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The time-space behavior of the charges produced in typical laser multiphoton ionization experi-
ments is analyzed from the point of view of the fluid approximation. On the basis of analytic
methods, first the equation system describing the one-dimensional motion of a single-charged fluid
in an external uniform and constant electric field is solved. It is shown that the solution can be ex-
tended to the three-dimensional case, also including momentum-exchange collisions and time-
varying electric field and temperature. Moreover, the method is extended to analyze the motion of
both ions and electrons, coupled by the self-generated electric field. Finally, the consequences on
the time-space behavior of the collected current, in typical multiphoton ionization experiments,
are pointed out and the range of validity also discussed.

I. INTRODUCTION

Laser multiphoton ionization (MPI) is a spectroscopic
technique widely used in several fields of investigation
as, for instance, trace analysis, isotope separation by
selective ionization, laser-induced chemical reactions,
and so on. MPI has been largely investigated and new
phenomena, such as above-threshold ionization (ATI),
have been recently discovered. !

In spite of the different purposes, many features are
common to all MPI experiments. In fact, the ionized
yields are collected by externally applied electric and/or
magnetic fields and the induced current is either totally
detected by the so-called optogalvanic technique or mass
(or energy) analyzed by appropriate spectrometers.

MPI involves, usually, pulsed lasers and, except for
particular experiments involving very high electric
fields,? the response time of the collection scheme is
much longer than the laser interaction time (0.1-10 ns).
Hence, during the collection time, many effects, to be
classified schematically as atomic interactions and collec-
tive phenomena, can modify the initial parameters (num-
ber density, temperature, velocity distribution) of the
laser-produced yields. Whereas the atomic interactions,
typically binary collisions, are effective only over a short
distance, the collective phenomena may act on a macro-
scopic scale and therefore may drastically change the
shape of the collective current, the time of flight through
the spectrometer, and so on. The phenomenon of “elec-
tron trapping,” recently introduced to explain an anoma-
lous behavior of the ATI electronic spectrum as the ini-
tial density of the ionized yields increases,>~® may be
also considered as an example of a collective interaction,
depending on the self-generated fields.

The fluid approximation® is an appropriate approach
for a wide class of experiments. The equations that con-
stitute this approximation are derived from the
Boltzmann transport equation, such as the momenta of
different order, averaged on an isotropic velocity distri-
bution,® and so they describe the time-space evolution of
the fluid mean quantities (velocity, density, and energy)
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referred to the laboratory frame.

In general, the electron-electron collision time is
shorter than the collection time and thus the initial dis-
tribution quickly approaches a Maxwell distribution.
Nevertheless, the usual fluid approximation can be also
extended to the class of the collisionless MPI plasmas.
In fact, it will be demonstrated that the derivation of the
fluid equations requires only having zero for the particle
velocity averaged over the distribution function.

In ATI experiments, several authors!°~!4 have mea-
sured the angular distribution as a function of the angle
between the directions of the laser polarization and the
detection. The observed distribution is strongly peaked
along the laser polarization and the sharpness increases
as the order of the peaks increases. In any case, along
any axis there are two equiprobable opposite directions
for the ejected electrons and that assures a mean zero ve-
locity. Hence, in the collisionless case, the electron Ki-
netic energy term k7, of the fluid equations will be given
by the initial electron energy E, equal to the difference
between the absorbed laser photons (nhv) and the ion-
ization potential (i): E,=nhv—i (see Sec. II).

It turns out that the general solution of the fluid equa-
tion system, which also includes the self-consistent fields
and the atomic processes, is a formidable problem.
Thus, solutions are obtained when some assumptions,
depending on the characteristics of the problem, are in-
troduced in the equation system, of course with loss of
generality. Particularly in the laser plasmas produced by
the MPI process, the usual plasma physics approxima-
tions of linearization, uniform density, and so on do not
correspond to the physical reality. In fact, owing to the
strong field and density gradients and the fast time evo-
lution, all the nonlinear terms and all the time-space
derivatives must be retained in the exact description.

In spite of the general features involved in the theoret-
ical analysis and the good reproducibility of the experi-
mental samples, the atomic physics approach to MPI-
produced plasma has been considered, in general, as a
trouble to avoid, if possible. On the contrary, the plas-
ma physics point of view should be used to determine
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the main features. Actually, with regard to the electron
densities and energies involved, these plasmas are similar
to those produced by means of the old plasma sources,
whose research was progressively abandoned as a conse-
quence of the increasing interest in the nuclear fusion
field. In fact, the MPI plasmas can also be classified as
tenuous, non-neutral, unstable, and, in many cases, col-
lisional (with neutral particles) plasmas. Compared with
the “old plasmas,” the MPI ones exhibit good reproduci-
bility, high repetition rate, and a more reliable control of
the initial parameters. Hence, it seems that MPI plas-
mas could be considered, from the plasma physics point
of view, as suitable samples to study nonlinear interac-
tions. This work presents a solution of the fluid equa-
tions, on the basis of analytic methods, under some hy-
potheses that in general correspond well with the physi-
cal reality of the MPI experiments. The plan of the pa-
per is the following. Firstly, the method is applied to
solve the equations describing the unidimensional
motion of a single-charged fluid in an external uniform
electric field. It is supposed that the laser MPI produces
an initial Gaussian-shaped density profile of ionized
yields. All the processes changing the number density in
the continuity equation will be neglected.

