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Diffraction of an atomic beam by a phase-fluctuating standing light wave
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We consider an atomic beam at normal incidence with a standing wave of light with phase Auc-
tuations and we evaluate the momentum distribution of the diffracted atoms after passing through
the light beam. We consider the independent-increment model or the random-jump model for the
phase of the light, and the random-jump model for the light frequency. In each of these three
cases we distinguish the situation of independent or identical phases of the two counter-running
light waves that compose the standing wave. For identical phases, the momentum distribution
seems to be sensitive mainly to the spectrum of the light, whereas for independent phases higher
correlation functions are also important.

I. INTRODUCTION

When an atomic beam crosses a standing wave of laser
radiation at right angles, the dipole force induces a
diffraction pattern in the momentum distribution of the
atoms in the laser-beam direction. This pattern may be
viewed as resulting from the interaction of the atomic
wave packet with the periodic potential that is set up by
the grating of nodes and antinodes of the standing wave.
Alternatively, it may be regarded as the manifestation of
the transfer of photon momentum due to the absorption
and stimulated emission of photons in either one of the
two counter-running plane waves that compose the
standing wave. The first picture focuses on the spatial
variation of the beam intensity and on the wave charac-
ter of the atoms. The second picture seems to derive
from the quantized nature of the radiation field and the
absorption and emission of discrete momentum packets.
In any case, the diffraction of atoms by a standing wave
is a microscopic demonstration of the quantum-
mechanical atom-field interaction. Recent experiments
have demonstrated the feasibility of the resolution of
single-photon momentum in the diffracted patterns. '

Theoretical work on diffraction by a standing wave has
usually considered two-level atoms in a monochromatic
radiation field. These treatments are based on the
Schrodinger equation for the wave function of the two
states, or on the generalized optical Bloch equations
for the atomic density matrix. ' In these descriptions
the optical coherence of the atoms plays an essential
part and the diffraction pattern can extend over quite a
few photon momenta, even when the excited-state popu-
lation remains rather small. '

This suggests that the diffraction pattern may depend
in a sensitive way on the coherence properties of the ra-
diation field. In the limit of very broadband radiation,
the stimulated transitions are expected to become fully
uncorrelated so that a rate equation description must be-
come valid. Some work has been devoted to the case of
deflection of atoms by a single broadband running
wave. ' Also the transition from monochromatic radia-
tion to broadband radiation for deflection by a single

beam has been considered as well as the situation of
several fully incoherent beams. '

In the present paper we consider the case of
diffraction of an atomic beam by a standing wave with
arbitrary phase fluctuations. We consider various
specific models for the phase fluctuations, in particular
the independent-increment model for the phase, and the
class of random-jump models either for the phase or for
the frequency. These models are known to give explicit
results for the intensity correlation function and the
spectrum of resonance fluorescence. ' ' We demon-
strate that at least in several particular cases these mod-
els allow for an evaluation of the momentum distribution
of the atoms as a function of the interaction time. The
result depends on the specific model for the phase fluc-
tuations.

In the limit of very large bandwidth the momentum
distribution may be described by a random-walk model
with steps along the momentum axis of a photon
momentum, and with a step rate that is equal to the
stimulated transition rate. This result holds only when
the phases for the two counter-running waves composing
the standing wave are independent, so that not only the
phase of the field at any position, but also the location of
the nodes of the wave are random variables. In the case
of a standing wave that results from placing a mirror in
a running wave, this case corresponds to the situation
that the distance of the interaction region to the mirror
is large compared with the coherence length of the radi-
ation. In the opposite case the phase of the two
counter-running waves are equal and the standing wave
has a fluctuating phase, but fixed node positions. Also in
this case we can evaluate the momentum distribution
and the result is essentially different from the case of in-
dependent phases. These results illustrate the impor-
tance of the details of the coherence properties of a
standing wave on the matter-radiation interaction.

II. EVOLUTION EQUATIONS

A. Bloch equations

We consider an atomic beam of two-state atoms, mov-
ing with uniform momentum po in the z direction. The
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atomic beam crosses a phase-fluctuating standing wave
of radiation with wave vector +k along the x axis and
polarization e. We describe this standing wave by the
classical electric field

where the rapidly oscillating terms exp(+inst t) are ab-
sorbed in the off-diagonal terms p, and p, . Further-
more A=coL —A@0 is the detuning of the central frequen-
cy of the radiation from resonance and

Q=P, -eEO/A

(2 1) is the Rabi frequency. The factors c+ are defined by

(2.6)

where P(t) and rp(t) are real-valued stochastically fiuc-
tuating phases. We have assumed that the bandwidth of
the radiation is much smaller than the frequency coL, so
that fluctuations in the wavelength can be neglected.
The spectral distribution for either one of the counter-
propagating light beams is given by

IL(co)= R—e f dre ((e '(~"+' ~" )) ),
7T 0

(2.2)

where ( ( ) ) denotes averaging over the stochastic vari-
ables.

