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The disorder-order transition observed in aqueous suspension of charged macroions is investi-

gated with use of both simulations and a simple theoretical model. Molecular-dynamics (MD)
simulations were performed by assuming that the interaction between the charge stabilized parti-
cles interact via a modified Debye-Huckel potential. The parameters of the potential were chosen
to mimic the experimental study of Lindsay and Chaikin. Simulation results predict that the
liquid freezes into a bcc phase in accord with the experimental findings. For comparison, the
phase diagram with use of the self-consistent phonon theory (SCP) is presented. It is shown that
the predictions of the SCP theory in the weak screening limit are in disagreement with both the
MD results and the experiments. Possible reasons for this failure are pointed out. Finally, similar
calculations have been carried out for the Yukawa potential. It is found that for the parameters
considered here, this is an unphysical model for the suspensions of polystyrene spheres. No evi-

dence for reentrant transitions is found in either of these models. This is in agreement with the
predictions of the self-consistent phonon theory.

I. INTRODUCTION

Suspensions of highly charged particles, such as aque-
ous solutions of polystyrene spheres, can mimic the
structural behavior found in more conventional liquids
and solids. ' It has been found the monodisperse
charged polystyrene spheres ' exhibit both liquidlike be-
havior and can crystallize into a bcc or a fcc lattice un-
der appropriate conditions of density and with the addi-
tion of added salt. ' The crystalline structures, which
can be thought of as classical Wigner crystals, have very
large lattice spacings. The large lattice spacing (typical-
ly a few thousand angstroms) results in the elastic con-
stants being about 10—12 orders of magnitude less than
that of conventional solids. These crystalline structures
melt (undergo a first-order phase transition) when a suit-
able amount of salt is added, and in the limit of high
concentration of the added salt, the structure of the col-
loidal liquid resembles that of a simple hard-sphere fluid
system. Polydisperse suspensions of colloidal particles
can result in the formation of exotic colloidal alloys and
classical Wigner glasses.

In this paper we consider the order-disorder transition
in monodisperse aqueous suspensions of polystyrene
spheres. The motivation for this study was provided by
the recent experiments of Lindsay and Chaikin. In ad-
dition, there does not appear to be any study of the
first-order phase transition in charged colloids with the
clarification of the role of interparticle interaction in
determining the phase diagram. Many of the previous
theoretical attempts have made use of an appropriate
reference system to interpret the phenomena observed in
suspensions. For example, the one-component Coulomb
plasma has served as an appropriate reference system at
low or zero electrolyte concentration' ' and the hard-
sphere system has been used in the limit of strong

screening. ' ' Agreement between theory and experi-
ment concerning the properties of the system (like the
structure factor) is achieved by adjusting the one-
component-plasma (OCP) coupling constant l or the
hard-sphere diameter. Hone et al. have used
thermally-averaged lattice sums and have invoked the
Lindemann law to predict melting parameters in col-
loidal suspensions. In a recent molecular dynamics
simulation it has been shown that this theory predicts
qualitatively incorrect results raising the need for a more
refined theoretical approach. Shih and Stroud have
modeled the liquid phase by a hard-sphere reference sys-
tem. They determine the hard-sphere diameter and con-
sequently the free energy of the liquid phase by utilizing
the Gibbs-Bogolyubov inequality. The free energy of the
solid phase was obtained using the classical harmonic
approximation. They have also stressed the form of the
interparticle interaction in determining reentrant melting
in these systems. The theory presented by Shih and
Stroud does not appear to be successful in the screening
regime corresponding to the experiments of Lindsay and
Chaikin. A more detailed discussion of this point is
made in Sec. IV.

In light of the empirical nature of the theories, we
have performed molecular-dynamics simulations to
determine the freezing and melting parameters in a mod-
el colloidal system. In addition these studies were un-
dertaken to investigate the possibility of observing reen-
trant melting in charged stabilized systems. A self-
consistent phonon theory is also presented and the phase
diagram predicted by this theory is compared with the
simulation results. These calculations were done using
both the Einstein model and the Debye model for the os-
cillators. The present work also examines the consisten-
cy of empirical laws such as Verlet's rule and Lin-
demann criteria in determining freezing and melting pa-
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II. MOLECULAR DYNAMICS

A. Interaction potentials

The interaction (electrostatic) potential between the
polystyrene spheres suspended in water are well under-
stood and can be readily modeled using the DLVO po-
tential. The DLVO potential is essentially a screened
Coulomb interaction and arises as a solution to the
linearized Poisson-Boltzmann equation. By adding salt
(or other electrolytes} to the system the effective screen-
ing can be increased or decreased and this results in the
formation of the various phases described in the Intro-
duction. The pairwise DLVO potenial between two par-
ticles is given by

2

eI+ra (2.1)

where a is the polystyrene radius, e is the dielectric con-
stant of water, and Z is the effective charge on the poly-
ball. In Eq. (1) ~ is the inverse screening length and is
given by

2 Ze
2~ (pps+ psatt )

47TEKB T
(2.2)

rameters.
A recent paper has reported the phase diagram of

Yukawa systems using molecular-dynamics (MD) simu-
lations. While there are some similarities between the
simulation aspects of our work and their studies, there
are some crucial differences, a few of which are listed
here. One of the aims of the present work has been to
elucidate the role of interaction potential in determining
the freezing parameters. In addition, they have deter-
mined the entire phase diagram by looking for the condi-
tions when a given lattice type becomes unstable, i.e.,
melts. On the other hand, we have primarily been in-
terested in obtaining freezing and melting parameters by
looking at both the crystallization and the melting pro-
cess in the limit of small ~a, . Finally, we have been in-
terested in features of the interaction potential that may
be responsible for the occurrence of reentrant melting
behavior in these systems.