In Sec. III it will be shown that the solution of the
unidimensional case can be easily extended to a tridi-
mensional case and that momentum-exchange collisions,
time-varying electric field, and time-varying temperature
may be included in the solution. As a further conse-
quence, the previous analytical solution will be applied
to solve the magnetohydrodynamic (MHD) equations for
the plasma motion in an electric field (Sec. IV). In Sec.
V, by an approximate approach, including the self-
generated internal field, the method will be extended to
solve the coupled two-fluid equations. Finally, following
the previous descriptions, the consequences of the time-
space behavior of the macroscopic collected current, in
typical MPI experiments, will be pointed out and the
range of validity also discussed (Sec. VI).

II. METHOD OF SOLUTION

As recalled in the Introduction, the fluid equations are
obtained from the Boltzmann transport equation as mo-
menta of different order. That Boltzmann equation de-
scribes the time evolution of the particle distribution
function f(r,w,?) in phase space. In the absence of col-
lisions among particles of different kind, the total deriva-
tive of f is zero® and thus the Boltzmann equation is
represented by

df _ af
dt +2 15

1 &f

m %‘,FJ— s, =0, (1)
where x; and w; are the j components of the particle po-
sition and velocity and F; the j component of the force
acting on the particle. Assummg that the particle densi-
ty is n(r,t)= [ fd’w, where d*w =dw,dw,dw,, the
mean value of a quantity Q (w) (either scalar or vectori-
al) is given by

Q(r,)=(Q(w))=[1/n(r,n] [ Q(w)fd*w . ()
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By multiplying by Q (w) and integrating on the veloci-
ty space, Eq. (1) is transformed into an equation describ-
ing the time evolution of Q (w), that is,

S0 (Q(w) >]+2 I (Qw,)]

o)
—(1/m)2<——F.Q(w)>=o. 3)
=\ dw; J

In the derivation of Eq. (3), the only requirement is to
have a symmetric distribution function.

The zeroth-order momentum corresponds to
Q(w)=1. From Eq. (3), the resulting equation describes
the macroscopic evolution of the density, the third term
in Eq. (3) being zero because the j component of the
force is independent of the j component of the velocity,

)

—n +V-(nv)=0, (4)
St

where
vi,=(w)=[1/n(r,n] [ wfdw

is the mean fluid velocity.

The position Q(w)=mw leads to the momentum-
transfer (motion) equation. It is worthwhile to express
the velocity w as a sum of the fluid velocity v and the
“random” velocity u. As recalled in the Introduction,
(u) =0 also for monochromatic electrons produced in
ATI experiments.

The first and the third terms of Eq. (3) immediately
lead, respectively, to m (8/8¢t)(nv) and nF. The second
term requires a more detailed discussion. By using the
previous position for w, the second term is transformed
into

nmv(V-v)4+m(v-V)(nv)+mVS=mV(n{ww)), (5

where the condition {(u)=0 has been used to eliminate
the terms (vu) and (uv). The symbol <> represents a
tensor and, particularly, ® is the stress tensor, whose
components are defined by ®;=mn{u;u;). For a
Maxwell distribution, the off-diagonal elements are zero
and the diagonal terms are equal to the fluid pressure,
i.e., VO =VP =V(nkT). For ATI- -produced electrons, if
one-dimensional motion is assumed (along the direction
of the laser polarization), all terms are zero except a
quadratic term along the laser polarization, i.e.,
nmu’=2nE,, where E, corresponds to the electron ki-
netic energy. In a three-dimensional expansion, the di-
agonal terms are still equal to 2nE, and the angular dis-
tribution of electrons must be included in n.

By using Eq. (5) and the continuity equation (4), the
motion equation becomes

Lyiwyw=E_YP (©)
5t m mn

where the symbols are previously defined.

From the previous discussion, the motion and con-
tinuity equations describing the one-dimensional motion
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of a single-charged species (either ions or electrons) in an
external electric field are, respectively,

Sv Sv S
2 v = Ay — (KT /m)— , 7
or TV Ay—(k /m)«Sx In(n) (7)
Sn 8

. - 8
o1 + 8x(’w) 0, (8)

where A,=(q/m)E,. T,q,m are, respectively, the tem-
perature, charge (including the sign), and mass of the
selected species and E|; is the electric field.

