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The second virial coefficient B (T) can be expressed in terms of two-body phase shifts and bound-
state energies. The fact that B(T) must remain continuous as the potential strength is varied is used
to deduce the relationship between the phase shifts at zero energy and the number of bound states
supported by the potential (Levinson's theorem). There still remains an ambiguity due to the possi-
bility of zero-energy resonances; in one and three dimensions this can be removed by the additional
information of whether the tangent of the phase shift goes to zero or to infinity at zero energy. In
two dimensions, the problem is more subtle and a difficulty is encountered if the potential strength is
such that a p-wave zero-energy resonance is present; the expression for B (T) as the inverse Laplace
transform of the Jost function gives the correct contribution from this resonance, but the phase-shift
formula derived using asymptotic wave functions fails to include it, and hence is in disagreement
with Levinson's theorem. The origin of this disagreement is traced to a noncommutivity in the wave
function between the limits of large distance and low energy; this occurs only in the two-dimensional
case, and needs to be handled carefully.

I. INTRODUCTION

Op =p+B( T)p'+ C( T)p'+ (1.2)

P= 1lkT where k is Boltzmann's constant and T is the
absolute temperature.

The second virial coefficient B ( T) depends only on
binary collisions in the gas, and can be expressed in terms
of two-body scattering parameters and bound-state ener-

Levinson's theorem, in its simplest form, relates the
zero-energy behavior of the two-body scattering phase
shifts to the number of bound states supported by the po-
tential. In three dimensions the relation is'

5t(0) =X~ tir+q,
where 5I(0) is the zero-energy phase shift for the lth par-
tial wave and A'~

~ is the number of bound states of angu-
lar momentum l. q equals ~/2 if / =0 and there is an s-
wave zero-energy resonance; otherwise it is zero.

Although Levinson's theorem has been known for a
long time, and is now treated as a rnatter of course in
books on scattering theory, ' nevertheless it is still a topic
of current research interest, both in its basic form and in
various generalizations. Recently, there has been con-
siderable interest in scattering in one and two dimensions,
and the corresponding forms of Levinson's theorem have
been investigated. " It is found that there is still a con-
nection between the zero-energy value of the phase shift
and the number of bound states, but the detailed form of
the relationship alters for different dimensions.

In this paper, we discuss the relation between
Levinson's theorem and the second virial coefficient of a
monatomic gas. The virial coefficients provide a measure
of the deviation of thermodynamic functions from their
ideal gas values. ' ' For the pressure p, they are simply
the coefficients in a power series in the number density p:

gies. For the case where the two-body interaction is
spherically symmetric, it can be expressed in terms of the
phase shifts and bound-state energies of the two-body sys-
tern. ' ' We investigate the restrictions which this for-
mula places on the zero-energy behavior of the phase
shifts 5 (k). (a—:1, m, and +, for three, two, and one di-
mensions, respectively. ) First, we find that the expression
for B(T) is divergent unless 5 (0) takes certain values.
Second, the requirement that B (T) be a continuous func-
tion of the two-body potential strength further restricts
these values. There still remains an ambiguity, due to the
possibility of zero-energy resonances. This cannot be
resolved purely on the basis of virial-coefficient considera-
tions, and we have to invoke further information. In the
three- and one-dimensional cases it turns out to be
sufficient to know whether tan5 (k) goes to zero or
diverges as k ~0; we then have the complete form of
Levinson's theorem. The two-dimensional case is not so
straightforward. The phase-shift expression for B(T), de-
rived by exact analogy with the three-dimensional case,
fails to include any contribution from a possible p-wave
zero-energy resonance, and leads to an incorrect
Levinson's theorem in this case. The investigation of this
discrepancy leads us to look carefully at the asymptotic
wave functions used in the derivation of the phase-shift
formula for B(T). We find that there is a fundamental
noncommutivity between the limits of large distance
(rico ) and low energy (k~0). In the critical case of
the p-wave zero-energy resonance this shows up as a
divergence at k =0 in the integral defining B(T). This
divergence can be avoided by using the formalism for
B (T) based on the inverse Laplace transform of the loga-
rithmic derivative of the Jost function, and this is present-
ed in Sec. III A and Appendix E.

The derivations in this paper do not pretend in any way
to be mathematically rigorous. We think that the interest
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of the present investigation lies in the way in which some
very general properties of a macroscopic quantity, 8 (T),
almost uniquely constrain the behavior of a microscopic
quantity 5 (0). The other special feature is the unification
of the forms of Levinson's theorem in three, two, and one
dimension: Here they emerge naturally as the result of
parallel treatments.

8(T)= —&2A, g (21+1) g e
1=0 B

k2 d5I
+—f "dke

7T 0 dk

(2.4)

II. THREE DIMENSIONS

A. Jost-function formulation

g is the contribution from the origin and is

s-wave zero-energy resonance,

0 otherwise.
(2.5)

As mentioned above, 8 (T}can be expressed in terms of
the bound-state energies and phase shifts of the two-body
system. Let us start, however, from the more general and
elegant formulation in terms of the Jost function of
scattering theory

A, =&(2m/3} is the thermal wavelength. (We use units
where A'=1 and the particle mass is also unity. } fI(k) is
the Jost function, as defined by Newton,
fI'(k) =dfI(k) jdk, and the integration contour is a vertical
straight line to the right of all singularities of the in-
tegrand. Equation (2.1) is for the case of Boltzmann
statistics; that is, we have not included the exchange
efI'ects which arise from Bose-Einstein or Fermi-Dirac
statistics. There are easily included, ' but are not neces-
sary for the present discussion.