During the interaction the atom will acquire momen-
tum in the x direction as a result of the exchange of pho-
ton momentum at spontaneous and stimulated transi-
tions. To study the evolution of the momentum distri-
bution of the atoms it is convenient to consider the
Wigner representation of the density matrix p of a single
atom. We introduce the quantity p(r, s) which is relat-
ed to the density matrix p

p(r, s) = (r+ —,'s
~ p r ——,'s) (2.3)

in the position representation. The Wigner distribution
function is then given by

W(r, p)=(2vrA') f ds p(r, s)e (2.4)

Both p and W are still a matrix with respect to the inter-
nal states of the atom. The interaction between an atom
and the radiation field is described in the atomic dipole
approximation.

We shall assume that the change in position along the
x axis during the passage time is negligible compared to
the wavelength of the standing wave and that the gain in
momentum of the atom in the x direction is small
enough to make the Doppler shift k.p/m negligible
compared to the natural linewidth A. If these condi-
tions are fulfilled we may ignore the Doppler shifts and
the free-flow term in the evolution equation for p, which
results from the kinetic energy operator in the Hamil-
tonian. " Furthermore we assume that the interaction
time T is so small that spontaneous transitions are negli-
gible (A T « 1).

The evolution equation for p(r, s, t) in the rotating-
wave approximation is then given by"

cos[k.(r+ & s)+ &

( q)]e —II/&)(q+g) (2.7)

with k=(k, 0,0). Equation (2.7) reflects that the posi-
tions of the nodes and antinodes are displaced by the
fluctuating distances

u=x(g —&p)/2k, (2.8)

whereas (g+y)/2 determines fiuctuations in the phase
of the standing wave. In (2.8) x denotes the unit vector
in the x direction.

For later convenience we introduce the transformed
density matrix o. by the definition

o. = U pU,
where the stochastic transformation operator is

(2.9)

lU=exp ——u P+ —,'i(P+tp)P, (2.10)

in terms of the momentum operator P and the projection
operator P, =

~

e)(e
~

on the excited state. The evolu-
tion equation for

cr(r, s)=(r+ —,'s
~

o
~

r ——,'s) (2.11)

is then

o'
g
=

2
t A(c+ creg —c o'ge )gg

(2.12)

Dt o,g
=i [b + —,'(P+jv )]cr, +g,'i Q(c+ o—gg—c o„),

where g stands for dQ/dt, etc. Furthermore we have
defined

D a . a
Dt Bt Br

(2.13)

and

c+ ——cos[k (r+ —,'s)] . (2.14)

og, —— i[3+ ,'(P+j—)]og, +—,'iQ(c+o—„co ), —
Dt

Pgg 2
I Q( C +Ppg C Pge ) 7r

at

—p, =imp, + ,'if'(c+pgg —c p—„),
Bt

—
pg, —— imp, + ,'i A(c +—p„—c—*

pgg ),
Bt

(2.5)

Note that we made a transformation to a coordinate sys-
tem in which the stochastically fluctuating nodes of the
standing wave are at rest. The coupling terms c+ are
then independent of the stochastic fields at the expense
of changing the time derivative in a total derivative
(2.13).

The momentum distribution Z(p, t ) of the two-state
atom at time t, irrespective of the position and internal
state is obtained from the density matrix p(r, s, t) [or
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where ( ( ) ) denotes averaging over the stochastic vari-
ables and where the integration over r extends over a
large quantization volume V. The same result is ob-
tained when we replace p(r, s, t) in (2.15) by cr(r, s, t)
since the displacement operator does not affect the in-
tegral over r. The initial density matrix at zero time is
taken to be

p(r, s, O)—:Ps exp(is. po/fi), (2.16)

where Pg =
~ g )(g

~

is the projection operator on the
ground state and po=(0, 0,po) is the initial momentum
of the atom in the z direction. We are only interested in
the momentum distribution in the x direction, which is
the propagation direction of the standing wave. There-
fore it is sufficient to take the vector s in this direction.
Since the initial momentum is well defined, it follows
that the initial position distribution must be a slowly
varying function of x, which we have taken to be con-
stant. Furthermore the coupling terms c+ (or c+) are
periodic in x. It is therefore sufhcient to replace the r
integration in (2.15) by an integration over x extending
over one wavelength A, =(27r/k) of the standing wave.
The momentum distribution for the x direction takes the
form

Z(p, t)= —f dx f" ds e" 1~" Tr((p(x, st)) ),
2m%' A. o

o (r, s, t )] by taking the trace over the initial states, in-
tegrating over the position r, taking the Fourier trans-
form with respect to s and averaging over the stochastic
variables. We may thus write'

Z(p, t ) = (2—mfi) f dr ds exp( —is.p/A')1

V

XTr((p(r, s, t)) ), (2. 15)

where B (i), il') is the transition rate from il' to i) which
obeys the identity

dye g, r]' =b g' (2.20)

The conditional probability P(i)t
~
i)oto) obeys the same

master equation (2.19).