This paper is organized as follows. In Sec. II we
present discussion of the choice of the model interaction
potential for charge stabilized colloidal systems. For the
range of the screening parameters encountered in this
work, the so-called Derjaguin-Landau-Verwey-Overbeek
(DLVO) potential is argued to be adequate. A summary
of the simulation details is also presented here. Section
III discusses the simulation results in detail and the pro-
cedure for obtaining the Auid to solid transition is out-
lined. In Sec. IV the dependence of the results on the
system size is discussed. In Sec. V the application of
self-consistent phonon theory to determine the global
phase diagram is presented. The predictions of this
theory are also compared to the MD results. The paper
is concluded in Sec. V with a discussion and a few sug-
gestions for an improved theory.

where kB is the Boltzmann constant, T is the tempera-
ture, and p, is the polyball number density and p„i, is
the number density of added (assumed to be monovalent)
electrolyte solution. Thus, the solvent (water) appears in
the potential in accounting for the dielectric nature of
the medium. Since we are interested only in the liquid-
solid transition, hydrodynamic interactions provided by
the medium are irrelevant. For the purposes of analysis
it is convenient to define another parameter, I, as

I =V(r )/k T. (2.3)

This is in analogy with the coupling constant I ocp
defined for the one component Coulomb plasma. The
DLVO potential given in Eq. (2.1) is quite accurate at
densities such that xr0 —O(1) and va, &4, where the
Wigner-Seitz radius r0 is defined by

3 —I3~ra =pps (2.4a)

and a, is the cube of the radius of average separation
defined by

3 —1
as =pps (2.4b)

Several previous studies ' have omitted the "geometric
factor, " (e"'/I+~a), in describing the interaction po-
tential. The resulting model potential without this
geometric factor will be referred to as the Yukawa po-
tential. The omission of this factor has negligible conse-
quences when ~a &&1, as is the case in very dilute solu-
tions. It has been noted that if a is not much smaller
than r0 then this factor must be included. ' The in-
clusion of this factor properly accounts for the fact that
screening ions cannot occupy the region where the po-
lystyrene molecule is present. Since V(

~
r; ri i-

=a)/k+T))1 for all the densities considered here, the
geometric factor mimics the hard-core repulsive poten-
tial and thus takes into account that the polyballs are
not point particles but have a finite radius. The neglect
of the geometric factor has profound consequences on
the liquid to solid transition as will be shown below. In
fact Shih and Stroud claim that without this factor
reentrant melting is predicted while inclusion (which is
the more realistic description) e.iminates this behavior
completely. This is discussed further in Sec. IV. In a
recent paper, we have used this model potential to ob-
tain pair correlation functions at several (low) densities
which were in excellent agreement with the light scatter-
ing measurements of Brown et al.

We now comment very briefly on the role of attractive
forces. Based on microscopy studies, Ito et al. have
suggested that weak long-range attractive forces may be
responsible for phase separations in these systems at low
ionic concentration. However, considerations of asym-
metric electrolytes have borne out the validity of the
DLVO potential. By solving a system of
hypernetted-chain (HNC) equations one can obtain the
direct correlation function from which an effective po-
tential can be calculated. In the limit of the radius of
one of the electrolyte components going to zero, the
DLVO potential is recovered. Such theories have also
been successful in describing small-angle neutron scatter-
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ing results of micellar solutions. Thus we conclude that
the modeling of the interaction by Eq. (1) does provide a
realistic description of the potential between particles in
a colloidal liquid. For volume fractions larger than
$-0.2 one needs to take into account the attractive
(weak) forces as well. '

The effective charge Z is very dificult to determine
experimentally. Alexander et al. have shown that the
Debye-Hiickel limit, invoked to derive the DLVO poten-
tial, is valid only if the charge is suitably renormalized.
Since our results have direct bearing on the experimental
work of Lindsay and Chaikin we have taken Z =300, a
value recommended by these authors. However, we
wish to emphasize that in our results Z is really an ad-
justable parameter. The other parameters were also
chosen in accord with the experimental system.
Specifically, the polyball radius a was taken to be 545 A,
the temperature T is 298 K, the dielectric constant
@=78.5, and the mass of the polystyrene molecule m is
4.3&10 amu. In all of the simulations we set p„i,——0.
For these parameters, molecular-dynamics studies were
performed to locate the liquid-to-solid transition density.
Several volume fractions, P = ~4vrpa, in the range
0.001-0.200, were considered.

We note that for these parameters, the screening is
small, i.e., Ka, is in the range 2.0—4.0; hence these are
systems that interact strongly over a very long range. It
is interesting to note that it is precisely in this regime
where the structural predictions based on integral equa-
tions such as hypernetted-chain approximation (HNC)
or rescaled mean-spherical approximation (RMSA) are
very unreliable. Because of the inefficient screening,
it is found that the results of computer simulations show
strong system size dependence and only for large systems
(number of particles exceeding 1000) with long equilibra-
tion times do we obtain converged results.

