ROT) less than —1. For the example of Z=50,
T=0.5 keV, and n, =9)&10 ', we have I =6, which sug-
gests that NLDH may be only marginally applicable.
To test the sensitivity of lnA, b to the model, an alternate
potential was tried: the potential was determined assum-
ing a uniform electron density, which does not permit
neighboring ions inside Ro. (The NLDH model does
permit a small amount of neighboring ions to penetrate
Ro. ) For Z —50, there was less than —2% difference
between the models for the calculation of lnA„; and
both gave values about a factor of 2 higher than the
linearized Debye-Hiickel model result. (For low Z, the
NLDH model reproduces the linearized results of Liboff
to within a few percent, while the uniform electron mod-

6 —y

o
3—

C

~NLDH

Liboff

0
0

I

10
i

20
I

30
1

40
l

50

FIG. 4. 1nA, &, using nonlinear Debye-Huckel ion correla-
tions (NLDH), compared with the approximate lnA„of Liboff
(Ref. 7), lnA, of Eq. {9a) which uses A, D as the shielding length,
and lnA, which uses the maximum of the ion-sphere radius Ro
and kD as the shielding length. At higher Z (or lower tempera-
ture) both lnA, and Liboff s result would become negative.
The results are for n, =9 )& 10 ' cm and T, = 1 keV. Equa-
tion (46) is a good approximation to the NLDH results.
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Inverse Bremsstrahlung In A

T = 0.5 keV

3—
In As

~NLDH

In A

0 I

10 20 30
I

40

Liboff
1

50

FIG. 5. Same as Fig. 4 but with T, =0.5 keV.

lnA, b (NLDH ) = lnA,*—1.25 (46)

for the conditions of temperature and density considered
here, including the quantum-mechanical region. The
nonlogarithmic term 1.25 contains all the details of the
calculation. It corresponds to a —50% effect at high Z.

For high Z, lnA, b is obtained by adding -0.5 to lnA„
[Eqs. (12) and (13)]. This attempt to reduce the effect of
different ion configurations to an average electrostatic
potential, represents a 25% variation for Z —50. It is
probably the greatest source of uncertainty in the calcu-
lation and needs further investigation.

proximate the NLDH results to within —10%.
The often quoted high-frequency limit of Dawson and

Oberman is not shown in the figures. Effectively, it uses
only electron shielding for b,„and is related to lnA, by
InA(co)&co„) = lnA, + —,'ln(1+Z) —1 For Z= 50, it

would be in error by about 50% compared to
lnA(NLDH).

The NLDH solution decreases very slowly with Z,
and does not fall much below 2. (The results quoted by
Lee and More' also have a minimum value of 2. How-
ever, the agreement is probably only coincidental as Lee
and More refer to the Coulomb logarithm for thermal
conductivity which uses a much higher velocity moment
than InA, &. ) One result of the NLDH calculation is to
support the use of max(Ro, k,n ) as the effective shielding
distance. The lnA,' curve, which has this constraint,
very closely follows the functional form of lnA(NLDH)
into the high-Z, low-temperature region. An approxi-
mation to lnA(NLDH), to within a few percent, is

in previously used models can produce variations in this
term of 20 —50%.

For low-Z materials, lnA, b was calculated quantum
mechanically using a modified Born approximation.
Collective plasma effects were included by multiplying
the e-i interaction term by the plasma dielectric func-
tion. Unlike the classical calculation, the "minimum
impact parameter" was weil determined and, of course,
related to the de Broglie wavelength. The effective
"maximum impact parameter" was the same as the clas-
sical result. The co dependence of lnA;b was found to be
negligible near the critical density n, (Fig. 3) where ab-
sorption predominantly occurs. Use of the often-quoted
high-frequency limit of lnA, -b in this region can lead to a
-20% error. Near n„ lnA, b is found to be closely relat-
ed to lnA„, the "Coulomb logarithm" for electrons
scattering in a shielded electrostatic potential around an
ion; Eq. (13) was used to extrapolate that relationship
beyond the range of validity of the Born approximation
into the high-Z region.