III. RANDOM-WALK DESCRIPTION
FOR BROADBAND LIMIT

Before we consider the case of arbitrary bandwidth,
we turn our attention to the broadband limit, where we
may assume that the evolution of the two-state atom can
be described by rate equations. The rate a of transitions
between the states

~ g ) and
~

e ) by absorption or stimu-
lated emissions is given by the Einstein coeKcient for
stimulated transitions multiplied by the spectral density
of either one of the counterpropagating light beams tak-
en at the atomic transition frequency coo.

The atomic momentum p in the x direction is changed
by a photon momentum Ak at absorption of a photon
from the beam with wave vector k, and at stimulated
emission of a photon into the beam with wave vector
—k. The other two stimulated transitions give a
momentum change by —Ak. This process is illustrated
in Fig. 1. When we ignore spontaneous emissions, the
evolution of the atomic momentum p may be viewed as a
one-dimensional random walk, and the momentum dis-
tribution is governed by the master equation

—Z(p, t ) = —2aZ(p, t)+a[Z (p +irtk, t)+Z (p haik, t)]-a

(3.1)

with

(2.17)
a= 1vrA IL(coo) (3.2)

where p(x, s, t) must obey (2.5) in which the factor
k.(r+ —,'s) in the coupling terms c+ can be written as
k(x+ —,'s). Equation (2.17) remains valid when we re-
place p(x, s, t) by o(x, s, t). The initial conditions in both
cases are

p(x, s, O) =o (x,s, O) =Pg . (2.18)

B. Master equation

In order to model the phase Auctuations of the radia-
tion field, we shall assume that either f and 1p, or their
time derivatives g and cp can be described as a Markov
process g. Hence the stochastics is completely de-
scribed by the probability distribution P(i), t ) and the
conditional probability distribution P (gt

~
i)oto). We

shall assume the process to be homogeneous, so that the
conditional probability depends only on the time
difference t —to. Then the probability distribution
P(q, t) obeys the master equation

P(il, t ) = b(q)P(rl, t )+ f di—l'B(il, q')P(rl', t ),at
(2.19)

where the profile of a light spectrum is given in Eq. (2.2).
Taking the Fourier transform

Z(s, t)= f dp e "~ Z(p, t), (3.3)

we obtain from (3.1) and the initial condition
Z(p, O) =&(p)

Z ( t )
—2at[1 —cos(ks1] (3.4)

Using the expansion in modified Bessel functions

FIG. 1. Scheme of the momentum exchange between a two-
level atom and a standing wave of radiation. The solid lines in-
dicate stimulated transitions involving photons from either one
of the two running waves, which induce momentum differences
by +6k between excited and ground-state atoms.
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z cosP in/ (3.5) P(.)
o.s i
02-

the inverse Fourier transform can easily be done, yield-
ing

Zn

Z(p, t)= g e 'I„(2at )6(p —nA'k ) . (3.6)

0-1—

In Fig. 2(a) we plot the momentum distribution (3.6). In
subsequent sections we shall compare results for finite
bandwidths with this broadband result.

IV. THE INDEPENDENT-INCREMENT MODEL
FOR THE PHASE

In the independent-increment model the stochastic
variable g may take values —ao & g & ~. Then we have
to substitute in the master equation (2.19) a transition
rate function B (i)z, r/)) that depends only on the phase
increment g2 —q, . ' Therefore we can write

B ( i) ,ii) ()
= w ( r~)—i), ), (4. 1)

where w(7/) is a non-negative function. Furthermore we
find from (2.20) for the rate of change of i)

b = f w()t3)d(8

I, ~ i, il J . . II . , W~ ( a. . .m 1

—8 -4 0 4 8 -8 —4 0 4 8 -8 -4 0 4 8
p/ hK

FIG. 2. Momentum distribution of the atoms after
diffraction. The distributions are composed of 6 peaks at
p =nfik, and the strengths Z„are plotted. In (a) we plot the
case of independent phases (p and i/) in the broadband limit as
described in Eq. (3.6) {6=0,2at =5), (b) the case y=i/) in the
broadband limit corresponding to Eq. (4.39) and (4.40) (6=0,
2at = 5), and (c) the monochromatic case according to Eq.
(4.38) (6=0, At /2=5).

which is independent of g.
When the initial condition for the probability distribu-

tion is given by

P(i), 0) =6(i)), (4.3)