The initial conditions are v(x,0)=0 and
n =nyexp[ —(x /8)?]. A further additional assumption
is 8T /6x=0. Such a hypothesis is very well satisfied in
the MPI experiments, where the initial electron kinetic
energy depends on the difference between the energies of
the absorbed photons and the ionization potential.

Dividing Eq. (8) by n, it turns out that the system de-
pends on v and In(n). Both the functions v and In(n) ad-
mit Taylor developments in a time interval close to zero
that may be written as

vix,t)= i b,(x)"
n=0
and 9

In[n(x,t)]= 3 a,(x)i".
n=0
Introducing Eq. (9) into the system (7) and (8) and

equating the terms with the same power of ¢, the follow-
ing recurrence relations are obtained:

n . Sa

n—j _ _ _ n

(n+1)b,,+1+j§lbj 5 =A,8(n =0) (kT/m)ax
(10)

(n+1) %6, "baa"'f 0 11
ntDa, g+ +j§l i e =0 (11)

The initial conditions, for v and n, lead to b,=0 and
ag=In(ny)—(x/8)% from which it follows that b,, =0
and a,, ,,=0.

From an inspection of the system of Egs. (10) and (11),
the following x dependence of a and b coefficients is de-
rived:

@3, (X)=0a} 5, +a5 2, X +a3,,x7, (12)
bon 4 1(x)=by 35 41 +b3 20 11% (13)

where a,,, and b, ,, |, independent of x, are defined
by

2na 1,2n =( —1 )nB 232’2,, -1

n—1
—(=1D™MAZB""2/8") S Bi2j 419220 —2-2j >
=0

j=
aym=—(—=1)"(A4,B" "' /8%)ay,, ,
a33,=—(=1)"(B"/8%)as,, , (14)
bians1=(=1)"(A4oB")B) 2p+1 >

b2,2n+l:(*1)an+132,2n+1 .
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Here B =2kT/mé&? and a, are numerical coefficients
given by the system

n—1
2na, , =2 3 Bi,2j 413,20 —2—2j

j=0

n—1

+ 3 Ba2j+19,m—2-2j >
j=0

n—1
nas,, = > 32,2j+1a3,2n-2—2j ’
=0
! - (15)
2n + DBy 2w 1= 2 Br2j+1B2,2n —2j -1+ Q2 20 /2 )
)
n—1
(2n + 1By 2n 1= 2 Bazj+1Bran—2j 11230, »
j=0

where a, =0, a3 =8, ,=8,,=1. The overall solution
is greatly simplified by a remarkable relation among the
coefficients in Eq. (15), that is,

30, =03 24 42 (16)
from which results

Bion+1=1B22m 1 » (17)
1

2n

n—1

— 1
2 B1,2j+1a2,2n —2-2;=73Q32(n-2) - (18)
Jj=0

After rearrangement of the indices, the solution may
be expressed as

In(n /no): z (—1)"(32,2,,_1/271)0"

n=1

(At —x) /B S (—1)ay 5,07, (19)

n=0

v=Agt +Bt(x —LAxt?) 3 (—1)"By s, 10", (20)
n=0

where it has been introduced that 6 =Bz>.

The decrease in the numerical coefficients, with in-
creasing n, does not assure the series convergence for
0>1. As a consequence, to describe the complete time
evolution of v and In(n), it will be necessary to find an
analytic extension!® of the series. Therefore, the series
terms, in Egs. (19) and (20), are written as unknown
functions of the adimensional parameter 6,

Ms

(—1 )"(Bz,zn_l/zn)0n=¢1(9) >

n=1

Ms

(—1D)"a;,,0"=¢,(0) , (21)
0

n

Il

Ms

(=1)By,24 410" =65(6) .

n=0

Il

From the mass conservation and the other relations
derived from the system (7) and (8), equating the terms
with the same power of x, the following system is ob-
tained:
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$,(0)="11n$(0) , (22)
1

¢3 2Bt¢2 ]D(ﬁz > ( )

D%,= |—— |(Dé,?—2B¢3, (24)
2¢,

where D indicates the total time derivative. The initial
conditions, for v and n, lead to ¢,(0)=¢5;(0)=0 and
#,(0)=1. By making use of Eq. (23), D¢, |,_o=0 is ob-
tained.

By introducing the variable §=Bt? in Eq. (24), it is
easy to see that the shape of ¢, is independent of the
choice of the initial parameters. Thus ¢,(6) is a univer-
sal function describing, whatever the conditions of the
MPI experiment, the spatial distribution of the ionized
species. Figure 1 shows a bilogarithmic plot of 6, versus
(14-6), obtained by standard Runge-Kutta fourth-order
numerical integration. The function ¢, is well approxi-
mated by 1/(1+0)% where a is a weakly varying func-
tion of 6, approaching 1.25 at large 6 values.