We now wish to express 8 (T) in terms of phase shifts
and bound-state energies. To do this, we use the follow-
ing properties of fI(k):

(i} f~(k) is analytic in the lower half k plane, with sim-
ple zeros at k= —ikB I, kB I real and non-negative, corre-
sponding to bound states of energies EB I = —kB ~.

(ii)

fI(k) jf~( —k) = exp[2i51(k)], (2.2)

where 5~(k) is the phase shift for the Ith partial wave.
(iii) As k~0,

fi(k)-ai+prk, I) 1

fp(k) -ap+Ppk,
(2.3)

where a~ =0 only if there is a zero-energy bound state (or
zero-energy resonance if I =0), and in this case /3I&0.

Property (i) enables us to move the integration contour
in (2.1) to the left, picking up the residues at the bound-
state poles as we go, until the contour lies along the imag-
inary axis, indented around a possible singularity at the
origin. Using (ii) and (iii), we then find

8 (T)= —&2X g (21 +1)
1=0

p z ft'( —iy)
X

2m c — fI( —iy)

(2.1)

We note that (2.4) is the standard Uhlenbeck-Beth expres-
sion for the second virial coe%cient, ' ' with an extra
term g. To our knowledge, Mishima and Tanaka' were
the first to point our explicitly that such a term should be
added to the Uhlenbeck-Beth formula. (They also add
another term mI, equal to the number of zero-energy
bound states for l ) 1. This is unnecessary in our formu-
la, as we allow Eqr to be zero. ) The same result was ob-
tained in a rather different way by Bolle and Wilk. ' The
above is not to say that previous authors were unaware of
how to correctly incorporate a zero-energy resonance into
the usual Uhlenbeck-Beth formula; see, for example, Ref.
19, Sec. IIP.

To bring out the connection between 8 ( T) and
Levinson's theorem, we preform a partial integration on
(2.4), giving

B(T)=—&2A, 3 g (21+1)
I=O

X
B

f "kdke ~" 5((k)
7T 0

(2.6)

Application of Levinson's theorem (1.1) allows us to write
the terms in the large parentheses as

g e ' ——5((0)+(= g e ' Ne,(—
B 7T B

B
(2.7)

g e ' ——5I(0)+g
B 7T

(2.8)

remains continuous as bound states move into the contin-
uum, and the integral

Now consider what happens to the terms in 8 (T) as the
potential strength is changed continuously. To be precise,
let the two-body potential be gu(r), g &0, and suppose it
supports NB I bound states of angular momentum l and
energies EB I (0. As g decreases, these bound states move
into the continuum, and as each passes through zero the
term gz exp( pE~ t ) decreases d—iscontinuously by unity.
However, this does not mean that 8 ( T) also changes
discontinuously; as is evident from (2.6) and (2.7), there is
a compensating jump in 5~(0). The term
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J kdke ~ 6I(k)
0

(2.9) B(T)=—v'2A, g (2l+1) g e
1=0 B

is also a continuous function of the potential strength.
This phenomenon of compensation between bound-state

and continuum contributions to 8(T) was first explicitly
pointed out by Rogers et al. They used Levinson's
theorem, as we have done above. Subsequently, other au-
thors demonstrated this continuity without specifically in-
voking Levinson's theorem. ' [The demonstrations in
Ref. 21 are based on the Jost-function formula —Eq. (2. 1)
above. ]

In this paper, we wish to show that the above pro-
cedure can be reversed; the assumption that 8 ( T) is a
continuous function of the potential strength can be used
to infer the form of Levinson's theorem. This is not a cir-
cular argument, since the continuity of B(T) is necessary
on physical grounds: any discontinuities in 8(T) would
be reflected in the thermodynamic properties of the sys-
tem. Also, as mentioned above, there are alternative ex-
pressions for 8 ( T) in three dimensions which demonstrate
continuity without explicitly using Levinson's theorem.

However, we do not which to start from (2.4); this
equation was derived using properties of the Jost function,
and if we are going to assume these properties, then we
should prove Levinson's theorem directly by evaluating
the contour integral

+ —j"dke-i'"1 k2 d6(
0 dk

+( —1)'—,
' sin 5~(0)

6~(0)=nor/2, n =0, +1, . . . . (2. 12)

This latter assumption is necessary in order that the in-
tegral over k converge (see Appendix A) and is thus
necessary for the existence of 8 ( T).

Performing a partial integration on (2.11) gives

B(T)= —&2X' g (21 +1)
1=0 B

+( —1)'—,
' sin 5I(0)

(2. 1 I)

In deriving this, we have made the assumption that 5i(k)
is diA'erentiable, and also that

f d Inf((k), (2.10)
J "k dk e ~" 5i(k)

7T 0

(2.13)
where C consists of a large semicircle in the lower half k
plane, together with the real axis indented below at the
origin. [In fact, the steps one goes through in doing this
are very similar to the steps involved in going from (2.1)
to (2.4).]