B. Simulation details

In order to determine the coexistence of the liquid and
solid phases we have numerically integrated the 6N cou-
pled classical equations of motion, with N being the total
number of particles in the system. For the problem un-
der consideration this involves determining the density

pf at which a liquid freezes reversibly into a solid. In
addition, one has to find the density p I when the solid
reversibly melts. In a majority of the studies of phase
transitions on the computer, the freezing density is
determined by looking for the lowest density (or temper-
ature) when the solid spontaneously melts. One of the
novel aspects of our work is that we have been able to
determine the density where the liquid spontaneously
freezes into a solid. This may suggest bounds on the
coexistence region. We should emphasize such a deter-
mination should be viewed with caution because of
finite-size dependence. The only previous study (that we
are aware of) where this procedure was investigated is
the determination of freezing parameters of the Gaussian
core liquid by Stillinger and Weber. '

r=(ma /k T)'i (2.5)

and the time step of 0.005~ was used in the simulations.
This translates into 3.6 & 10 sec. The time step used
in the present simulations is smaller than that typically
found in the simulation of Lennard-Jones systems. Be-
cause of the large screening length (especially at low
densities) a smaller time step was required in order to
achieve energy conservation. The classical equations of
motion were integrated using the standard Verlet algo-
rithm and in all cases the total energy was conserved to
better than one part in a ten thousandth. In all the
simulations equilibration was achieved by aging the sys-
tem for 3000—10000 time steps. The thermodynamic
quantities were calculated by averaging over at least
1000—3000 steps after equilibration was achieved. In
some cases it was necessary to perform averages over
10000 time steps to obtain results within acceptable er-
ror bars. The error bars in our simulations are less than
5%%uo.

Thus the procedure we use entails studying the ther-
modynamic branches, namely the solid and the liquid
branch. Each of the branches represents a well-
equilibrated thermodynamic state. The initial
configuration for a given thermodynamic state is taken
to be the previous configuration of the well-equilibrated
state. The initial configurations for the liquid branch is
taken to be a lattice. At low-volume fractions it was
found that the lattice spontaneously melted. The density
was increased slowly until pf was reached when the
liquid spontaneously crystallized. Unlike studies involv-
ing simple liquids (like Lennard-Jones fluid), where spon-
taneous freezing into a lattice is harder to achieve, we
found that for all the systems studied here (using the
DLVO potential), crystallization always occurred at high
enough density. The solid branch is generated by using
the last crystallized configuration of the liquid branch
and expanding gradually (i.e., the density was decreased)
until spontaneous melting is observed. A second solid
branch, to be referred to as the lattice branch, was gen-
erated using the appropriate lattice as the starting
configuration for each thermodynamic state. An impor-
tant distinguishing aspect of the colloidal particles is
that because of the strong interaction between the parti-
cles the kinetic energy turns out to be just a very small
fraction of the total potential energy. This seems to be
the main reason that small system sizes, N —500 (which
is usually suScient for phase-transition studies in simple
liquids) give unreliable results. The N dependence of the
results is discussed in Sec. IV.

All of the simulations were performed with the N par-
ticles confined to a cubic box, the dimensions of which
are adjusted to obtain the appropriate number density.
As usual, periodic boundary conditions were employed
to minimize surface effects. For the system, size con-
sidered in this work, i.e., N =1024 or 864 particles, the
value of the potential at the cutoff distance is 0.001k~ T
which is comparable to the value typically used in the
simulation of the Lennard-Jones system. Time is quoted
in units of
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III. FLUID-SOLID PHASE TRANSITION

A. Lattice sums
O.I5-

It is expected that the arrangement of particles at
T =0 is crystalline and consequently it is of interest to
evaluate the lattice sum for the different lattice
configurations. The difference in the energies between
bcc, fcc, and hcp lattices are extremely small and conse-
quently at finite temperatures the entropic contribution
becomes significant. However, the lattice sums do pro-
vide an indication of the relative stability of different lat-
tices for a given thermodynamic condition.

Lattice sums for the Yukawa potential have been per-
formed before and it is known that for ~a, ~ 1.72 the fcc
lattice becomes more stable than the bcc lattice. ' For
densities such that as ~a, & 1.72 the bcc lattice is found
to be more stable. The appropriate lattice sum is evalu-
ated using

Z'' 2e"' exp[ —xx (I)]
l +ca , x (I)

(3.l)

I =(c Ip)'I (3.2)

with c =1, 2, and 4, for the sc, bcc, and fcc crystalline
arrangement, respectively. For each lattice the sum over
l in Eq. (5) was evaluated using about 30000 lattice sites
where E was converged to better than 1 part in 10 . In
Fig. 1 we plot

where x (I) is the modulus of the lattice vector corre-
sponding to a given lattice. For the form of the DLVO
potential the summation over I can be calculated using
the Ewald method and it is, in fact, necessary to do this
when the screening length is large. We have chosen to
evaluate the lattice sums directly on the computer, be-
cause in the screening region of interest, the sum over /

converges rapidly.
The sum in Eq. (5) was evaluated for fcc, bcc, and sc

lattice structures The lattice spacing for a given struc-
ture is given by

LIJa
O.I-

0.05-
W itho

ma,

k I

4

solid branches of the DLVO potential and for the liquid
branch of the Yukawa potential is presented. The two
branches for the DLVO potential are superimposable on
this scale. As the volume fraction tends to zero (the
noninteracting or ideal limit) Z should tend to unity.
The compressibility for the DLVO potential is expected
to increase monotonically until P reaches a certain value

and then Z would decrease as P as increased further.
This behavior for Z at P-P is inferred by examining
the DLVO potential evaluated at r =p

' ~ as a function
of P. For P —P the dependence of Z on P is a
reAection of the competition between the Coulomb part
of the potential and the counterion screening, i.e., the
value of q '. As the volume fraction is increased fur-

FIG. 1. Lattice energy difference between the bcc and fcc
phases, AE =(Eb„—Ef„)/Nk~T, as a function of ~a, (essen-
tially the polystyrene density). Both the DLVO system ("with
geometric factor") curve and the curve for the Yukawa system
("without the geometric factor") are plotted. At ~a, =1.72,
both curves fall below 0.0 (not perceptible in the figure) indi-
cating bcc as the stable phase. Above aa, =1.72, both curves
show that fcc is the stable phase in contradiction to MD re-
sults.

b,E = (Eb„E„„)Ikey T— (3.3)

as a function of ~a, . It is clear that according to lattice
sum calculations, for both the Yukawa potential and for
the DLVO potential the fcc lattice is more stable for the
range of ~a, of interest in this paper. However, we shall
show below that MD results (and experiments) for the
DLVO potential clearly show that the bcc phase is the
more stable one and as the density of polyballs is in-
creased the liquid freezes into this structure. As stressed
earlier this transition is entropically driven and conse-
quently lattice sums alone cannot predict the stability of
the crystalline phase.