In conclusion, the complete solution will be expressed
by

n/no=(¢,)""*exp—o,[(+ 41> —x)/87", (25)
v=Agt +HLA4,*—x)D In(¢,) . (26)

The collective (pressure) effect is included in the ¢,
function. When 6<«<1, ¢,=1, and thus the single-
particle translation of a Gaussian profile is recovered. If
6> 1, the universal ¢, function describes the deviations
from the single-particle behavior.

The fieldless ( 4,=0) evolution, as obtained from Egs.
(25) and (26), is to be considered as an example of a self-
similar motion.'® In fact, a change of the initial parame-
ters (k7T,8) and of the value of B, does not modify the
shapes of n and v, but does modify the time scale of vari-
ation. This feature is a consequence of the particular
choice of the initial density shape and it cannot be
directly extended to an arbitrary profile.

From Egs. (25) and (26) it follows that to avoid the
collective pressure-induced motion for a collection at the
point d with a time arrival ¢t =(2d / 4,)'/?, 6 should be
small as compared to 1 and the external electric field
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FIG. 1. Bilogarithmic plot of ¢ as a function of (1+86).

must satisfy the condition E,>>2kTd /e 8%. Owing to
the typical range of variation of 8 (0.1-0.01 cm) in the
MPI experiments, a strong electric field will be necessary
to perform a fast and efficient charges collection. For
instance, assuming kT=1 eV, d=10 cm, and 8§=0.1 cm,
the above condition gives E,>>1800 V/cm. In Sec. VI,
as an example, the behavior of the peak of the current as
a function of the electric field will be shown.

III. EXTENSION OF THE SOLUTION

Since the previous solution depends only on the coor-
dinate along the direction of the motion, a three-
dimensional extension is straightforward. Moreover, the
inclusion of momentum-exchange collisions with neutral
particles, time-varying electric field, and temperature is
very easy. In effect, the shapes of n and v are unchanged
and the only modification results in the ¢, time behavior
and in the time-dependent term related to E.

The system to be solved, in the three-dimensional
case, is
Sv

-‘37+(V~V)v=A(t)-—[kT(t)/m]Vln(n)——Bv s 27)

5‘571n(n)+v-v+(v~V)1n(n)=o . (28)

The electric field will be assumed to be directed along
the x axis: A(t)=(A4(¢),0,0).

For the solution of Egs. (27) and (28), it may be no-
ticed that the terms At and (%)Atz, appearing in Egs.
(25) and (26), are to be replaced by the corresponding
terms, obtained as a solution of the single-particle-like
equation for the vy, velocity,

Dvgy, = A (t)—Bug, » (29)

where D represents the total time derivative and S the
collision frequency.

Furthermore, it is possible to take into account that
the initial Gaussian shape could be nonisotropic by in-
troducing Gaussian distributions with different widths
,,9d,, and 8, along the three axes. Thus the solution is
written as

n /n0:(¢x,¢y7¢z )I/ZCXP

- [¢, [ [ vocar —xJ/Sx ]2+¢,(y/ay)2

+6,(2/8,)* ] (30)

and
U, =Vqy +($) [quth —X ]Dlnq&x , (31
v,=—(3)yD Ing, , (32)
v,=—(1)zD Ing, . (33)

Replacing the solutions (30)-(33) into the system (27)
and (28), and following the same procedure as in Sec. II,
the differential equations, regulating the ¢, behavior, are
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3

26,

where j refers to the (x,y,z) direction of motion. Note
that the time variation of the field affects the single-
particle solution [Eq. (29)], whereas the time dependence
of the temperature T appears only in Eq. (34), which
modifies the time scale of the ¢j function, that is, it
affects the collective behavior. On the contrary, the col-
lision term influences the collective behavior [Eq. (34)] as
well as the single-particle one [Eq. (29)].

As a further consequence, when /3>>(Bj)1/2, the
second derivative and the squared derivative may be
neglected and Eq. (34) immediately gives the well-known
result for a completely diffusional motion,!” that is,
¢;=[1+(4kT /mpB8*)1]~".

In many plasma physics problems, the nonlinear term
(v-V)v is often neglected. In such a case, the
modification of the above solution concerns only the
differential equation (34), where the numerical factor 3 is
to be replaced by 1.

In general, the previous solution, for the spatial
dependence [Egs. (12) and (13)], will not be valid in the
presence of both a spatial dependence of E or 7, and
nonlinear terms in the continuity equation. Neverthe-
less, in the case of a linear spatial dependence of the
electric field, it will be demonstrated that the previous
solution is still valid (Sec. V).

D%, = (D¢;)*—2B,(t)¢}—BD¢,; , (34)

IV. THE MAGNETOHYDRODYNAMIC PROBLEM

When the overall motion of the plasma is considered,
the motion fluid equation for both ions and electrons in-
clude an electric field, given by the superposition of the
external field and of the self-generated field, due to the
different charge mobility. Hence, in general, the com-
plete system to be solved also includes the Maxwell
equations. In the standard MHD approach,® the above
complete system is greatly simplified, under the assump-
tion that the ion and electron densities are equal, except
in the Poisson equation. The parameter measuring the
range of validity of the above-mentioned hypothesis is
the Debye length A=7(T /n,)'”?> cm whose value must
be9 much smaller than the plasma characteristic length
5.