We now assume that 8(T) and 5~(k) for k&0 are con-
tinuous functions of the coupling parameter g. Then de-
creasing g continuously shows that 5I(0)/rr must decrease
by unity each time a bound state disappears. This, cou-
pled with the restriction (2.12), leads to the conclusion
that

B. Phase-shift formulation 5t(0) =Nii err+ q, (2.14)

There are many derivations in the literature of the
phase-shift formula for 8 (T). However, these seem to fall
into one of two categories. The first type uses elementary
scattering theory, but imposes the artificial boundary con-
dition that the wave function of relative motion is zero for
intermolecular separations greater than r=R. ' ' Sub-
sequently, the limit R~~ is taken. The second type
does not enclose the system, but uses more sophisticated
concepts, such as analytic properties of scattering func-
tions, ' ' (for example, the Jost-function formulation
given above) or the mathematical apparatus of formal
scattering theory. ' ' (We should mention two further
derivations which do not fall into either of these
categories: that of Larsen and Poll for anisotropic interac-
tions, and the very general one of Servadio. However,
neither of these are suitable for our purposes, since they
either treat a more complicated case, or do not use a
partial-wave expansion. )

In Appendix A we give a derivation which uses only
simple partial-wave scattering theory, but does not impose
artificial boundary conditions. We find the expression

where q =nor/2, n =0,+1, . . . . Now consider the quan-
tity

Q= ——5~(0)+( —1)'—,
' sin 5I(0) . (2.15)

As g decreases, Q changes discontinuously as 6I(0) de-
creases discontinuously according to (2.14). However,
when g has decreased to the point where the potential
gu(r) no longer supports any bound states, then Q must
remain constant, and, since Q=O when g =0, this con-
stant must be zero. The only values of 5i(0) satisfying
Q =0 are 0 and ( —1) m. /2. Thus we conclude that, in
(2.14), q equals 0 or ( —I )'vr/2.

It does not seem possible to decide which of these
values of q is appropriate solely on the basis of arguments
involving the virial-coefIicient formula. Thus we invoke a
minimum of additional information about the zero-energy
behavior of phase shifts. Specifically, we use the result'
that tan6i(k)~0 as k~O for I) 1, and so q =0 for this
case. The s-wave case is more complicated. ' We now
have
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k cot5o(k) = —1/a +O(k ), k ~0 (2.16)

~/2 s-wave zero-energy resonance,q= ~

0 all other cases. (2.17)

There is an alternative way of extracting Levinson's
theorem from (2.11), and that is to argue that the virial
coe%cient will vanish in the limit of infinite temperature.
(We expect this to be true for potentials which do not con-
tain a hard core. ) Then, assuming that each partial-wave
contribution must vanish separately, we get

d6(0= g 1+—f dk +(—1) —,
' sin 5I(0), (2.18)

o dk

where a is the scattering length. If a is finite, then
tan50(0)=0 as before. The exceptional case occurs when
a is infinite, and this happens whenever the potential
strength is just sufhcient to introduce a new discrete level
at zero energy. In this case cot50(k)~0 as k~O, so we
must choose q=~/2. In fact, this case does not corre-
spond to a true bound state, since the wave function is not
normalizable. Instead, it is usually referred to as a
"zero-energy resonance" or a "half-bound state. "' Thus
we have A. Jost-function formulation

The Schrodinger equation for the two-dimensional radi-
al wave function can be written as (using units where
A'= 1 and the particle mass is also unity)

~
+U(r)+

dr

2m —k X (k r)=0. (3.2)

In complete analogy with the three-dimensional case we
introduce the regular solution y (k, r) satisfying the
boundary condition

cently rigorously proved. ' The extension to the general
case is very recent, " and the result is unexpected: An s-
wave zero-energy resonance contributes nothing, but a p-
wave one contributes ~. This result is most readily un-
derstood in relation to the low-energy behavior of the
two-dimensional Jost function.

We now find expressions for B (T) in two dimensions,
following the methods used In Sec. II for the three-
dimensional case.

or lim (2/ir)'~ 2 m!r '~
p (k, r)=1,

r~o (3.3)

+BI+—
,[5 I ( ~ ) —5I ( 0 ) ]+ ( —I )

~
—,
' sin 25 i ( 0 ) =0 (2.19)

(An argument of this type was used by Dashen et al. to
obtain a generalization of Levinson's theorem for N-body
scattering. ) If we can set 5I( oo )=0, then we are back to
the expression we obtained previously. Now, 5I( co ) =0 if
the potential is regular (i.e., if r U(r)~0 as r~0), so for
this class of potentials the two versions coincide. But the
form (2.14) is also valid for singular potentials (provided
they are repulsive at the origin), whereas (2.19) fails be-
cause 5I(k) diverges as k~ ao. (See Ref. 2 for a discus-
sion of Levinson's theorem for singular potentials. ) We
note that this corresponds to two different ways of remov-
ing the mod m ambiguity from the phase shift. The more
restrictive way is to set 5I( ca ) =0 and to invoke continuity
in k to get 5I(0); the more general way is to require 5i to
be a continuous function of the coupling parameter g, and
require it to vanish when g =0.

and the irregular solution f (k, r) satisfying the boundary
condition

lim ei"rf (k, r) =l e™™/4
r~ oo

The Jost function f (k) is then defined by

f (k)=k '~ W'[f (k, r), (p (k, r)],

(3.4)

(3.5)

B (T)= —k 1 c+i py& mdye ~
2~ e —i f ( —iy)

where W[ ] denotes the Wronskian of the two solutions.
The second virial coeKcient can now be expressed in

terms of the Jost function. The derivation is exactly
parallel to that for the three-dimensional case (Ref. 16,
Appendix A), so we do not repeat it here. The result is
[compare (2.1) above]

