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In inner-shell photoionization followed by Auger decay, the Auger electron initially screens the

ionic Coulomb field "seen" by the photoelectron. This screening phenomenon affects the post-
collision interaction that shifts the Auger energy and distorts the line shape. The analytical Auger
electron line-shape formula which we derived previously on the basis of asymptotic Coulomb wave

functions is now modified to account for the screening effect. The ionic charge seen by the photo-
electron is reinterpreted on the basis of asymptotic properties of the continuum wave function per-

taining to two outgoing electrons. It is shown that this procedure is consistent with semiclassical

models which account for the time required for the Auger electron to overtake the photoelectron.
Our modified Coulomb line shapes are found to agree perfectly with the semiclassical line shapes
for photon excess energies E,„,~(l;c& )' ', where I, is the width of the initial hole state and c, „,
the Auger electron energy. Agreement between the present theory and recent synchrotron-
radiation measurements consequently becomes excellent in this range of photon energies as well.

I. INTRODUCTION

In the radiafionless decay of an atom that has been
photoionized near an inner-shell threshold, the Coulomb
field of the receding photoelectron perturbs the Auger
electron energy and line shape. ' We have treated this
post collision int-eraction (PCI) phenomenon in a previous
paper' (hereafter referred to as I) from the point of view
of resonant scattering theory. It was shown in I how
the lowest-order line-shape formula, corresponding to
the "shake-down" mechanism, emerges from approxi-
mations of the general multichannel transition matrix
element. The PCI phenomenon was thus treated as a
consequence of a resonant rearrangement collision in
which a photon and an atom in the initial channel turn
into an ion and ttoo electrons (one of which has a nearly
characteristic energy) in the final channel. With the
lowest-order formula we performed fully quantum-
mechanical and relativistic calculations of the PCI effect
in x-ray-induced argon K LzL3 ('D) Auge-r and xenon

L2 L3N~ (J =3) Coster-K-ronig electron emission and at-
tained excellent agreement with measured PCI shifts in
the near-threshold region. These calculations confirmed
the results of an earlier nonrelativistic prediction of the
shift of the xenon L M3~M ('sG~) line.

All these studies were restricted to photon excess en-
ergies E„, that are small compared with the Auger elec-
tron energy. As pointed out by Ogurtsov and by
Russek and Mehlhorn, however, the lowest-order
theory in its semiclassical form ' does not take into ac-

count the time it takes for the Auger electron to pass the
previously emitted slow photoelectron, whence the PCI
shift is overestimated when E,„, approaches c.z. Indeed
the predictions of the semiclassical PCI model of Russek
and Mehlhorn agree extremely well in such a case, that
of the xenon 1V& 0& 30~ 3 ('S)-line, with measurements of
both shift and line shape recently performed by Horst
and Schmidt. " On the other hand, the lowest-order
quantum-mechanical calculations' do not agree with the
results of Refs. 8 and 11. This discrepancy arises be-
cause the shake-down model, even in its exact quantum-
mechanical form, does not account for the interaction
between the photoelectron and the Auger electron in the
final state. ' The only effect considered in the shake-down
model is the response of the photoelectron to the change
of the ionic core potential produced by the Auger decay.

A consistent description of threshold phenomena in
inner-shell ionization, including discrete excitations, re-
quires the use of quantum theory; it is therefore of in-
terest to generalize the lowest-order theory so as to in-
corporate the "no-passing" e6'ect. '" From a fundamen-
tal point of view, this requires a generalization of the K-
matrix theory of single-electron photoionization. ' How-
ever, a simplifying factor in the present problem is that,
as shown in I, the lowest-order PCI results can be inter-
preted in terms of an analytical line-shape formula based
on asymptotic Coulomb wave functions. The Coulomb
line shape depends solely on the excess photon energy
E,„„the lifetime I, ' of the initial state of the Auger
process, and the change Q of the ionic charge during
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Auger electron emission. ' Thus, there is only one quan-
tity which is exposed to the Anal-state interaction be-
tween the photoelectron and the Auger electron, namely
Q. In Sec. II we show that Q can indeed be determined
uniquely by examining the asymptotic behavior' ' of
the exact two-electron continuum wave function.

In Sec. III we show that the semiclassical treatment of
the no-passing effect '" results in the same choice of Q.
On the basis of recent work by Kuchiev and Sheiner-
man, ' we derive an analytical semiclassical line-shape
formula which depends on Q and for E,„,&(I;sz )'
essentially coincides with our Coulomb line-shape for-
mula.