It will be demonstrated that, in general, the MHD ap-
proach does not provide, owing to the strong density
gradient in MPI-produced plasmas, a complete descrip-
tion of the time-space evolution of the macroscopic
quantities. This is also true in the case where the neu-
trality condition (A <<#§) is initially well verified. In any
case, the MHD picture can give some information about
the plasma motion at the initial times where the neutral-
ity condition is still verified, and about the motion of the
central zone, where the density gradient is smoother.
Furthermore, the MHD approach will describe the limit
behavior of those plasmas, with such an initial density
that the neutrality condition would be verified anywhere
and anytime.

If in the motion equation the nonlinear (v-V)v term
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has been retained and all the terms and equations includ-
ing the magnetic field are neglected, the MHD motion
and Ohm equations are given, respectively, by

%—:—HV-V)v:—[(kT,-—!—kTe)/M]Vln(p)—Bv , (35)

6J

(Mm /e’p) 5, TP |=E+(1/ep)(MVP,—mVP;),

(36)

where P; and P, represent, respectively, the ion and elec-
tron pressure terms, that is, P;=n;kT; (j=i,e). The
electric field E is given by E=E,+E,, where E, is the
self-generated electric field given by the Poisson equation

V-Ep=477'a . (37)

The further relevant equations are, for mass continui-
ty,

o)

8tp+V (pv)=0, (38)
and for charge continuity,

b9 L v.g-0. (39)

ot

The new macroscopic quantities are related to the old
variables by the system
p=Mn;,+mn, ,
o=e(n;—n,),

v=Mv,+mv,)/ (M +m) ,
J=e(n;v;—n,v,) .

Equations (38) and (35) admit the general solution, ex-
pressed by the relations (30)-(33). Putting Eq. (37) into
Eq. (40) and neglecting the pressure term m VP; in Eq.
(36), compared with MVP,, the system to solve is re-
duced to the following equations:

%+/3‘J———(e2/Mm)[pE+(kTe/e)Vp] , (41)
(1/4#)%V~E+V-J=O : (42)

The one-dimensional case admits a straightforward
solution. In fact, integrating Eq. (42) between — oo,
where both E, and J are zero, and x, and making use of
the Eq. (30) for p, the system (41) and (42) is reduced to
the following time-dependent differential equation for
E,:

% i E 0?2 _E..( VE
512 +BSt pt Do x5,
:_Q;ef(x,t)Eo+4freBe¢sz , (43
0
where Ql,e=(477'e2p0/Mm)l/2 is the plasma frequency
and B, =(2kT, /m&?).
The initial conditions for Eq. (43), are, of course,
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E,(x,0)=0 and (8/81)E | ,_,=0.

Equation (43) represents an oscillating rotor-free elec-
tric field (“electrostatic”),'® whose frequency is time-
space varying, forced by the external electric field as well
as by the internal field, owing to the different mobilities
of charged particles. Note that a time dependence of the
external electric field and temperature can be directly
taken into account, as in Sec. III.

In the three-dimensional case, assuming a symmetric
expansion of p, that is, §, =8y=82, the previous irrota-
tional solution is still valid. Nevertheless, a typical MPI
plasma is cylindrically symmetric and thus, also, a rota-
tional solution will be expected, as experimentally ob-
served, for instance, in Ref. 19, by the electromagnetic
emission.

In any case, the one-dimensional picture is a suitable
tool for analyzing the features of the MHD model and
their range of validity. Since the time scale of variation
of p is larger than the corresponding E, scale by a factor
(M /m)'/2, neglecting the fast oscillating term and as-
suming =0, Eq. (43) can be solved to obtain

E,=[(2kT,/e8%)x —E][1—cos(Q, /)],

where f =exp[ —1(x /8)*].
J is given by the time derivative of Eq. (38) and o by
the spatial derivative, that is,

(44)

1 .
J=l=%- [(2kT, /e8*)x —E(1Q,, f sin(Q, f)t , (45)
o= | =2 [{(2KT, /e81)[1—cos(Q,, 1]
—(x /8H)[(2KT, /e8*)x —E,]
X Q. ftsin(Q,, )t} . (46)