P( ), ti)

the master equation (2.19) can easily be solved in Fourier
transform and we find

((ir(t)) ) =e ' ((S(t) ) )o(0) (4.6)

with

We have to evaluate the stochastically averaged quan-
tity ( (rr(t)) ), with the nonstochastic initial condition
(2.18). The evolution equation for the stochastically
averaged function can be obtained by the same method
as employed in Ref. 17, which we briefly outline here.
The formal solution of (4.5) is given by

oo

2' exp ixrt —t f (1 —e—' ~)w(/3)d/3dx

(4.4)

The evolution equation (2.1) for the stochastic func-
tion cr (x, s, t ) has the structure

a—rr(t) =(L,+jL +i/)L+ )(7(t),
at

S(t)=0exp f ds[(p(s)L ( )+s/( i))Ls(s+)],
0

where 0 is the time-ordering operator and
—Lot LotL+(t) =e L+e

It follows that for infinitimal dt,

S ( t + d t ) = exp I [ p( tr+ dt ) —(p( t ) ]L ( t )

(4.7)

(4.8)

where the operators Lo and Li do not contain (p or i/

but are mutually noncommuting. We assume that y and
are independent stochastic variables, both satisfying

the master equation with the same transition rate func-
tion (4.1).

+ [(/)(t +«) i/(t)]L+ (t) IS (t—) . (4.9)

For the independent-increment process, the conditional
average of the first exponential in (4.9) is independent of
the value of (p(t) and i/)(t). Hence we obtain after using
(4.4) for t =dt and expanding to first order in dt

((S(t)) ) = — f d/3w()(3)(2 —e
dt GC

—e ) (&S(t))) . (4.10)

(4.11)

Solving ( (S(t) ) ) from (4. 10) and substituting the result
in (4.6), we obtain for the stochastically averaged density
matrix

at
((o(t) ) ) =(L —V)( {rr(t))),

where

V= f d/lw{P)(2 —e + —e ) . (4.12)
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A. General solution for Z(p, t)

Equation (4.11) can be written as

at
( (cr(t) ) ) = [Ro+R (s)e'"

+R+(s)e '" —V]((o(t)) ), (4.13)

X„=o.„+Io.„', n ~0 .

Multiplying (4.23) on the right by o „,we obtain

X„,=(A„—R+X„) 'R, n &0

where

A„=v —Ro+ V„.

(4.24)

(4.25)

(4.26)

where V is given by (4.12) with

+1 aL+o.= ,'i [P„—o]+ cr .
2k Bx

(4.14)

Using (4.25) repeatedly, we obtain a matrix continued
fraction for Xo

The operators Ro and R+ result from an expansion in
powers of exp(t'kx) of Lo as implicitly defined by (4.5)
and (2.12).

Since the evolution operator in (4.13) is periodic in x,
we can express ( ( o ) ) as a Fourier series according to

Xo ——

A& —R+

We shall also need the matrices

R

(4.27)

((o(x,s, t)) ) = g e'" "cr„(s,t) . (4.15)
Y =o

[ +]]o. ', m &0 (4.28)

Then we obtain the set of coupled differential equations for which we obtain in a similar fashion

a
cr„(s, t) =(Ro —V„)o„(s,t)+R+ (s)o „+,(s, t)

ai

+R (s)o„,(s, t) (4.16)

Yo ——

A] —R
A2 —R R+

1

R+

with

V„cr =2k„cr+(,A,„+,+X„,—2A,„)L,o (4.17)

(4.29)

Substituting o i
——Xooo and o

&

——Yocro in Eq. (4.23) for
n =0 we obtain

where we have defined

X„=f dP w(13)(1 —e" '~") (4.18)
1~o= P

o R+Lo R Yo
(4.30)

and

L, cr =[P„[P„cr]]. (4.19)

where we have suppressed the arguments s and v. The
momentum distribution is then given by

In deriving (4.17) we have assumed that w(rI) =w( —r)).
The initial condition is given by

Z(s, u) =Tr 1 P
Ao —R +Xo —R Yo

(4.31)

cr„(s,0) =5ci„P& . (4.20) B. Broadband limit

From (2.17) and (4.15), we obtain for the Fourier-
transformed momentum distribution

Z(s, t)=Tr[oo(s, t)] . (4.21)

(v —Ro+ V„)o.„(s,v) =R+ (s)o „+,(s, u)

+R (s)o „,(s, v)+5O„Ps .