III. TWO DIMENSIONS

In two dimensions, Levinson's theorem takes the form

5 (0)=Kg m. +q, (3.1)

where 5 (0) is the zero-energy phase shift for the mth
partial wave and N~ is the number of bound states of
angular momentum m. q equals ~ if m = 1 and there is a
p-wave zero-energy resonance; otherwise, it is zero. (We
note that in two dimensions both the s-wave and the p-
wave zero-energy states are resonances; that is, they are
not normalizable. See, e.g. , Ref. 28, p. 266.) When no
zero-energy resonances are present, (3.1) has the same
form as in three dimensions. Levinson's theorem for this
restricted case was assumed some time ago, but only re-

f (k)-a +P k, m &2

fi(k) -ai+Pik ink,

fo(k) —ao lnk+Po,

(3.7)

where a =0 only if there is a zero-energy bound state (or
resonance if m =0 or 1), and in this case P ~0.

We now shift the contour to lie along the imaginary
axis, and find

(3.6)

The properties off (k) are for the most part the straight-
forward analogues of those of f~(k) The exception t. hat
concerns us is the behavior near the origin; property (iii)
of Sec. II A must be replaced by the following.

(iii)' As k ~0,
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B(T)=—A,
P—Fg

B

gives

X (O, r)-const. , r~ao . (3.13)

1 k2d6+—f "dke —)'"
7T 0 dk

g is the contribution from the origin, and is

(3.8)

1 p-wave zero-energy resonance,

0 all other cases. (3.9)

This term is new; previous expressions for 8 ( T) in two di-
mensions did not include g. ' ' In exactly the same way
as in Sec. IIA, we can perform an integration by parts
and use Levinson's theorem (3.1) to show that 8(T) as
given by (3.8) has the required continuity property as the
potential strength is varied. Note that the term g is neces-
sary; if it were absent, 8 (T) would change abruptly at po-
tential strengths which give a zero-energy p-wave reso-
nance.

(k, r) (kr)-'~ [ cos5 (k) J (kr)
—sin5 (k) N (kr)], r~ oo (3.14)

This is to be contrasted with the three-dimensional case,
where the s-wave zero-energy wave function at resonance
behaves asymptotically as a constant, and this is in accord
with the zero-energy limit of the phase-shift form (A6).
(It can also be verified that there is agreement in the one-
dimensional case. ) But in two dimensions the asymptotic
form (3.13) is not compatible with the forms (3.10) and
(3.11), and this would appear to be the reason why we are
not getting the desired contribution from the p-wave reso-
nance: Evaluating the trace formula for 8(T) [see Eq.
(B6)] using the asymptotic form (3.12) simply omits all
wave functions corresponding to zero-energy resonances.

The underlying cause is a noncommutivity in the limits
k ~0 and r~~. This suggests that we repeat the deriva-
tions of Appendix 8, but using a less extreme asymptotic
form for X (k, r) Speci.fically, we use

B. Phase-shift formulation

X() '(O, r)-cpr ', r~ oo

X)"(O,r)-c)r ', r~oo

(3.10)

(3.1 1)

where c0 and c& are constants. But using the asymptotic
form

In Appendix 8 we derive a phase-shift formula for
B(T), using the two-dimensional analogue of the three-
dimensional derivation of Appendix A. the result is (3.8),
but with the term g missing. This is incorrect for the case
where a p-wave zero-energy resonance is present; con-
tinuity arguments analogous to those used in Sec. IIB
then lead to Levinson's theorem (3.1), but with the term q
missing. This result is disturbing, since on the surface
there appears to be nothing wrong with the working in
Appendix B.

The derivation in Appendix B depends on the asymp-
totic form of the wave function. A clue as to the reason
for the erroneous result may be obtain by looking careful-
ly at this form for the cases where zero-energy resonances
are present. Solving the Schrodinger equation (3.2), with
k set equal to zero, in the region where r is large and the
potential can be neglected, gives the following asymptotic
forms for the s-wave and p-wave resonance wave func-
tions:

g= lim —ink sin[25)(k)] .
1

k~0 7T
(3.15)

The details are given in Appendix E. Inserting the k~0
behavior of the phase shift (see Appendix D) then gives
the desired result (3.9).

IV. ONE DIMENSION

[Inserting the leading asymptotic behavior of the Bessel
functions J (kr) and N (kr) recovers (3.12).] The details
are given in Appendix C. The result is exactly the same
as before, except when there is a p-wave zero-energy reso-
nance: In this case (and in no other), we obtain an in-

tegral which diverges at k =0. This now provides a clear
indication that here the asymptotic-wave-function ap-
proach is not satisfactory, and it is not surprising that we
obtain the wrong result in Appendix B. Clearly, it is far
preferable to use the Jost-function method of Sec. IIIA;
in that treatment, k is kept off the real axis and divergen-
cies do not occur.

In the three-dimensional treatment, we found that the
extra quantity g which had to be included in 8(T) could
be expressed in terms of the zero-energy phase shift.
[Compare (2.4) and (2.11).] We have not been able to find
the analogous two-dimensional result from the on-shell
treatment of Appendix C; however, Jost-function con-
siderations lead to (we give only the p-wave case, since all
other partial waves give zero contribution)

X (k, r)-(2/~)' cos kr —(m + —,')—+5 (k)

(3.12)

Although 8(T) in one dimension has been calculated
for some specific interactions (hard rods, 5-function in-
teraction ), a general phase-shift formula does not seem
to have been given. In Appendix F we show that

PP~ 1 ~ &k2 d6 d5+8 (T)= —2 '
A, g e +—f"dk e ~" + +—'[ sin 5 (0)—sin 5+(0)]

77 0 dk dk
(4.1)
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where 5 (k) and 5+(k) are the phase shifts for wave functions of odd and even parity, respectively. (See Appendix F.)