Figures 2(a) and 2(b) shows the spatial profile of
n,=p/M +o /e, as a function of x /9, at different time
instants, chosen as multiples of the period T =2m/Q,,.
The p profile, also shown as a reference, is unchanged
during the same time interval. The values of kT, =1 eV,
No=10!" electrons/cm?, and 8=0.1 cm, introduced in
Fig. 2(a), are common to most of the MPI experiments.
Moreover, the neutrality condition A <<§ is initially well
verified. Nevertheless, the very rapid growth of the
charge separation suggests that the above-mentioned
neutrality condition is not a suitable parameter. In fact,
that condition is concerned only with the first term in
Eq. (46), which represents the charge separation close to
x=0. On the contrary, the most important contribution
arises from the linear growing second term in Eq. (46).
Thus, assuming as 7 the characteristic time of the p evo-
lution (f=~3/B}’?) and x =8, the true neutrality condi-
tion becomes

No>>(kT, /478%*) M /m) , (47)
that is, A <<8(m /M). Assuming the previous values of
the parameters and, for M, the proton mass, Eq. (47)
gives Ny >>3x 10'? ion/cm?.

5663
N (2)
e / \
~ 7 A
= /"/ \\E\
A
/ !
i" 4
/
-5 — 0 x/0 s
. (v)
! FAY
?( |
ey
£ \ g
S LY
o i M
# Y AT
0.5 P} 54‘,/ \.’ |}f\\ j\ “/ne
A
RN AU
i i'/ti \ V ‘M[\ IJ\
\ | ﬂ“ N 7
o sl - TN TN

x79

FIG. 2. Spatial profile of n, and n; vs x /8 from the MHD
model at two different time instants. The electron energy is
kT,=1 eV and the initial charge density N,=10"
electrons/cm’. (a) t =47 /Q,,, (b) t =207/Q,,.

It follows that, for most of the MPI experiments,
where the ion density is lower by several orders of mag-
nitude, the MHD approach does not provide a suitable
model for the macroscopic evolution. As a consequence,
the two-fluid system seems the most appropriate ap-
proach to describe the physical reality. The previous
solutions will be included as limit cases, depending on
the experimental parameters (N,E,kT,5).

V. SOLUTION OF THE TWO-FLUID SYSTEM

The system to solve is now a five-equation system, in-
cluding two motion equations, coupled by the internal
field, two continuity equations, and the Poisson equation
which relates the internal self-generated field E,, with the
ion and electron densities.” No additional hypothesis
about the charge neutrality as in Sec. IV is assumed.

An exact solution is difficult to obtain, even by series
development of Sec. II. In fact, owing to the coupling
term E , the substitution n —In(n) is not allowed in the
motion equations. Hence, the spatial dependence cannot
be taken out in the simple way of Sec. II, and so a reduc-
tion of the recurrence relations becomes very difficult.

In any case, by restricting the treatment to the one-
dimensional motion, a suitable solution may be obtained
using a linearization of the Poisson equation. It will be
demonstrated that, in such a case, only the differential
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equations are modified, still supporting the general
single-fluid solution [see Sec. III, Egs. (30)-(33)].
Assuming the single-fluid shapes for both n; and n,,
integrating between — o and x, and by variable change
€; :(d)}/z/ﬁ)(xj —x), where the index j refers to both the
species and x;(¢)= f vg;dt, the internal field is given by

EE
E,(x,t)=4men b ff; exp( —e’)de . (48)

By series integration and retaining the first term, we
obtain

E,(x,1)=2meng[($}*—¢)*)x —}*x, + )%, ] .
(49)

Referring to the general single-fluid solution (Sec. IID), it
follows that the first term in Eq. (49), linearly depending
on x, will affect the ¢; and ¢, time evolution, and the
time-dependent term will modify the single-particle-like
motion.

In fact, putting Eq. (49) into the motion and continui-
ty equations and following the same procedure as in Sec.
ITI, the following differential system is immediately ob-
tained:
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D¢, =(3/2¢,)(D¢;)’ —0;8,($;* —$:"*)—2B,$] ,

(50)
D’¢,=(3/24,)(D¢,)+ Q2 0,(6!*—¢)*)—2B,82 ,
and
D*x;=(e/M)E,+1Q28} (x, —x,) ,
(51
D’x,=—(e/mE,—102 ¢!"*(x, —x;) ,

where D represents the total time derivative. The initial
conditions are the same as in Sec. II.

The above solution is a good approximation for the E o
field in a zone with length roughly 6. For x > the E,
field exhibits a strong decreasing to zero, at the charge
boundary, faster than exp—e? as obtained from the
series integration in Eq. (49). Thus, this very narrow
transition zone can be neglected without loss of generali-
ty and so the spatial profile will be divided in an inner
zone, where the overlapping of both n, and n; makes the
coupling term important, and an outer zone, where the
motion will be single-fluid-like [in fact, for Q,, =Q,=0,
Egs. (50) and (51) are reduced to the system (30) and
(33)].
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FIG. 3. ¢, and ¢, time evolution from the two-fluid model for k7, =1 eV. (a) Uncoupled behavior. (b), (c), and (d) represent
the effect of the coupling term at three different initial charge densities: (b) Ny=10® electrons/cm?, (c) N,=10° electrons/cm?, and

(d) No=10" electrons/cm?>.
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The influence of the coupling term is shown in Figs.
3(a)-3(d), corresponding to different values of the initial
plasma density.