Section IV contains a comparison between shifts and
line shapes predicted by our modified Coulomb theory
and the semiclassical theories. ' We also compare the
present results with measured PCI shifts for N&-OQ 30$ 3
('S) Auger transitions'' and L2 L3N4 (J-=3) Coster-
Kronig transitions in xenon. ' The L2 widths 1 (L2) are
approximately 30 times greater than the Nz widths
I (%5), therefore the %5-OO initial states are very long
lived compared with those of the L2-LN transitions.
This paper ends with a discussion of the dependence of
the Auger line shape on the angle between the directions
of emission of the Auger electron and the photoelectron,
and of the eftective-charge concept within the context of
the general theory of final-state interactions in double
photoionization.

II. FINAL-STATE INTERACTION
BETWEEN TWO CONTINUUM ELECTRONS

A. The Coulomb line-shape formula

In I we have shown, by systematic simplifications of a
general multichannel transition matrix element, that the
cross section for observing either photoelectrons or
Auger electrons in a noncoincidence experiment is
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for the Auger multiplet

[n, l, ] L, ~[nflf nflf ] LfE+lg L;

of an initially closed-shell atom. Equation (1) attributes
the emission of Auger electrons of this particular multi-
plet to a resonance in the double photoionization pro-
cess, leading to final [nflf, nf lf ]' Lf eslE& l~ 'P states. '

It thus only accounts for photoelectrons which are emit-
ted in association with a given Auger multiplet. In Eq.
(1), a is the fine-structure constant, co is the energy of
the incident radiation, and we have E'=co —II&, where
I&&. is the ionization energy of the final double-hole state.
The Auger electron emission rate is I"I, for which expli-
cit expressions can be found in the literature. ' In Eq.
(1), we have 1 =1,-+1 (1; & 0), and lz satisfies the triangu-
lar rule Lf+lz &L, &

f Lf —1„ f. The function
f

r') is

given by
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where the integration includes the summation over
discrete

f
r) states and where the reduced electric dipole

matrix element, in the central-field frozen-core approxi-
mation, is

(4)

where
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does not contain the slowly varying dipole matrix ele-
ment (3). Here
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Here, we have l,„=max(l, , l), and D, is the dipole radi-
al matrix element. The photon excess energy in Eq. (2)
is E,„,=co —I, , where I, is the ionization energy of the
n, l, hole state with lifetime I;

If
f

El ) and
f
rl ) were to correspond to electrons

moving in the same ionic field, we would have
(El

f
rl) =5(e—r). Since r=E,„, according to Eq. (2),

this shows that the first term in Eq. (1) peaks at approxi-
mately cs ——E„„and the second term at c.= z z ——I;

Iff As long as E,„,( c.~, the photopeak is thus situ-
ated below the stationary Auger peak in energy. If E,„,
is increased, the photopeak moves towards the Auger
peak and will eventually cross it at E,„,=c.~. Accord-
ing to Eqs. (1) and (2), both peaks have distorted non-
Lorentzian shapes such that the maximum of the photo-
peak occurs at c=E,„,—5 and the Auger peak occurs at
c =cz +6, where b is a positive PCI shift. ' The distor-
tion changes as a function of E,„„it is predicted to van-
ish at E,„,=a~ on the basis of semiclassical considera-
tions. '

In Eq. (1) the PCI effect is attributed to the change of
the ionic core potential produced by the Auger decay.
This corresponds to a model in which both final-state
electrons move in a potential of +2/r without interact-
ing with each other. In the following, we take their mu-
tual interaction into account by modifying the matrix
element (el

f

r') in Eq. (1).
We limit ourselves to a description of the line shape

by excluding all irrelevant factors from Eq. (1). As in I
(Sec. 5), we thus examine the normalized Coulomb line
shape
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r) =r '(2/lrK')' sin(k'r) (7)

Pf(r) =v'2llrK f A (K,K')sin(K'r)dK',
0

where we have K=&2E, and A (K, K ) is given by

A (K, K') = lim e
1

v~0 27Tl

(8)

X [C+[(K+K +IV) —(K —K +IV) ]

a a—C [(K+K —I V) —(K —K —I V) ] I.

are asymptotic wave functions corresponding to I =0,
without a short-range phase shift. In Eq. (6), we have
e= —,'K, and in Eq. (7), r= —,

'K' . According to Eq. (1),
one should replace c by E' —c in order to examine the
Auger electron line shape in the vicinity of c. =c.~. For
the sake of completeness, the line-shape formula is

briefly reviewed in the Appendix.
It was shown in I that Eq. (4), with the choice

Q =Qf —Q; =1 in Eq. (6), reproduces the line shape pre-
dicted by fully quantum-mechanical calculations of the
cross section (1) in the limit of high excess energies for a
number of Auger and Coster-Kronig transitions. It was
hence suggested that Eq. (4) could be modified to ac-
count for the no-passing effect '" by introducing an
E,„,-dependent Q which will be the only parameter in
the theory other than F.„,and I, .