B. Equation of state

l50-

0 IOO
Q
II

50-
~ ~ ~ I ~ ~ ~ I k ~ I k l k I ~ ~ t

0.05 O. I O. I5 0.2

In this section we discuss the compressibility,
Z =I'V/Nk~T, as a function of the volume fraction for
both the DLVO potential and the Yukawa potential.
The results have been obtained for X =864. In Fig. 2, Z
as a function of the volume fraction for the liquid and

FIG. 2. Equation of state for polystyrene spheres. The
compressibility Z =PV/Nk&T is plotted vs the volume frac-
tion. The upper two curves are the liquid and solid branches
for the DLVO system. The lowest curve is the compressibility
for the Yukawa system (without the geometric factor).
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C. Freezing parameters

Molecular-dynamics simulations were used to generate
the thermodynamic branches for the liquid and the solid
states for the DLVO potential. Each branch clearly ex-
hibits an instability point, i.e., as the density is increased
to a critical value P, , starting from a liquid state the sys-
tem spontaneously freezes into a bcc phase. Similarly,
starting from the solid branch it is found that the system
spontaneously melts at a critical low density P, . This is
clearly shown in Fig. 3 where a plot of the thermal frac-
tion of energy AU/Nk&T as a function of the coupling
constant I, for each thermodynamic state of N = 1024 is
shown. The thermal fraction of energy is defined as

6 U /Nk~ T = ( U —Uo ) /Nkg T, (3.4)

where U/N is the potential energy per particle as deter-
mined by the MD simulation and Uo is the correspond-
ing lattice energy. Also shown in this figure is a third
curve which is referred to as the lattice curve. Each
point on this curve denotes a thermodynamic state
where the initial configuration was a perfect bcc lattice.

ther, a minimum in Z is obtained at P =P;„and for
Z monotonically increases. For P & P;„ the

geometric factor essentially plays the role of hard core
and Z behaves as in a simple liquid. On the other hand,
the Yukawa potential does not reflect the finite size of
the particles and thus for P &0.001, Z monotonically de-
creases which is unphysical. Consequently, the particles
interacting via the Yukawa potential do not spontane-
ously freeze into a crystalline configuration and, in fact,
there does not appear to be a stable crystalline phase.
Over the entire range of volume fractions considered
here, the lattice spontaneously melted for the Yukawa
system. These considerations lead us to conclude that
the pure Yukawa potential does not adequately describe
the interaction between particles in an aqueous suspen-
sion of polystyrene spheres.

As noted earlier the solid branch is obtained from spon-
taneous crystallization of the liquid branch and thus the
energies of this branch and the lattice curves are expect-
ed to coincide for volume fractions greater than 0.15.
However, Fig. 3 shows that within error bars, the solid
and lattice branches are distinct. This indicates that ei-
ther the liquid spontaneously crystallizes into a bcc lat-
tice with a few frozen in defects or that the number of
particles in the simulation is not adequate. Within the
context of the present simulations, these two possibilities
cannot be distinguished. Figure 3 indicates that the lat-
tice branch spontaneously melts at I =51.3 (/=0. 005)
indicating the instability of the solid while at I =167
(/=0. 200) the liquid spontaneously freezes which is the
liquid instability point.

Examination of the pair correlation functions, shown
in Fig. 4, for various volume fractions for the liquid
branch for N =864 demonstrates the dramatic onset of
crystallization from the liquid to a bcc lat tice at
/=0. 200. The peak arrangements in g(r) for /=0. 200
clearly indicate crystallization into a bcc structure. This
is in accord with experimental findings. Integration of
the pair correlation functions gives the number of
nearest neighbors to be 14 for the liquid state. The
mean potential energy per particle as a function of the
volume fraction for the region 0.001 & P & 0.3 is found to
be well approximated by 14V(2ro). For the Yukawa
system, the g (r)'s were always liquidlike and remarkably
similar over a broad range, 0.001 &/ &0.8, for both the
liquid and lattice branches. We observed no evidence
for reentrant melting, in contrast to the predictions of
the previous theories. ' ' " It is possible that one has to
perform simulations for times much longer than con-
sidered here to see evidence for reentrant behavior.
However, by considering the crystallization processes ex-
hibited by the DLVO system and using the predictions
of the self-consistent phonon theory (see Sec. V) we con-
clude that reentrant phenomena does not occur in this
system. We also note that the results of Kremer
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FICx. 3. Thermal fraction of energy, AU/Nk&T, for the
three thermodynamic branches as a function of the coupling
constant I ~ Thermodynamic points for each branch are con-
nected by a straight line to guide the eye. Maximum in the
liquid curve indicates the liquid instability point while the
maximum in the lattice curve indicates the solid instability
point.

FIG. 4. Pair correlation functions g(r) for N =864 as a
function of interparticle distances r scaled by the average sepa-
ration distance p

' . The volume fraction for the various
curves is indicated with arrows. For 0.005&/&0. 150, g(r)'s
are all liquidlike. Top curve is for /=0. 200 and shows peak
arrangement consistent with bcc lattice.
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et al. , whose simulations cover a larger value of the
screening constant ~ lend further support to this obser-
vation.