The ¢, decreases until the coupling term equates the
decreasing term 2B,¢2. The minimum of the ¢, func-
tion depends on the relevant parameters as

¢emin:(Q:e /8B432{[1+(4Be¢11/2/912)e)]
—[1+(8B,$;2/Q2)1'?),  (52)

and the oscillation frequency is A=, 174" The cou-

pling term also affects the ¢, behavior. Figure 4 shows
the variation of the ¢; value, at a fixed time, as a func-
tion of the initial density and of the initial electron ener-
gy. The ¢, behavior indicates that there is a density re-
gion in which the plasma exhibits an unstable evolution.
In fact, the faster decreasing of ¢, means that a fraction
of electron energy is transferred to the ions.?’ As the
density increases further up to the MHD region, the in-
stability disappears, according to the results of Sec. IV.

Referring now to the previous discussion about the
sharp boundary separating the two different behaviors, it
will be noted that, when ¢,,.,;, greatly differs from ¢,;,
only a fraction of electrons will be trapped in the ions
zone. An estimate of this effect is given by

n, /ni :(¢emin/¢i )(ﬂ/41r)t . (53)

Figure 5 shows the behavior of Eq. (53). Comparison
of Figs. 4 and 5 with Fig. 3(a) shows that trapping and
instability begin to be important at the same value of the
density, namely, n > 10% ion/cm?.

The coupling between electron and ion motion is also
induced by the external field, as it shows the solution of
the system (51), assuming ¢, =¢, =1,

x;=M/(m +M)E,/4men,)
X {1—cos[(M +m)/M]'2Q,,t}
—3[(M —m)/Mm]eEt* ,
x,=—m/(m +M)E,/4men,)
X {1—cos[(M +m)/M]'2Q 1}
—3[(M —m)/Mm]eEy* .

0.5ev

10 s
n, (lu elactrons/cm:' )

FIG. 4. ¢, value at t =3 1078 sec as a function of the ini-
tial density, at different initial electron energies.
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5
* tets)

FIG. 5. Time evolution of the “trapping” factor (n,/n;) at
different initial densities for kT,=1 eV. The O line represents
the ratio n, /n; deduced from the uncoupled evolution.

Compared with the MHD approach, the two-fluid
model introduces a new effect, induced by the external
field. If B,/Q), <1, the ions are trailed at the initial
time instants, when ¢; =¢, =1, by the same acceleration
as the electrons, and the relative distance (x; —x,) oscil-
lates with an amplitude E, /4m7n,.

This effect disappears in the further evolution, when
both ¢; and ¢, decrease. The condition B, /Q[z,e <1is
equivalent to A /8 < 1.

As n, decreases and the rate A/8 decreases further,
the two-fluid picture approximates the central behavior
as pointed out in the MHD model. In fact, from Eq.
(52), ¢omin—¢; implies n, /n; —1 [Eq. (53)].

In the opposite limit A /8 > 1, the influence of the cou-
pling term becomes negligible and Eqs. (50) reduce to
the uncoupled single-fluid equations and Egs. (51) to the
usual uniform accelerated motion for both ions and elec-
trons.

VI. EXPERIMENTAL CONSEQUENCES
OF THE COLLECTIVE MOTION

The aim of this section is to deduce, from the previous
discussion, some general features about the macroscopic
quantities. A more detailed comparison between theory
and experiment is beyond the scope of this work.

As an example, Figs. 6(a) and 6(b) show the behavior
of the maximum of the current at a fixed point, as a
function of the external electric field, and for different
initial electron energies, deduced from the one-
dimensional single-fluid picture (Sec. II). In Fig. 7 the
corresponding behavior of the collection time is shown.
It is immediately inferred that, although the collection
time agrees with the 0.5 slope (single particle) for reason-
able values of the electric field, the maximum of the
current strongly deviates. Moreover, the shape of the
current pulse depends on the electric field value.

Particularly at a fixed electric field E,>6 V/cm [Fig.
6(a)], the intensity of the peaks decreases as the initial
electron energy increases, but, owing to the mass conser-
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FIG. 6. Maximum of the current as a function of the external electric field from the single-fluid model, at a fixed collection
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vation, the current time integral retains a constant value.
That implies an increasing broadening of the current
time shape as the initial energy increases and also, from
the point of view of the energy spectrum, a growth of
the continuum background towards the low-energy re-
gion of the spectrum. For E; <6 V/cm [Fig. 6(b)], the
behavior is exactly opposite, and in the limit of E;=0
the peaks depend on (kT,)!72.