(4.23)

The momentum distribution is thus completely deter-
mined by o.o(s, t) which must be solved from (4.16). Tak-
ing the Laplace transform

cr„(s,v)= f e ""o„(s,t)dt, (4.22)
0

we obtain from (4.16) and (4.20)

From (2.2) we obtain for the spectral profile for either
one of the counterpropagating light beams, using (4.4)
and (4.18)

IL(cv) =—Re1 1

rr k2 —t (co —cvL )
(4.32)

Z(s, u) =Tr 1

Ao —R+ A i 'Ri —R A] 'Ri

(4.33)

The profile is thus Lorentzian with half width at half
maximum (HWHM) X2. In the limit of large bandwidth
12&&O, 6 the lowest-order contribution in k2

' to the
momentum distribution is given by

I

This equation admits a formal solution for cro(s, u) in
terms of matrix continued fractions.

We introduce the set of matrices

Substituting the expression for the operators we find
after a straightforward calculation to lowest order in

2
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AZ(s, v) = v+ [1—cos(ks)]
2

(4.34)

This result is exact in the limit A~ co, k2~ ao, and
A /A, 2~ 8a. In this limit the moment distribution is
identical to (3.6), which demonstrates that the intuitive
random-walk picture is justified in this limit.

the coherence length of the field. In the opposite case of
a distance that is short compared with the coherence
length, we may assume that ip=g. In this case the limit
of large bandwidth is no longer described by rate equa-
tions for independent running waves. In this case the
position of the nodes are not fluctuating and the calcula-
tions are simplified. For the evolution equation for
( (o ) ) we obtain

C. Identical phases —((a(t)) ) =(L, -~.,L, )((a(t)) ),a
(4.35)

In the previous subsections ip and g were taken as in-
dependent stochastic variables. The standing wave can
then be viewed as being composed of two independent
running waves. A standard way of producing a standing
wave is using a running wave that is rejected by a mir-
ror placed in the beam. The assumption of independent
phases ~p and it~ is justified when the distance between the
interaction region and the mirror is large compared with

I

where Lo is defined in (4.5) and k2 is defined in (4.18)
and L, in (4.19). It is interesting to notice that the evo-
lution equation (4.35) depends only on the parameter X2,
and not on the higher moments of the transition rate dis-
tribution.

After a straightforward calculation analogous to Ref.
13 we obtain for the momentum distribution

1
Z(s, v) =—

0

v [(v +&~)~+6, ]+—,'0 (c++c ) (v +X~)
A4

v [(v+A~) +6 ]+—,'II (c++c )(v+&p)+ (c+ —c

(4.36)

For excitation on resonance (b, =O), Eq. (4.36) reduces to
the simple form

U +X2
Z(s, v) =- &, dx, (4.37)

v + v A,2+ 0 sin x sin ( —,
' ks )

I

according to

h(g)dil= 1 . (5.2)

The rate of change of g is independent of g and we write

which for A, 2
——0 gives the well-known result

b (t)) =y . (5.3)

At
Z(p, t)= g J„5(p—nAk) .

n = —oo

(4.38)

Z(p, t) = g 5(p —nirtk)Z„(t) (4.39)

In the broadband limit A,2~ ~, A ~ oc, and
(II /A, 2)~8a, we obtain

a
at

P(qt
~
goto): 1 P(t)t

~
t)oto)+1 h(q) (5.4)

with the obvious solution

P(gt
~ g,t, )=e ' o(rt q, )+h(g)(1 ——e '

) .

The master equation for the conditional probability now
takes the form

with

Z„(t)=
m=fn

f

( ——,'at )

( —1)"(' )(' „). (4.40)

V. THE RANDOM- JUMP PROCESS

A random-jump process is a homogeneous Markov
process g where the probability for making a transition
from g to g' is independent of the value g before the
transition. Therefore the transition rate function
determining the master equation (2.19) is given by

B (7Iq, g, )=yh(g2), y &0 (5.1)

where h (g) is a non-negative function that is normalized

In Figs. 2(b) and 2(c) we plot the momentum distribu-
tions (4.38) for monochromatic radiation, and (4.39) for
the broadband limit. a

at
p(t) =L (g(t), j(t) )p(t), (5.6)

where g(t) and g(t) are stochastic variables described by
the random-jurnp process.

It is convenient to consider the marginal aver-
18, 19,27

11(g,g, t)=((&(g(t) —g )&(g(t) —g )p(t)) ) . (5.7)

This matrix H is the conditionally averaged density ma-
trix p with the condition that g(t) =jo and g(t) =(0, mul-
tiplied by P(go)P(go). We shall use the same notation

(5.5)

We notice that after a transient time of the order 1/y,
the conditional probability approaches the stationary
distribution h (i)).