There have been several attempts to determine the
true transition density from these instability points. In
the following we appeal to some of these in determining
the order-disorder transition density.

Pollock and Hansen'" determined the solid instability
point for the OCP model and found, through Monte
Carlo simulations, that the solid is stable for I ) 139.
Determination of the value of I at freezing by equating
the free energies of the liquid and solid yielded a value of
I =158 which is about 15% higher than the instability
point. If this criteria is applied to the polyball system
the melting transition would be predicted to occur at
I =65.4 (/=0. 022) as compared to the solid instability
point of I =56.8 (/=0. 01).

Raveche, Mountain, and Street discovered an empir-
ical rule governing the freezing of Lennard-Jones sys-
tems based on the examination of the pair correlation
function. It was found that when the liquid freezes, the
ratio, a =g (r;„)/g (r,„), where r,„ is the distance
corresponding to the maximum in the radial distribution
function (RDF) and r;„ is the distance corresponding to
the subsequent minimum in g(r), is approximately 0.2.
Invoking this criteria for N =864 and for 1024, we find
that the freezing parameters are I =70.2 (/ =0.027) and
I'=63.7 (/=0. 017), respectively. These values are in
fair agreement with the estimate based on analogy with
the OCP results made above.

The Verlet rule which states that at freezing the
maximum in the structure factor S(k,„)—2. 85 is found
to hold remarkably for systems interacting with a 1/r"
potential. Use of this criterion for the present system
yields a value of I =69.5 (/=0. 026) and I =68.0
(/=0. 023) for the % =864 and 1024 particle systems,
respectively.

Finally, we examine the Lindemann criterion which
states that the solid should melt when the ratio of the
square root of the mean-square distance, (r ) ', to the
lattice spacing d exceeds 0.1. In the upper panel of Fig.
5 a plot of the radial distribution function, g (r/ro), as a
function of r/ro for /=0. 01 is presented. The initial
configuration for this state is a perfect bcc lattice. The
RDF shows that this state is crystalline with signatures
of bcc phase. In the lower panel, the mean-square dis-
placement (MSD) as function of co t (with
co =m/4vrZ e p) for the same state is presented. This
figure shows that MSD has saturated at R „further in-
dicating that the thermodynamic state is crystalline. We
also find that the resultant diffusion coefficient is about 2
orders of magnitude smaller than what is observed in the
liquid state. The ratio of R „/d is found to be 0.23.
This indicates that the particles execute very large am-
plitude motion near melting. Thus, the low-frequency
modes dominate near the melting transition and seem to
describe the dynamics before the lattice becomes unsta-
ble. It is interesting to point out that Kremer, Robbins,
and Grest found that the Lindemann parameter for the
Yukawa potential was about 0.19. The corresponding
value for Lennard-Jones crystals is only about 0.1. The
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FIG. 5. Lindemann parameter for the N = 1024 system.
Upper panel shows g(r) as a function of r/ro, where r is the
Wigner-Seitz radius. Structure indicates that the system is still
a lattice, Lower panel shows mean-square displacement as a
function of time. Here time is scaled by the plasma frequency,
co~ (defined in the text). Saturation of the mean-square dis-
placement of infinite times yields a Lindemann ratio of 23%.

very large value of the Lindemann criteria is the major
reason for the failure of the self-consistent phonon
theory. This is discussed in Sec. V.

It is clear that all of the empirical criteria lead to
reasonably similar results for the density at which freez-
ing takes place. The average value of the density is
found to be $=0.023+0.004 which corresponds to
I =67+3.

IV. SIZE DEPENDENCE OF SIMULATION
RESULTS

In the previous section the molecular-dynamics calcu-
lations for the fluid-solid transition were presented based
on the results obtained with N =864 or 1024 particles.
The range of interaction of the model potentials used in
our simulations is long and consequently the sensitivity
of the results to the system size becomes a crucial ques-
tion. It should be pointed out that even at the smallest
volume fraction considered in this work and with
N =250 the value of the potential at the cutoff distance
is of the order of 10 k~T. This suggests that Ewald
corrections are not needed to achieve accuracy. Howev-
er, it is known that near the fluid-solid transition large
system size is required to yield results close to the ther-
modynamic limit. It is for this reason that the investiga-
tion of the dependence of the results on the system size
is important.

We have systematically studied the properties of the
system for N =250, 256, 512, 729, 864, and 1024 at vari-
ous values of P. For purposes of discussion we focus our
attention on the results obtained with a few of these sys-
tems. For N &500 particles it was found that starting
from a liquid and increasing the density leads to
solidification at volume fractions smaller than is ob-
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FIG. 6. Pair correlation function g(r) as a function of ra,

for various values of the volume fractions. The results are
presented for both N =864 and 1024. For all values of P, ex-
cept for /=0. 200, the results obtained with both the systems
are identical.