For Z greater than —10, the minimum impact param-
eter is no longer quantum mechanical (Fig. 1) and is
determined by the distance of closest approach for the
classical electron trajectory around an ion. From the
trajectory, an effective e-i Coulomb logarithm, lnA„, was
calculated using Eq. (34), and Eq. (13) was then used to
determine lnA, b. To bridge the classical and quantum-
mechanical regions, the results of Williams and DeWitt'
were used. For moderate Z plasmas, where the approxi-
mation A„,- »1 is applicable, a previously calculated ex-
pression was used for InA„.

However, at high Z, the calculation of lnA„does not
permit approximations based on A))1 or the use of A.z
as the shielding length (Fig. 1). We have extended the
calculation into the high-Z region by using the nonlinear
Debye-Huckel model. The dominant high-Z effect is
that neighboring ions are strongly repelled at distances
smaller than the average-ion radius Ao. The NLDH
model was found to reproduce results for lnA„at high Z
(as calculated from the uniform electron model), and to
also merge smoothly to moderate-Z results (calculated
by Liboff ). Use of Eq. (13) to relate the average of
lnA, b over all ion configurations to the result obtained
from an average, spherical, electrostatic potential is
probably the greatest source of uncertainty in the calcu-
lation, and the resulting error requires further investiga-
tion.

Results for lnA, b are shown in Fig. 4 at n, =9X10 '

cm for T= 1 keV, and in Fig. 5 for T=0.5 keV. A
good fit to the numerical results for all Z is given by Eq.
(46). The calculation supports the use of replacing A, z
by Ro as the effective shielding distance, Eq. (3b), when-
ever k~ &Ro. The nonlogarithmic term 1.25 in Eq. (46)
represents a 50% correction at high Z.

V. SUMMARY

The "Coulomb logarithm" for laser absorption has
been calculated for conditions achieved in short-
wavelength laser irradiation: n, —10 cm and T—1

keV. At these conditions ln A, b is ( 5, and uncertainties
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APPENDIX A: EFFECTIVE e-i COULOMB
LOGARITHM

When Eqs. (32) and (33) are substituted into Eq. (14),
the following first-order equation is obtained:

eEov
+ cos(cot)foat T

1

=2vrn, f'u o (1 —cosH) d(cos0) .—1

sary to impose a lower bound 0;„on the 0 integration
to prevent divergence of the integral. The result is
lnA = ln(2/0;„) with the approximation sing = 0 and
neglect of any velocity dependence in 0;„. Using the
classical relation between 0 and impact parameter 6 for
a Coulomb potential [sin (0/2) = I +(b/b9o. ) obtained
from solution of Eq. (45)], we relate 0;„to b,„an.d ob-
tain

(A 1)
The solution of Eq. (Al) is used to find the average rate
of laser absorption which is given by

(E j)=fE.vef'd3v

lnA(Coulomb) = —,
' ln( 1+b,„/b 9o )

with b9o defined in Eq. (4).

APPENDIX B: 1nA„(BORN)

(A4)

2

2~ «0
~ fou dv

1 1 1 4

T r I+(car)
(A2)

and cr is defined in Eq. (35). Typically in laser plasmas,
the results are only slightly modified by the approxima-
tion car»1. Comparing Eqs. (A2) and (A3) with the
usual expression for laser absorption, the expression in
Eq. (34) is identified as the effective lnA factor, neglect-
ing the co~ factor.

As an example, we evaluate the 0 integral in Eq. (34)
for the case of scattering in a Coulomb potential:
o =sin (0/2). Without plasma shielding, it is neces-

where ~ is defined in terms of the right-hand side of Eq.
(A 1),

2
2

—=2trn, u f o (1 —cos0) d(cos0) (A3)
1 Ze

2mv —1

For electrons scattering in a Debye shielded potential,
the scattering cross section in the Born approximation
1S25

o ~ (0,v) = [sin (0/2)+ A, /A v ] (B1)

A
02 ln1+A —

2
UdU OUdU,

1+A

(B2)

with A=A.D/k . The velocity integration can be written
in terms of the exponential integral E, for fo equal to a
Maxwellian. In the limit of A »1, Eq. (36) is obtained.

where Aq =trt/2mv. Substituting into Eq. (34), we obtain
after the 0 integration

lnA„(Born)
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