Following the outline of Sec. V, the two-fluid model
could be suitable to treat the ‘“electron trapping” effect
recalled in the Introduction. As an example, Fig. 8

shows the effect on the charge collection induced by the
“trapping” factor. The peaks are supposed to be pro-
duced initially at the same rate and propagate as a
single-particle Gaussian profile, but present a strong
broadening. Although Fig. 8 is derived from a very
simplified approach, both the low-energy peaks lowering
and the growth of the background, as observed in Refs.
4-8, increasing the charge density, appear clearly in the
figure. Note that the trapping effect turns out to be im-
portant at a charge density of approximately 10°
electrons/cm?,
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. The vertical axis is normalized to the initial density and the horizontal axis re-
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Moreover, in a complete description of the peak prop-
agation, the pressure gradient effects must also be in-
cluded. Referring to Fig. 6(b), the height of the peak
current, at zero external electric field, depends on Eel/z,
where E, is the electron energy. Thus the signal width,
owing to the mass conservation, increases with the de-
creasing of the electron energy. As a consequence, both
the electron trapping and the pressure gradient effects
cooperate with the suppression of the low-energy peaks
and the growth of the continuum background towards
the low-energy spectrum. Note that many hypotheses
used in the previous discussion are consistent with the
collecting field dispositions employed in the different ex-
perimental apparata. In fact, in Refs. 5 and 8 the elec-
trons are driven along the detector direction by a mag-
netic field*! that may be approximated as a one-
dimensional free expansion. In other schemes, the elec-
trons either freely expand through a retarded potential®
or are weakly accelerated by an external electric
field.?>23 In any case, the applied fields are not so
strong as to eliminate the pressure gradient effects (see
Sec. II). As a consequence, the test generally used for
the space-charge effect, i.e., an analysis of the signal
variation versus the gas pressure,®?? could be rather am-
biguous. In fact, whereas a sublinear slope surely indi-
cates the presence of electron-ion coupling, the single-
fluid picture also predicts a linear increasing in the pres-
ence of pressure gradient effect. Hence, it seems impor-
tant that a more detailed analysis, taking into account
the features of the different experiments, should be car-
ried on in the future

To conclude the discussion of the current dependence
on the laser power, the ‘“volume” effects, due to the
nonuniform distribution of the laser intensity near the
focus, must also be taken into account. In fact, as the
laser power increases, the external zones, not yet saturat-
ed, also contribute to the signal, giving an “anomalous”
saturation slope.?*2?* This effect can be included in the
theoretical analysis introducing a laser intensity depen-
dence of the Gaussian 6 width along the laser direction
(see Sec. II). As the laser intensity increases, 6 increases,
smoothing the pressure gradient and lowering the expan-
sion in the direction of the laser beam.

From the above discussion, it follows that the collec-
tion efficiency is greatly enhanced by three different
effects: the increasing of the density in the focus, the in-
creasing contribution of the not yet saturated external
zones, and, finally, the 8 change with the laser power
which affects the characteristic time of expansion. Thus,
the collective behavior introduces a further complication
in the analysis of the experimental results concerning the
studies of the atomic interaction.

The previous discussion concerns mainly the collective

effects, deduced from the single-fluid approach. It is to
be noted that many other effects may affect the charge
collection. For instance, referring to the plasma evolu-
tion deduced in Sec. V, the increasing of the electron-ion
interaction time, due to the ‘‘electron trapping” effect,
will also enhance the influence of the electron-ion recom-
bination.

VII. CONCLUSIONS

Following the previous discussion, the collective
effects cannot be neglected in most MPI experiments,
and thus strongly complicate the check of the theoretical
predictions about the laser interaction at the atomic
scale. The lowering of the charge density, below the
density threshold of the collective behavior, in many
cases is limited by the signal-to-noise ratio of the experi-
mental set-up. In other cases, the investigated effects
(for instance, chemical reactions) disappear at too low a
density level.

Hence, it seems important when the collective limit is
unavoidable that the plasma parameters are measured in
an independent way, adding a plasma diagnostic to the
standard apparatus, In such a way, a suitable collective
model could be performed to analyze separately the
effect of the laser interaction.

On the contrary, from the plasma physics point of
view, the MPI-produced plasma constitutes a very suit-
able sample to study nonlinear phenomena. As pointed
out in Sec. V, in the density region among 10%-10"!
ion/cm® the plasma exhibits macroscopic instabilities
both internal, due to the different electron-ion mobilities,
and external, induced by the external electric field.
Moreover, the electromagnetic and electrostatic behavior
could be studied, for instance, as a diagnostic method in
a density region, where the standard methods fail.

Finally, it will be noted that much work must still be
done to extend the previous solutions to include motion
in a magnetic field or in a spatially nonuniform electric
field, and also to take into account the collision terms
changing the number density in the continuity equation.
For the above-mentioned extension, the previous solu-
tions can be considered as a sort of ‘“homogeneous” solu-
tion, and the increasing importance of the added terms
may be deduced from it, for instance, by perturbative
methods.
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