The stochastic evolution equation for the density ma-
trix p (or cr) can be cast in the form
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for the case where we consider o. instead of p.
When the matrix II is known, we can obtain ((p) )

from the integral

((p(t)))= f dg, dg, II(g, , g, , t) . (5.8)

a
at

11(ko 40 t)=[L(ko 00) 2y]II(ko 00 t)

The evolution equation for the matrix II is given by the
Burshtein equation

of coupled di6'erential equations

a- (t) =(R 0
—2y ):-„(t)+F+:-„+, (t)

+F:-„, (t)+H+ =„+,(t)

+H ](t)+yq„=o (t)+yq =„0(t)

(5.14)

+yP(ko) f 11(go', go ) 4

+ yP (00) f 11(ko 00 t )d 4
with the initial condition

(5.9)

with

q„= dye'"~P y
)T

(5.15)

the Fourier coefficients of P. The initial condition is
given by

11(g,, g, , o) =P(g, )P(g, )P, . (5.10) (0)=q„q P~ . (5.16)

The Burshtein equation (5.9) is a combination of the evo-
lution equation (5.6) and the master equation (5.5). In
the subsequent sections we shall consider special models
for which the Burshtein equation can be solved explicit-
ly.

A. Random-jump process for independent phases

In the case of random jumps for the phase, we can
identify g(t) =q)(t) and )"(t)=g(t) with independent
and g, both described by the random-jump process. The
evolution equation for p, as given by (2.5), yields for the
operator L in (5.6)

L(q)(t), ]t)(t) } Ro=+F+ e'+'"+F e

We consider now the special case where q)(t) and g(t)
can only take the values +—,'~, with equal probability.
The stationary probability distribution is then given by

P(il)=h(il)= —,'5lq —
—,'~)+ —,'6(il+ —,'~) . (5.17)

(u)= f e ""„(t)dt,
we obtain from (5.14), (5.16), and (5.18)

(5.19)

Then the phases are described by the random-telegraph
process. Using that

(5.18)n+2, m n, m+2 n, m

the sequence of recurrence relation (5.14) reduces to a
set of four equations. Taking the Laplace transform

i tt)( t ) +H —i P( t )

+ (5.1 1)

The operators F+ and H+ result from an expansion of
(2.5) in powers of e'~ and e'~. The operator Ro is the
same as in Eq. (4.13). Because of the particular form of
(5.11), we introduce the operators

(v —Ro):-00(v)=F:"]p(U)+H p ](U)+Pg

(v +y —Ro):-] 0(v) = F:-00(v)+H—:-] ](u),

(v +y —Ro) p ](v):F ] ](v) H pp(U)
(5.20)

( ( in'(r)+im)t)(t) (t) ) ) (5.12)
(v +2y —Ro):-] ](v) = —F:-0 ](v) —H:-] 0(v),

where n and I are integers. This can also be written as

(t) = f f dtpod]t)oe
' 'II(q)0, ]t)o, t ) .

(5.13)

where we have defined

and

H =H+ —H

(5.21)

(5.22)

Substituting (5.11) in (5.9), multiplying (5.9) with
inyo+im $0e, and integrating over q)0 and $0 yields the set

I

Solving =00(v) from (5.20) we find for zero detuning
(R 0

——0)

(v)= F2+H2
U+

v +p
FH +HF 1

U+y F +H
U +2/+

U+y

P
FH +HF

v+y

(5.23)

After a straightforward calculation we find for the momentum distribution (2.17) in Fourier-Laplace transform in the
case of zero detuning (b, =0)

2 v/2
Z(s, u)= —f77 0

v +2y+ A(s, v)

v +2V[y+A(s, u)]+A(s, v)[2y+A(s, u)sin (2x)]
(5.24)
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with

A(s, v) = [1—cos(ks)] .
4(v +y)

(5.25)

The spectral profile for either one of the counterpro-
pagating light waves can be obtained from (2.2) using
(5.5) and (5.17). The result is

Xo(v) =- v+ (F +H)
v+y

P (5.33)

where F and H are defined in (5.21) and (5.22). In this
way we obtain for the momentum distribution (2.17) in
the case of zero detuning

IL(co) =—Re1

y i (ro—rot —) (5.26)
Z(s, v) =— v+y dx

0 v +vy+Q syn x sgn
(5.34)

which is a Lorentz profile with width (HWHM) y. In
the monochromatic limit y~0, Eq. (5.24) reduces to

2 77 /2 vZ(s, v) = — dx
v +Q sin —'ks sin x

(5.27)

which gives, after inverse Fourier and Laplace trans-
forms, the well-known result (4.38), as it should. In the
broadband limit y~ oo, II~ oo, and (0 /y)~8a, Eq.
(5.24) becomes

Z(s, v)= [v+2a[1 —cos(ks)]J (5.28)

B. Identical phases described by the random-jump
process

In Sec. V A we have considered the case of indepen-
dent stochastic variables p(t). We shall now turn our at-
tention to the opposite case where g(t)=it(t). The evo-
lution operator L in (5.11) reduces then to

L(y(t))=RO+(F++H+ )e'~'"+(F +H )e

which shows that the random-walk picture of Sec. III is
justified in this limit.

which is equal to the result (4.37) in the case y =Xz. We
notice that in the case of identical phases, the momen-
turn distribution is the same for the independent-
increment model (Sec. IV C) and for the random-
telegraph model for the phase is treated in the present
subsection. However, for independent phases, these two
models give quite different results.