In order for the k integral to exist, we have had to assume that

5+(0)=n+m/2, n+ =0,+1, . . . (4.2)

A partial integration gives

B(T)=—2 '
A. g e ——5 (0)+—,

' sin 5 (0) + g e ——5+(0)——,
' sin 5+(0)

B 1T B

f"k dk e ~" [5 (k)+5 (k)]
77 0

(4.3)

Here, we have divided the bound-state contributions into
those associated with odd- and even-parity states. Apply-
ing the same continuity arguments as for the two- and
three-dimensional cases, and taking into account (4.2),
leads to the conclusion that

same in each case: the phase shift is increased by vr/2.
Results (4.7) and (4.8) are in agreement with Barton;

he did not consider the exceptional cases where there are
zero-energy levels. Newton and Bolle et al. use a phase
shift defined by

5+(0)=Ng+vr +q+, (4.4) detS=e ' (4.13)

where q+ is 0 or m. /2. Again, as in the three-dimensional
case, it does not seem possible to decide which value of
q+ is appropriate purely on virial-coemcient considera-
tions. Thus we need some additional information on the
low-energy behavior of 5+(k). In Appendix G we show
that the usual behavior is

where S is the S matrix. The connection with our odd-
and even-parity phase shifts is simply

(4.14)

so (4.9)—(4.12) give

tan5 (k)~0, k ~0
tan5+(k)~+ oo, k~0 .

(4.5)

(4.6)

5(0)=Ns sr+ q,
where

(4.15)

Hence (4.4) takes the form

5 (0)=Ng vr,

5+(0)=Ng+sr ~/2 .

(4.7)

(4.8)

r

0 zero-energy resonance,q= —~/2 all other cases, (4.16)

and N~ is the total number of bound states. This is in
complete agreement with the above authors.

The value for 5 (0) is no surprise, since the antisym-
metric one-dimensional wave function, for x & 0, coincides
with the usual three-dimensional s-wave radial wave func-
tion. But the value of 5+(0) is unexpected and has only
recently been given in the literature. Thus it is pleas-
ing that it comes naturally out of virial-coeScient con-
siderations, with only a minimum of additional informa-
tion in the form of (4.5) and (4.6).

For exceptional potential strengths, we can get zero-
energy resonances. In the odd-parity case, tan5 (k)
diverges as k~O; in the even-parity case, tan5+(k) goes
to zero as k~O. (See Appendix G.) Thus we have the
complete one-dimensional form of Levinson's theorem:
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(0)=Ng ~+q

5+(0)=Nz+m —~/2+ q+,
(4.9)

(4.10)
APPENDIX A: SECOND VIRIAL COEFFICIENT

IN THREE DIMENSIONS

where

m/2 zero-energy odd-parity resonance,
q

0 all other cases, (4. 1 1)

m/2 zero-energy even-parity resonance,q+= '
0 all other cases. (4.12)

We note that the effect of a zero-energy resonance is the

We give a derivation of the phase-shift formula for
8(T), using only elementary scattering theory and not
imposing artificial boundary conditions. A derivation
along these lines was given some time ago by Blatt, but
unfortunately there is an error of detail in his calculation
[a multiplicative factor of 1/k is missing in the integrand
of the last integral in his equation (2.11)], and as a conse-
quence he does not obtain a term which is important for
our purposes. The following may be looked upon as a
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corrected version of Blatt's calculation.
Our starting point is the expression'

en and we find

—PhB(T)=—&2k Tr, ~(e ' —e '), (A2)

B (T)= —lim Tr(e ' —e '),v- 2V
(Al)

where V is the volume of the container, 82 is the Hamil-
tonian for two interacting particles, and H2 is the corre-
sponding quantity for two free particles. After separation
of the center-of-mass motion, the limit V~ ~ can be tak-

where h2, h2 are the Hamiltonians for the relative motion
of the particles.

The trace is evaluated using complete sets of energy
eigenstates for the interacting and noninteracting systems.
Separating the discrete states, and performing a partial-
wave expansion leads to

B(T)=—&2A3 g (2l+1) pe '+ f dr f™
dk e ~" I[X~(k,r)] —[X&(k,r)] I

1=0 B 0 0
(A3)

where E~ ~ ((0) are the bound-state energies correspond-
ing to angular momentum l, and X~(k, r) is the radial
wave function satisfying the Schrodinger equation

we derive the formula

R
k, r dr=

R

(A8)
d2

+U(r)+ l(l+ 1) —k Xi(k, r) =0,
8r r2

with the boundary conditions

XI(k, r) =0, r =0

(A4)

(AS)

0

The boundary condition (AS) ensures no contribution
from the lower limit. At the upper limit we let R~ao
and use (A6) to obtain

f [X~(k,r)] dr ——
—,
' sin[2kR —le+ 25I(k)]

0 ~k
XI(k, r) —(2 jar)' sin kr — +5~(k), r~ oo

(A6)

a51—k R+
L

R~ go .