In the derivation of the Coulomb line-shape formula
(4), the effective charge Q is set equal to the final-state
ionic charge Qf (Q, is assumed to be zero). It therefore
seems clear that the no-passing effect is a consequence of
the interaction between photoelectron and Auger elec-
tron in the final state. The effect can be expected to be
present whenever two electrons are ejected into the con-
tinuum, either resonantly or nonresonantly. This can be
seem more clearly if Eq. (4) is interpreted in terms of an
expansion of the final-state Coulomb wave function s)
in energy-normalized free spherical waves. As in the
Appendix, we assume an s-wave final state (l =0) with
phase shift 5f(K)=0. The expansion of Pf(r)=r

~

c)
then is

spherical waves in the expansion of the final Coulomb
wave function. Quite independently of the lifetimes of
intermediate states, the mutual screening of the two out-
going electrons thus alters the coefficients A (K, K') only
through modification of the effective charge Q. The
question therefore is: Does consideration of the mutual
asymptotic interaction between the two outgoing elec-
trons lead to a modification of the coefficients A (K, K')
such that the no-passing effect is accounted for? As
shown in the following section, the answer is affirmative.

B. Mutual screening of the ionic core
by two outgoing electrons

with Z )0. The structure of the ion is neglected so that
the problem is reduced to a determination of the asymp-
totic form of the spatial part of the two-electron wave
function 4'=~II (r, , r2) in the limit r, ~ao, r2~no,
and r, 2 ~ ~. According to Peterkop, ' the phase of the
leading term is of the form

ikr +iW(Ki, K2)lnkr(li, lp r e
I 2

(12)

where we have k = [2(e,+E2)]', r = (r, + r 2
)' and

Z+1 Z+1
W K„K2 —— +

Kl K2

1

K] —K2
(13)

In order to obtain the asymptotic form of the wave func-
tion which is used to describe single-electron ionization
by electron impact' ' or double photoionization, one
needs to multiply Eq. (12) by a factor containing the
scattering amplitude. In the present context, however,
we only make use of Eq. (12) by requiring that the prod-
uct of two Coulomb wave functions @;(Z,, K,

~
r, )

(i =1,2) for the effective charges Zi and Zz of the ionic
core has the same asymptotic property (12) as the exact
solution. We have

—5/2 ikr+ I to Kl' 2)lnkr+i(Zi, KI
~
ri)@p(Z2, K2

~

r7)-r

We study the boundary conditions on the final-state
wave function 0' that describes two outgoing electrons
with wave vectors ~, and ~2 in the reaction

m+ 3 '~ 3 +'+e +e,

r
2n f 3 (K, K') dK',

O K —P
(10)

where P is defined in Eq. (A7). For Q =0, i.e.,
A ( K, K ) =5( K —K ), the absolute square of the amplitude
(10) is the normalized Lorentzian profile. Equation (10)
shows that the distorted profile is a superposition of
Lorentz amplitudes, weighted by the coefficients of free

The coefficients c+ and a+ are defined in Eqs. (A5) and
(A6), respectively. The limit v~0 ensures that 3 (K, K')
becomes the Dirac 6 function for Q =0. Equation (9) is
singular at K=K' even for Q&0. The integral (8), how-
ever, remains finite.

Use of the expansion (8) in the shake-down amplitude
(5) leads to

l /2

(14)

Zl Z2

K2

Z+1 Z+1+
Kl K2 Kl —K2

According to Eq. (6), the Coulomb line-shape formula
(4) is based on an effective charge Q which is angle in-

where w(K&, K~)=Z, K, +ZzK2, and where Z, and

Z2 depend on the angle between sc, and ~2. ' '' If the ex-
act wave function is expanded in products of one-
electron wave functions involving N&+2, then condition
(14) ensures that the expansion coefficients have no
divergent phase factor. The necessary condition for
correctly describing the escape of two electrons from an
ion with charge Z + 1, in terms of Coulomb wave func-
tions, is thus
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dependent. Thus, since Eq. (15) holds for any angle be-
tween x, and ~z, we shall take the spherical average over
it. Assuming K, ~Kz, the result is

Z$ Zz
+

K) Kz

Z+1 Z+1+
K( Kz Ki

(16)

The slower electron is thus partially screened; only when
K& equals Kz is it fully screened, i.e., Zz ——Z.