C. Random-jump process for independent frequencies

When we consider random jumps in the frequency, we
identify g(t)=&j(t) and g(t)=P(t). We take q~ and P in-
dependent and let both be described by the random-jump
process. The evolution equation for o is given by (4.5),
which is of the type (5.6) with

L( q(&), it(&))= L, +j (t)L +P(t)L+ .

In analogy with Ref. 27, we introduce the operators

(5.35)

(&)=((~p(&)"it(&) a(t)) ), (5.36)

where n and rn are non-negative integers. As a result of
Eq. (5.9) these operators satisfy the set of coupled
differential equations

In analogy to (5.12), we introduce the operators

X„(r)= ( (e'"+'"p(t) ) )

(5.29)

(5.30)

a—A„(t)=(L,—2y)A„(t)+L A„+, (t)

+L+A„+,(t)+y[a„A, (t)+a A„,(t)],
which satisfy the set of coupled differential equations

a—X„(&)=(RQ —y)X„(t)+(F++H+ )X„+i(r)
at

+(F +H )X„,(t)+yq„XO(&), (5.31)

where we have defined

a„= dgP g g"

(5.37)

(5.38)

where q„ is defined by (5.15). The initial condition is
given by

X„(0)=q„&~ . (5.32)

We consider again the case where y(t) only takes the
value +—,~ with the probability distribution given by
(5.17). In this case the sequence of coupled di6'erential
equations (5.31) reduces to a set of two equations which
can easily be solved in Laplace transform. The result for
zero detuning is

as the moments of the stationary distribution. The ini-
tial condition for A„ is given by

A„(0)=a„a &g . (5.39)

As in Sec. VA, we again consider the special case of the
random-telegraph process, and we assume that jp(t) and
g(t) can take only the values +5 (5&0) with probability
I

2

The spectral profile of the radiation field can now be
obtained from (2.2), yielding '

1 Q2 /y
~ (co —col )'/y'+ [1—2(&/y)'](~ —~vt )'+ (&'/y )' (5.40)
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In the particular limit 5 ~ oo, y~ oo, and 5 jy~A. z,
the random-telegraph model for the frequency reduces to
the Wiener-Levy process for the phase (phase-diffusion
model). ' In this limit (5.40) reduces to the Lorentzian '

2A, +2 ——-A„+2——5 A„ (5.43)

the sequence of recurrence relations reduces to the four
equations

IL(cv) =-
tr (tv —

tvL ) +~L

Taking the Laplace transform

(5.41)
(v Lo—)Ao, o(u) =L Ai, o(v )+L Ao, i(v )+P
(u Lo+—y )A, o(u) =5 L Ao o(u)+L+ A, ,(u),

(u —Lo+y)Ao, (v)=L A, ,(u)+5 L+Aoo(v),
(5.44)

A„(u)= f e "A„(t)dt

and using the obvious identity

(5.42) (u Lo+—2y)A, , (v)=5 [L A, o( u) +L +A, o(v)] .

From (5.44) we can solve Ao o(u) = ( ( o (u) ) ), yielding

( (o (s, u) ) ) = v Lo(x, s)——5 Q+ (x,s) —5 Q (x,s) 1

' —1

Q (x,s) P
v Lo(x, s) —+2y —5 Q+ (x,s)

(5.45)

with

1 1
Q+ (x,s) =L+ L++L ~ L

u —Lo(x, s)+y + +
v Lo(x,s)+—y

The Fourier transform of the distribution is then obtained from (2.17)

(5.46)

Z(s, u)= —f dx Tr v Lo(x,s) —5Q+(x—,s) —5 Q (x,s) Q (x,s)
vr o

~

v Lo(x, s)+—2y —5 Q+ (x,s)
P (5.47)

The expression (5.47) is the central result of this section,
and it can serve as a basis for further calculations.

In the limit 5 ~ oo, @~op, and 5 /y~A. 2, we have
seen that the random-jurnp process reduces to the
Wiener-Levy process for the phase, and the spectral
profile is given by the Lorentzian (5.41). In the same
limit (5.45) gives

( (~r(s, v) ) ) = 1

2
u —Lo(x, s) —At (L+ +L )

(5.48)

This shows that ((o. ) ) obeys the evolution equation
(4.13) with V given by

1
Vo ——A,LL o. ——A.L o

k c4
(5.49)

with L, given by (4.19). Equation (5.48) can also be ob-
tained by taking the Gaussian limit in the independent-
increment model for the phase. This rejects that the
independent-increment model reduces to the Wiener-
Levy process in the Gaussian limit. ' The momentum
distribution in this case is given by (4.31) where the

I

operator V„ is now given by

V„o.= —,'A, LL, o. + —,'A, Ln o. . (5.50)

The broadband limit is given by (4.34) where we have to
replace A, 2 by kL, showing that also in this case the
random-walk picture of Sec. III is justified.