where 5~(k) is the phase shift for the lth partial wave at
wave number k. XI(k, r) is the corresponding solution for
the noninteracting system, and has the asymptotic form

Similarly, we find

(A9)

XI(k, r) —(2lvr)' sin kr—,r~ m (A7)
f [XI(k,r)] dr —— [—,

' sin(2kR —lm ) —kR ],
0

'
Wk

R~~ . (A 10)

By taking solutions of (A4) at k and k' and letting k'~k, Using these in (A3) gives

B(T)=—V'2A, g (21+1) pe '+ —f dk e ~" +g~
1=0 7T 0 8k

(A 1 1)

where

lim f"dk e ~" —
[ sin[2kR —lvr+25~(k)) —sin(2kR —lm) j2lT R~oo 0 k

This can be written as

(A12)

( —I )' lim f"dk e ~" —cos(2kR) sin[25~(k)] ——sin(2kR) sin 5I(k)2' R~oo 0 k k
(A13)

The first thing to note about this integral is that is neces-
sarily diverges unless sin[25~(k)] vanishes at k =0. Thus
we do not get a finite expression for the second virial
coefficient unless 5~(0) is a multiple of m/2. In fact, we

can go further and conclude that at worst k ' sin[25~(k)]
has an integrable singularity at k =0. With this assump-
tion, we can apply the Riemann-Lebesgue lemma to the
first term in (A13) and conclude that
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lim f"dk e ~" —cos(2kR) sin[25'(k)]=0 .
R~oo 0 k

(A14)

However, we must be more careful with the second term,
since

—pk ~ 2g
0 k

(A15)

lim = 5(k)R' k
(A16)

where 5(k) is a Dirac delta function, and obtain

gl =(—1)'—,
' sin 5i(0) . (A17)

will diverge (and hence the Riemann-Lebesgue lemma will
not apply), unless we make the stronger assumption that
k ' sin 5i(k) is integrable at k =0 [and this would imply
that 5i(0) is a multiple of n.]. Rather than do this, we use

At this point we have derived the expressions needed in
Sec. IEA above. Note that if we do invoke Levinson's
theorem (1.1), then gi is just the quantity g in (2.4).

APPENDIX B: SECOND VIRIAL COEFFICIENT
IN TWO DIMENSIONS

We now give a derivation of the phase-shift formula for
8 (T) in two dimensions which parallels that for three di-
mensions given in Appendix A.

Our starting point is

4 —PH —PH8 (T)= — lim Tr(e ' —e '),
~ 2A

(81)

where 3 is the area of the system, H2 is the Hamiltonian
for two interacting particles, and H2 is the corresponding
quantity for two free particles. Proceeding as in Appen-
dix A, we find the analogue of (A3) to be

B(T)=—A, ge ~+ + f dr f dke ~" [[X (kr)] —[X (kr)] )
8 0 0

(82)

where X (k, r) satisfies (3.2), with the boundary condi-
tions

X (k, r) satisfies (3.2) with U(r)=0, and has the asymptot-
ic form

X (k, r) =0, r =0

(k, r)-(2/m. )'~ cos kr —(m+ —,')—+5 (k)
X (k, r)-(2/m)' cos kr —(m+ —,')—,r~oo (85)

7—+ oo (84)
Continuing as in Appendix A [(A8) holds unchanged], we
arrive at

(86)

where

lim f dk e ~" —
[ sin[2kR (m+ —,

—' )~+25 (k)]—sin[2kR —(m + —,
' )m.] j .

277 R~oo 0 k

This can be written as

(87)

( —1) lim f dk e P" —sin(2kR) sin[25 (k)]+—cos(2kR) sin 5 (k)
2% R~oo 0 k k

(88)

=0, m)0. (89)

However, this result is not correct; g should coincide

This is very similar to (A13) for gI, but there is an impor-
tant difference. For the above integral to exist, we now
require k 'sin 5 (k) to be integrable at k =0, and hence
5 (0) must be an integer multiple of vr. Proceeding now
as for the three-dimensional case, we find that the second
term in (20) vanishes by the Riemann-Lebesque lemma,
and, upon using (A16), the first term also vanishes be-
cause sin[25 (0)]=0. Thus we conclude that

with g as given by (3.9), and thus gi should be unity if
there is a p-wave zero-energy resonance. The reason for
this discrepancy is investigated in Sec. II B and Appendix
C.

APPENDIX C: FURTHER INVESTIGATION
OF B (T) IN TW'0 DIMENSIONS

We wish to evaluate (82) using the asymptotic wave
function (3.14), rather than (3.12) which was used in Ap-
pendix B. Write (82) as
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8(T)= —A, g e +8' (T)
ax- ax-

W (k, r)=
a'L

akar
(C3)

where

8' (T)= J "dr f dk e ~" [[X (k, r)]
0 0

—[X (k, r)] ] . (C2)

Introducing the notation

and using (A8) gives

8'(T)= lim J dke ~" [W (k, R) —W (k,R)],
R ~ 0 2k

(C4)

where W (k, r) means (C3) with P replaced by the
noninteracting wave function X . Using (3.14) we find,
after some simplification,

W' (k, r) —W (k, r) —(2/m)k5' (k)+ sin 5 (k)[(kr) ( —J +N +JJ" NN")+—(kr)(JJ' NN')]—

+ —,
' sin[25 (k)][(kr) (JN" +NJ"—2J'N')+(kr)(JN'+NJ')], r —+ oo

where J=—J (kr), N =N (kr), and primes denote differentiation with respect to the argument. This is now to be insert-
ed in (C4) and the integral over k and the limit R ~ oo to be performed. The order in which these are done is important:
if R ~ oo is taken first, then we are simply back to the treatment of Appendix B, and the same erroneous result (B9) will
be obtained.