tained with larger systems. More importantly, the na-
ture of the crystalline phase is dependent on the initial
lattice configuration. For example, a 256-particle system
with an initial fcc lattice configuration crystallizes into a
fcc phase while a 250-particle system with an initial bcc
phase solidifies into a bcc phase. For N & 500 particles
but less than about 800 particles, the crystallization de-
pends on the way the density of the system is changed.
In particular, starting from a liquid configuration, if the
density is increased slowly (small increments) spontane-
ous crystallization is achieved at a density, P*, which is
much smaller than the value obtained with a larger (i.e. ,
N =1024) system. However, if P is increased from a
liquidlike state to a value past P* the system exhibits
liquidlike behavior and crystallization takes place only at
the higher volume fraction, in agreement with the result
obtained with the larger systems. The crystalline phase
is a bcc regardless of the path used to reach the state.
Only for N greater than 800 does one obtain accurate re-
sults, i.e., the density at which spontaneous crystalliza-
tion takes place is independent of both the starting ini-
tial configuration and the way the system density is
changed. This is clearly shown in Fig. 6, where the pair
correlation function at various values of P for N =864
and 1024 is shown as a function of ra, '. For all values
of P except /=0. 2 the results are in perfect agreement.
For / =0.2, it is clear that both g (r)'s resemble that of a
bcc lattice but the peak heights of the second neighbors
are not identical. Thus for a quantitative determination
of the structure one should use at least 1000 particles in
the simulation. Clearly for diferent parameters, i.e.,
shorter screening distance, one can perhaps obtain reli-
able results with smaller systems.

The thermal fraction of energy is quite sensitive to N.
For N less than 1000 it was found that the AU/Nk~T
exhibited no systematic trend. Only with N =1024 did
we find a monotonic increase of b U/Nks T with P. This
dependence on N was also seen in the simulation of one

component Coulomb plasma. The dependence of the
results on N is an indication of the existence of severe
bottlenecks in phase space that can apparently be over-
come by using a large system size. Thus when N is small
the system can get trapped in one of the metastable
states and it would require a long time to make a transi-
tion to a lower energy state. We believe that the reason
for the serious system size dependence is primarily due
to the very strong interaction between the particles.
This makes it necessary not only to use large systems but
also requires lengthy molecular-dynamics runs to obtain
results close to the thermodynamic value.

V. SEI.F-CONSISTENT PHONON THEORY

The molecular-dynamics results presented in Sec. III
do not seem to be explained by the theories presented by
Shih and Stroud or that of Hone et a/. -' Because of
the uncertainties in both these theories we have used the
self-consistent phonon theory ' using both the Einstein
approximation and the Debye approximation to com-
pute the phase diagram of colloidal suspensions. The
natural objection to the use of the self-consistent phonon
(SCP) theory is that the phase diagram is solely deter-
rnined by considering the free energy of only the solid
side. No information about the behavior of the liquid
phase is taken into account. On the other hand, in the
much studied density functional theory of freezing
(DFT), the free energy of the solid phase is expanded
about that of the liquid phase. Reference to the crystal
phase is made only in determining the conditions under
which the density wave of the solid phase becomes
stable. The application of DFT requires the knowledge
of' direct correlation function C(r) of the liquid phase.
For polyballs, it is difficult to calculate C(r) using stan-
dard integral equations accurately for high enough
volume fractions. However, it can be determined from
the present MD simulations and then DFT can be used.
This will be pursued elsewhere. '

The self-consistent phonon (SCP) theory of melting
can be derived in many ways. Following Boccara and
Sarma, we derive it using the Gibbs-Bogolyubov in-
equality. Let the Hamiltonian of the crystal be

p 2

H=g + —,'gV(R, +u; —u ), {5.1)

where R; 's are vectors joining the equilibrium lattice
points at site i and j and u, and u are the dynamical
displacement due to thermal vibrations. The essential
idea of SCP is to approximate the Hamiltonian by a trial
Hamiltonian consisting of a collection of the linear har-
monic oscillators in which the spring constants, as well
as the thermally averaged displacement-displacement
correlation functions are determined variationally. Sys-
tematic improvement over this theory using standard di-
agram techniques can be made although these become
increasingly dificult. In the diagrammatic language,
the SCP theory includes topological diagrams of the
Hartree type. The variationally determi ned52

displacement-displacement correlation function can be
combined with the Lindemann criteria to determine the
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melting transition.
The trial harmonic Hamiltonian is written as

p2
Hz ——g + —,

' g —,'(u; —u, )P, (u, —u, ),
l,J

(5.2)

where

N

D &(k)= g [1—exp( —ik R,&)]Xm,
&( V' Vii( V (R,J +u, —u J ) ) . (5.11b)

where the force constants P,, are to be determined varia-
tionally. The Gibbs-Bogolyubov inequality states that

F (Fr:Fq—+ ( V —Vz. ), (5.3)

Fr = (H +kB Tlnp„),
where the average off is defined as

(5.4)

(5.5)

and kz is the Boltzmann constant. The harmonic ap-
proximation to the free energy Fh is

where FT is the trial free energy, Fz is the free energy of
the reference harmonic Hamiltonian, V is the total po-
tential energy of the actual system, and VT is the total
potentia1 energy of the reference oscillator system. The
trial free energy FT can be written in the form

The vectors e (kj) is the ath component of the unit
eigenvector of the jth branch of the mode k. The force-
constant matrix in Eq. (5.11b) can be written in the fol-
lowing form which is more useful for practical calcula-
tion:

( V(R;, +u, —uj)) = [(2m) detA, ;, ]

X J d u V(R,~+u)exp( —,'uA, 'u) .

(5.12)
The practical implementation involves solving the ei-

genvalue equation (5.11a) for a trial force-constant ma-
trix and knowing the frequencies and the eigenvectors
one can calculate A.;J as

[1—cos(k r; )]
E(k, ')E&( k, )coth(PRES@&, /2 )

N k, meek

Fi, ——(Hr+kii Tlnp„) (5'.6a) (5.13)

with

HR /kB T —HR /kB T
pR=e (5.6b)

Fr =Fi, + —,
' g ( V(R,

~ +u; —
u~ ) ) ——,

' g A, ,~'P;~, (5.7)

where

A,,~=((u; —uj ) (u; —u, )ii) . (5.8)

Thus the trial free energy FT, which is the upper bound
to the true free energy, becomes

Knowing X, - an improved renormalized potential can be
computed using Eq. (5.12) and a new force-constant ma-
trix can be constructed. This process can be repeated
until convergence is obtained. The full solution of these
self-consistent equations will be presented elsewhere. In
order to get an analytically tractable expression, in what
follows, we present a simplified treatment, namely, the
self-consistent Einstein approximation and the self-
consistent Debye approximation.