D. Identical frequencies described by random-jump process

Finally we consider the random-jump process for the
frequency with jp(t)=g(t). We shall again consider the
random-telegraph model, so that j&(t) can only take the
values +5. In analogy to Sec. V B we introduce

+„(t)=((q(t)"~(t))), (5.51)

where n are non-negative integers. For the random tele-
graph only two independent operators N„arise. The
evolution equation can be obtained from (5.9) in a simi-
lar way as in Sec. VB. We can solve C& (t)o=((o(t)) )
from these equations in Laplace transform. Substituting
the result in (2.17) we obtain for the momentum distribu-
tion in Fourier transform

Z(s, v)= —f dx Tr1

0
P

u Lo(x, s) —5 (L+ +—L ) (L+ +L )
u+y Lo(x,s)— (5.52)

After a straightforward calculation we find for (5.52) in the case of zero detuning

1 vr u+ B(x,s, v)

v +uB(x, s, v)+II sin x sin ( —,'ks)
(5.53)
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with

e(x, s, v) =5
(u+y) +Q cos x cos ( —,'ks)

(5.54)

From this general result we can now recover several special cases. (i) In the monochromatic limit (&~0) (5.53) gives
the well-known result (4.38). (ii) In the limit |i ~ oo, y~ oo, and 52/@~A~ (5.53) reduces to (4.37) with g =g
(iii) In the case y =0 the spectral profile (5.40) reduces to

It (tv)=P(ro tuL—) .

The spectrum thus consists of two lines with frequencies cvL +5. From (5.53) we obtain (b, =0)

v[u +6 +II cos x cos ( —,'ks)]
Z(s, u) =— dx

u +u I5 +0 [cos x cos ( —,'ks)+sin x sin ( —,'ks)]I+ —,', 0 sin (2x)sin (ks)

(5.55)

(5.56)

The same result can be obtained by using a monochromatic wave which is detuned by 5 from resonance. ' This result
is a reflection of the fact that the momentum distribution is independent of the sign of the detuning from resonance.
In the particular limit 5 &~A, we obtain from (5.56) the well-known result

0,'t
Z(p, t)= g J„6(p—2nirik) .

86
n = —oo

(5.57)

VI. CONCLUSIONS

We have derived explicit expressions for the momen-
tum distribution of an atomic beam after diffraction at
normal incidence by a standing light wave with phase
fluctuations. These expressions describe the continuous
transition from the fully coherent case of monochromat-
ic light, causing Rabi oscillations, to the completely in-
coherent situation of broadband radiation inducing
stimulated transitions between level populations.

We consider three distinct models for the phase fluc-
tuations. In Sec. IV we treat the independent-increment
model, where the phase is assumed to make jumps at
random instants to another value with a probability dis-
tribution that depends only on the difference of the
phases after and before the jump. When the phases of
the two counter-running waves are independent, we ob-
tain Eq. (4.31) as a formal result for the momemtum dis-
tribution in Fourier-Laplace transform. In the broad-
band limit this reduces to Eq. (4.34) or, equivalently, Eq.
(3.6). When the two phases are identical, the general
formal result is given in Eq. (4.37), which gives Eq. (4.39)
and (4.40) in the broadband limit. Section V is devoted
to random-jump models, where the phase or the frequen-
cy executes jumps at random instants with a probability
distribution for the value after the jump that is indepen-
dent of the value before the jump. As a special explicit
case we treat the random-telegraph model, where the
phase or the frequency can attain only two different
values. For two independent phases, we arrive at the

formal results (5.24) for phase jumps, and Eq. (5.47) for
frequency jumps. A comparison of (4.31) and (5.24)
demonstrates that the independent-increment model and
the random-jump model for the phases give quite
different results for the momentum distribution, even
though the spectrum of the radiation field is the same in
these two cases. Only in the broadband limit are these
results identical. When the phases of the two counter-
running waves are identical, we obtain Eqs. (5.34) and
(5.53) for phase jumps and frequency jumps, respectively.
Now a comparison of (5.34) and (4.37) shows that the in-
crement model and the jump model for the phase pro-
duce the same momentum distribution. This suggests
that for identical phases the momentum distribution is
mainly determined by the spectrum of the radiation
field, whereas for two independent phases higher correla-
tion functions are also important. In general, these re-
sults indicate the importance of the detailed properties
of laser fluctuations on the characteristics of the momen-
tum distribution of an atomic beam diffracted by a
standing light wave.
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