Thus we investigate the possibility of doing the k integral first. We start by looking at the behavior of the integrand of
(C4) near k =0. Inserting the standard expansions of the Bessel functions into (C5) gives

(1/2k)[W (k, R) —Wg(k, R)]—(1/vr)I5' (k)+ sin 6 (k)[O(k +')]+ sin[25 (k)][—mk '+O(k)) I, m &2

(1/2k)[W~(k, R) —Wo(k, R)]—(I/~)I5I(k)+ sin 5~(k)[(2/n)(1+2y)k '+O(k ink)]+ sin[25~(k)][ —k '+O(k)]j

(I/2k )[ Wo(k, R) —W~ (k,R)]—( I /m ) [50(k)+ sin 5o(k)[(2/n )k '+ O(k ink )]+ sin[250(k)][O(k)] I

(C6)

(C7)

(C8)

sin 5 (k) —a k ', sin[25 (k)] —2a 'k', k~O

(C9)

where v=2m unless there is a zero-energy level, in which
case v=2m —2. Thus for m )2 there are no problems:
the right-hand side of (C6) behaves at worst like k as
k~0. For m = 1 the usual behavior is

sin 5~(k)-a~k, sin[25~(k)] ——2a&k, k~O (C10)

where a ~ is a constant, and this causes no problems in
(C7). The interesting case is when there is a zero-energy
resonance; the behavior is now

sin 5["(k)-~ /(2 ink)',

sin[25/'(k)] —rr/ ink, k~0
(Cl 1)

and inserting this in (C7) gives rise to the nonintegrable
singularity (k ink) '. Thus straightforward substitution
of (C5) into (C4) gives a divergent result in the case where
there is a zero-energy p-wave resonance. For m =0 we
find

In (C7) y is Euler's constant. In (C6)—(C8) we are assum-
ing that R is fixed and large enough so that (C5) is valid.

To investigate this further, we need the k~0 behavior
of the terms involving the phase shifts 50(k) and 5~(k).
This is given in Appendix D. For m & 2 we find

sin 5O(k) —vr /(2 ink)

sin[250(k)] —7r/ ink, k ~0 .
(C12)

APPENDIX D: LOW-ENERGY BEHAVIOR
OF cot6 (k)

The low-energy behavior of cot5 (k) in two dimensions
is somewhat more complicated than that in three dimen-
sions or in one dimension. This is mainly due to the pres-
ence of logarithmic terms in the sma11-z expansion of the
irregular Bessel function N (z).

To simplify our analysis, we assume that the potential
is effectively zero for r greater than some distance R, .
For m & 2 there are no complications, and a treatment
parallel to that used in the three-dimensional case gives

cot5 (k)-ak ', k~O, m ) 2 (Dl)

where n is a constant, v=2m in the normal case, and
v=2m —2 if there is a zero-energy bound state.

The only effect of a zero-energy resonance is to cause
5O(0) to pass through a multiple of vr (see Appendix D);
the approach to k =0 is still dominated by the logarith-
mic term as given in (C12). Insertion of (C12) into (C8)
shows that the right-hand side is integrable at k =0. We
have also performed the analogous calculation for the
three-dimensional case, and there are no divergencies for
any value of I.
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—cot50(k)=y+ ln —— +O(k ),jc 1 2

2 2 ao
(D2)

For the s-wave case, the low-energy expansion takes the
form" " ~

a~
~
&ce the first term dominates, and the behavior is

the same as that given by (Dl) with v=2m. But for
~

a ~
~

= 00, which corresponds to a zero-energy resonance,
the first term vanishes and

where aO is the scattering length and y is Euler's con-
stant. (We remark that there are other definitions of the
scattering length in two dimensions —see Refs. 39 and
40.) For a0&0, the logarithm dominates and so

cot5~ (k) —(2/vr) ink, k~O .

APPENDIX E: ADDITIONAL TERM
IN PHASE-SHIFT EXPRESSION

FOR B ( T) IN TWO DIMENSIONS

(D5)

cot50(k) —(2/m. ) ink, k~0 . (D3)

cot5i(k) = — +—ink+0(1), k~O .1 1 2
a) k2

a ~ is the p-wave scattering length, and its behavior is simi-
lar to that of its three-dimensional counterpart. For

As a new bound state appears, ao changes sign, being zero
at the critical potential strength which gives a zero-energy
resonance. (This behavior is different from that of the
three-dimensional s-wave scattering length, which be-
comes infinite under these circumstances. See Ref. 39 for
a discussion of this point. ) This means that the cotangent
changes to a new branch, and so 50(0) must pass through
a multiple of ~.

For the p-wave case, the corresponding expansion is

We wish to justify (3.15); that is, we wish to show that
the quantity which must be added to the phase-shift term
in the expression for B ( T) is

g= lim —Ink sin[25~(k)] .
1

k~O 7T
(E1)

From Sec. II A, we see that g is the contribution from the
origin to the contour integral in (3.6):

1 f'i(k)
2 kh-0 f~(k)

(E2)

The use of (3.7) gives (3.9). However, we wish to relate g
to the zero-energy phase shift 5~(0).