In the Einstein approximation, the trial Hamiltonian
is written as a sum of independent oscillators, i.e.,

Recalling that V is the displacement operator one can
write

p2
(x)+—,'men' g u'(x ),

2m
(5.14)

( V(R~+u, —u, ) ) = (exp(u, —u )V) V(R J )

which for averages over harmonic reference system be-
comes exp( —,'A. , 'VV) V(R, ). Thus Eq. (5.7) becomes

where x denotes the lattice site and u (x) is the dynami-
cal displacement associated with that site. Assuming
that A, , is independent of sites and of the component,
i.e.,

Fr =F„+—,
' g exp( ,'k,, :VV)V(R,, ) ———,' g X;, :P„ (5.9) Z,,~=X6 p. (5.15)

The variational equations are obtained by treating A,
and P,J as parameters and this gives the following cou-
pled self-consistent equations:

6Fh
4 !J (5.1Oa)

and

A,, =((u; —u, )(u, —u )) . (5.10b)

The harmonic free energy can be expressed in terms of
the frequencies (the eigenvalues) of the dynamical ma-
trix, i.e.,

trial free energy per particle fr =Fr /N becomes
[see Eq. (5.9)]

fr ——3kii T in[2 sinh(PA'4ii /2) ]

eI'' ' v V(R„)—im
x (~0)

The first term is the free energy of the reference system,
the second term is an approximation to the second term
in Eq. (5.7) with the assumption given by Eq. (5.14). For
the potential of the form

Ae /R

y D.pep(k,j ) =~k.e.(k,g),
P

(5.1 la) one can calculate the second term in Eq. (5.16) and the
trial free energy becomes
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fT ——3k& T in[2 sinh(PRE@/2)]+ e~ g I erf(q A+R„)/&2A ]e "—erf[(qA, —R„)/&2A ]e4
( p) R

—2 sinh(qR„) )
——,'me@ k, (5.17)

where erf(x) is the error function. The parameters, namely the Einstein frequency co and the displacement correlation
function A, , are determined by minimizing fT and this leads to the following self-consistent equations:

A' cot h(@fico /2 )

mm
(5.18a)

and

2

co = e~ g je "erfc[(qA, +R„)I&2k.]—e 'erfc[(qA, —R„)/&2A. ]Im
[ p) 2

j/2
2

7TA,
3 exp[ —(q A. +R„/2A, )] (5.18b)

where erfc is the complement of the error function.
Equation (5.18a) in the classical limit becomes

X=2//3m co (5.18c)

(5.19)

and thus knowing A, enables us to calculate the Lin-
demann parameter.

In order to determine the melting curve and hence the
phase diagram one has to obtain the free energy of both
the liquid phase as well as the solid phase. Here we sim-
ply invoke the Lindemann criteria which states that the
solid phase becomes unstable (i.e. , melts) when the
mean-square displacement exceeds the lattice spacing by
a certain amount, i.e.,

&u'& =c
a

with c being about 0.01. In obtaining the phase diagram
several values of c have been used. Two of them, narne-

ly, c =0.025 and 0.033, were considered by Hone
et al. The molecular-dynamics simulation results indi-
cate that c =0.048 implying that the charged colloid sys-
tem tolerates large amplitude motion. We have also
used the value of c =0.01. The phase diagram using the
self-consistent (Einstein) (SCE) phonon theory is ob-
tained by solving Eqs. (5.18b) and (5.19c). The resulting
phase diagram for the various c values is presented by
plotting T~ '=Z e /ea, k&T as a function of ~a, . Re-
call that ~ can be changed by adding an electrolyte to
the colloidal suspension. The phase diagram is shown in
Fig. 7 for various c values quoted above. Because the
qualitative results for different c values are the same we
will discuss the phase diagram by referring to the curve
with c=0.048. There are several features of the phase
diagram that are worth pointing out: (a) For
T~ (0.095, the stable solid phase is always bcc as long

Notice that Eq. (4.17) correctly reduces to the equations
for the classical one component Coulomb plasma when

q =0. The parameter A, is related to the mean square
displacement by

I

as &ca, is less than 1.72. As ~a& is increased beyond this
value there is a transition between bcc~fcc~ liquid.
However, for Tz &0.055 the bcc phase melts directly
without the transformation to the intermediate fcc state.
(b) The fcc is no longer stable for Tz &0.055, a value
considerably larger than the one predicted by Hone
et al. (c) We find no evidence for reentrant behavior.
This is also in contrast to the theory of Hone et al.
who find that for certain values of Tz a reentrant behav-
ior in which the system undergoes a phase transition
from bcc~fcc~bcc. (d) For large Tz the range of
Ira, over which the fcc is stable decreases. (e) The pre-

0.08
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22.0%

l7.3 /o
t 004-

l5.8%

0.02-
I0.0%

0
X X C

FIG. 7. SCE phase diagram as a function of the renormal-
ized temperature Tz (see text) and the screening ~a, . Three
thermodynamic states are shown, bcc solid, fcc solid, and

liquid. bcc is stable for va, & 1.72 and fcc is stable for
~a, ~ 1.72 as indicated by the solid vertical line. Various Lin-

dernann curves indicate the region where the liquid is stable.
Four Lindemann curves are shown; 10% is the standard Lin-

dernann ratio, c ' -'; above this curve the liquid is stable.
c' = 15.8% to 17.3% indicates the Lindemann range valid for
hard sphere. The top curve has c' =22%, a value consistent
with MD results. Diagram shows no reentrant melting nor any
reentrant bcc phase behavior. The crosses are the thermo-

dynamic states used in the simulations.
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g 2/Pcs, 'm,
3N

(5.20)

where 3N is the number of normal modes. The free en-
ergy of the bcc lattice for /=0. 005, N = 1024 was calcu-
lated. The resulting free energy and Lindemann parame-
ter, c', are in good agreement with the SCE results.