The S matrix can be expressed in terms of the regular
solution gr (k, r) and the Jost function f (k) by [cf. Ref.
3, Eq. (5.17)]

S (k)=1— i(2n)'~ k f dr r'~ J (kr)v(r)y (k, r)
0

Since p (k, r) is an entire analytic function of k we have

S~(k)—1= i(n/2—)' k. f dr r ~ v(r)p~(o, r)+O(k )

( —k) .

f)( —k), k~O .

(E3)

(E4)

The Jost function satisfies [cf. Ref. 3, Eq. (4.4)]

fm(k)=1 —i(m/2)' k f dr r'
0

lim ink sin 5~(k)=0 .
k~O

(E9)

&&H' '(kr)v(r)y (k, r), Alternatively, (E9) follows from the requirement that
B(T), and hence g, must be real. Thus (E8) reduces to
(E1).

from which one can derive

f~( k) = (2/n)'~ —f dr r v (r)y~(O, r) k ink
0

APPENDIX F: SECOND VIRIAL COEFFICIENT
IN ONE DIMENSION

+O(k), k~O .

From (E4) and (E6) we derive

(E6) We derive a phase-shift expression for B(T) in one di-
mension, using methods which parallel those used for
three dimensions in Appendix A. We start from

f'i( —k) 2i
lim ( —k) = ——lim lnk[S~(k) —1] . (E7)
k 0 f)(—k) 1T k 0

2 —PH —PHB ( T) = —lim Tr(e ' —e '),
2L

(F1)

From (E2), (E7), and the relation S~(k)= exp[2i5~(k)],
we find

where L is the length of the line containing the system.
Removal of the center-of-mass motion gives

g= —lim lnk[2i sin 5~(k)+ sin[25~(k)]}
7T k~O

From (C10) and (Cl 1),

(E8)
—PhB(T)=—2 '

A,Tr, ~ (e ' —e ') (F2)

The trace is evaluated using states of odd and even parity.
We find
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B(T)=—2 '~~X pe + f dx f"dke ~" [[X+(k,x)] —[X+(k,x)] +.[X (k, x)] —[X (k, x)] I
B 0 0

(F3)

where Ee are the bound-state energies and X+(k,x) satisfy
the Schrodinger equation

Proceeding as in Appendix A, we establish the formulas

d2
+u(x) —k X+(k,x)=0,

with the boundary conditions

(F4) 7+ k, x —g+ k, x dx

l aS + lim I sin[2kX+25~(k)]
Bk x- 2m.k

(k,x)- ~ '~ sin[kx+5 (k)],
X+(k,x)-~ '~ cos[kx+5+(k)],

x~+ oo

x~+oo .

(F5)

(F6)
—sin(2kX ) I

These define the odd- and even-parity phase shifts, 5 (k)
and 5+(k), respectively. ' The free wave functions are
simply

X (k,x)=~ ' sin(kx), X+(k,x)=~ ' cos(kx) .
(F7)

(Fg)

These are now used in (F3). In order for the k integral to
exist, we require 5+(0) to be integer multiples of vr/2.
Continuing as in Appendix A, we obtain finally

B(T)=—2 '~
A, ge + —f "dke ~' + +gpFa l ~ &~ d6 d6+

0 dk dk
(F9)

where

g= —,'[ sin 5 (0)—sin 5+(0)] .

APPENDIX G: LOW-ENERGY BEHAVIOR
OF tan6y(k)

(F10)

tan5 (k)- —k f xv(x)c (x)dx, k~O .
0

(G7)

Consider first the odd-parity case. As k ~0,
IC (k;x,x') ——x &, and using this in (G3) gives

(k, x) —kc (x), where c (x) is independent of k.
Thus from (Gl),

The phase shifts have the following integral representa-
tions:

tan[5 (k)]= ——f™
sin(kx)u(x)y (k, x)dx,

0

tan[5+(k)] = ——f ™
cos(kx)u (x)p+(k, x)dx,

0

(Gl)

(G2)

The Green's functions are

where y+(k, x) satisfy the integral equations

(k, x) = sin(kx)+ f K (k;x,x')v(x')y (k,x')dx',
0

(G3)

&p+(k, x) = cos(kx)+ f "K+(k;x,x')v(x')q&+(k, x')dx' .
0

(G4)

Thus, provided this integral (which is just the scattering
length) is finite, we have

tan5 (k)~0 as k~O . (Gg)

tan5+(k)- —— u(x)c+(x)dx, k~O .
1

k 0

Thus, provided the integral does not vanish, we have

(G9)

In the exceptional case of a zero-energy resonance, c (x)
becomes infinite and so 5 (0) will be an integral multiple
of ~/2. This is all exactly as expected, since the odd-
parity one-dimensional wave function is identical (for
x=r)0) to the s-wave radial wave function for three-
dimensional scattering.

For the even-parity case, we find g+(k, x)-c+(x) as
k~0, leading to

K (k;x,x') = ——cos(kx & ) sin(kx & ),1

k
(G5) tan5+ (k)~+ co, k ~0 . (G10)

1
K+ (k;X,X ') = ——sin(kx & ) cos( kx & ),

where x & (x ) is the greater (lesser) of x and x'.

The exceptional case, this time corresponding to an even-
parity zero-energy resonance, occurs when the integral in
(G9) is zero, and so 5+(0) must now be an integral multi-
ple of ~.
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