Thus the failure of the SCE model does not appear to
lie in the neglect of the dispersion in frequency. Howev-
er, we note that the c ' values from SCE would predict
a melting transition at /=0. 003, if c' =10%. If we
choose c ' =22%, the predicted melting transition is
several orders of magnitude smaller than the MD result
of /=0. 023. Thus the SCE Lindemann parameters are
too small. Since the Lindemann parameter is inversely
proportional to the sum of the frequencies squared, we
suspect that SCE ignores the low-frequency motions.
The MD results show that large amplitude motions are
important near melting. We may conclude that the
failure of SCE and other lattice dynamical theories is
due to the neglect of low-frequency modes, prevalent
near melting. This feature does not appear important
for melting of Ar where the SCP theory is found to be
successful. However, when the Lindemann parameter is
large, theories based on harmonic treatment cannot. be
successful in predicting accurate melting temperatures.

VI. CONCLUSIONS

In this paper we have presented simulations as well as
a simple theoretical application of the self-consistent
phonon theory to study disorder-order transition in
aqueous suspension of charged polystyrene spheres. We
conclude this paper with a summary of our observations
and a few additional comments.

(a) The molecular-dynamics results were used to locate
the densities at which spontaneous crystallization
(P =P, ) at which the solid becomes unstable (P =P ).
By using several empirical criteria the volume fraction at
which freezing takes place was found to be

dictions of the SCE are in complete disagreement with
both the experimental studies as well as the molecular-
dynamics results. The MD results are shown as crosses
in Fig. 7. Computer simulation studies reported in Sec.
III and experiments predict that for T =300 K the
liquid freezes into a bcc phase. The reason for this may
be because this system is much more anharmonic than
the OCP. Furthermore the SCE theory does not ac-
count for the dispersion in the frequency and this ap-
proximated by a single frequency.

Csiven the failure of the SCE model, we look towards
the next level of approximation. Here we include the
dispersion in the frequency, a feature ignored by the
SCE model, by solving the full set of dynamical equa-
tions, given by Eqs. (5.10) and (5.11). The frequencies
are then obtained as the eigenvalues of the dynamical
matrix corresponding to the renormalized potential, Eq.
(5.10). The displacement parameter A, is given by

/=0. 023+0.004. The system is frozen into a bcc lattice
and this is clearly reflected in the radial distribution
function. It is also shown that close to the lattice insta-
bility point, the particles undergo very large amplitude
motion. This is reflected in the large value of the Lin-
demann parameter. The simulation results also indicate
that there is no evidence for reentrant behavior in con-
trast to earlier predictions by some authors. ' The
molecular-dynamics results are in agreement with exper-
iments, suggesting that the DVLO potential can describe
charge stabilized colloidal suspensions.

(b) Because of the very strong interaction between par-
ticles it was found that one has to use sufficiently large
number of particles and large number of time steps to
obtain results close to the thermodynamic value. This is
in contrast to earlier work on OCP where it was shown
that using 250 particles (with proper treatment of image
charges using Ewald summation technique) one can ob-
tain fairly accurate freezing parameters. ' Our studies
show that at least 1000 particles are required to obtain
reliable results. However, when the screening becomes
more efficient one can presumably use smaller system
sizes.

(c) The phase diagram calculated using the self-
consistent phonon theory does not appear successful in
the weak screening limit. The theory predicts that for
the thermodynamic condition considered in this article
the crystalline phase is fcc which is disagreement with
both the simulation and the experiment. However, it
successfully predicts that there is no reentrant melting
(or freezing) which is in accord with the simulation re-
sults.

(d) We have attempted to use the results of the density
functional theory by using the hard sphere as a reference
system. ' Using Gibbs-Bogolyubov inequality, the op-
timum value of the hard-sphere packing g can be ob-
tained. With this one can use density functional theory
of freezing to obtain the density at which freezing
occurs. The transition density was found ' to be six
times larger than that predicted by simulations. More-
over, this theory is found to be extremely sensitive to the
value of Z used. '

(e) After this paper was completed we became aware
of a very recent paper in which few formulas for the
self-consistent phonon theory presented in Sec. V have
been derived. These authors used the hard-sphere refer-
ence system to calculate the liquid free energy. ' From
these the phase diagram for the colloidal suspension was
obtained. The interested should certainly refer to this
work.

Note added in proof After submittin. g this paper, we
have obtained the phase diagram (analogous to that
given in Fig. 7) by assuming a Debye spectrum for the
oscillators. The appropriate free energy, in the classical
limit, for the case is found to be

fz- ——3kT(lnPfuoo ——,
' )+—,

' V(A, ) ——'A.meso

where —,
' V(A, ) is given by the second term in Eq. (5.17).

The resulting self-consistent equations are
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2

3Pm toD

9m dA,

The resulting phase diagram is identical to that obtained
using the Einstein approximation and shown in Fig. 7.
This further confirms the conclusion drawn at the end of
Sec. IV.
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