It should be stressed that the screening described here
is a property of the stationary wave function of the final
state in reaction (11), and does not depend on whether
the process is resonant or nonresonant. These results
can therefore be used to determine the e8'ective charge Q
in Eq. (4), given by Q =Q& —Q;; we have Q;=Z and

Q& ——Z+Q~ for the slow electron, but Q& ——Z for the
fast electron. Our quantum-mechanical treatment of the
PCI effect therefore indicates that the no-passing
effect '" is a consequence of the mutual screening of the
two electrons in the final state of the resonant double
ionization process leading to Auger electron emission. It
also suggests that one choose

Q =Qy ——1— =1 (E,„,/s„)'—

in the line-shape formula (4) as long as the photoelectron
is slower than the Auger electron, and Q =0 if the oppo-
site is true. In the latter case, the Lorentzian form of
the profile is recovered; This result is independent of Z,
consistent with the choice Q, =0 in the derivation of Eq.
(18). As shown below, these findings are also in accord
with the semiclassical treatment of the no-passing effect
and with recent experiments.

~here Z, and Zz are spherical averages over Z& and Zz,
respectively. By choosing Z, =Z+Q, and Zz ——Z+1,
we describe the screening of the ionic core by the slower
electron. According to Eq. (16), the faster electron sees
the charge Z, =Z, i.e., Q, =0. By choosing Z, =Z+1
and Z2 ——Z +Qz, we describe the screening of the inner
core by the faster electron. According to Eq. (16), the
slower electron sees the charge Zz ——Z +Qd, where the
dynamic charge Qd is

Kz

Auger electron is emitted and by the velocities of the
two electrons. If the photoelectron starts from a dis-
tance r =R& from the nucleus at t =0, and the Auger
electron from r =R ~ at a later time t =t„,we have

fp dr fp dt
Rg U~

(19)

where the velocities Uz of the photoelectron and v~ of
the Auger electron depend on r. In the classical approx-
imation, they fulfill the relation

I
] ~2
2 (20)

The observed energies correspond to the probability
P(e)de that an Auger electron is observed in the inter-
val (c,, e+dE). If e' is independent of the time and p
infinite, then P(E) must coincide with the normalized
Lorentzian line shape. Otherwise, there is a distortion
which can be determined by squaring the absolute value
of the amplitude

f oo

dt exp —i c —i——c.~ dt~
0 0 2

where we have, for U =Uz, Z'=Z and E=a&, and for
U =U~, Z'=Z+1 and E =c.~. The energies c~ and c~
are the unshifted energies, i.e., the photoelectron energy
distribution has a maximum at c= z& —6 and the Auger
peak at s=a„+6, where b. is the PCI shift. In Eq. (19),
p=p(t„) is the radius at which the Auger electron
passes the photoelectron. While it is possible that vz
could be larger than U„, we consider in the following the
photoelectron to be the slower one, i.e., Uz (U„. Hence
one can always from Eq. (19) determine p =p(t „).

At the moment when the two electrons are at the
same distance r =p from the nucleus, they exchange en-
ergy which, according to Eq. (20), is equal to p ', be-
cause the ionic charge Z' as seen by the photoelectron
suddenly changes from Z to Z+1. The photoelectron
loses the same amount of energy that the Auger electron
gains. The PCI shift 6 consequently is a positive quanti-
ty as defined above. If we denote the instantaneous
Auger electron energy at t =t„by s'=e'(t„), then the
observed Auger electron energies fulfill the relation

E=E +p (tg )

III. SEMICLASSICAL TREATMENT
OF THE NO-PASSING EFFECT

In Sec. II we have discussed the no-passing effect in
terms of the angle-integrated double photoionization
cross section. In the semiclassical picture this involves
consideration of the escape of the photoelectron and
Auger electron in terms of only their radial distances
from the nucleus.

The essential point in the model of Russek and
Mehlhorn is that in Auger decay of a hole state pro-
duced by photoionization, the Auger electron does not
catch up at once with the photoelectron, but only after
an interval that is determined by the time at which the

(22)

where E' =E —p
' is obtained from Eqs. (19) and (20) as

a function of t~. Clearly, the Lorentzian line shape is
recovered if c.

' is taken to be time independent in Eq.
(22). As Russek and Mehlhorn have indicated, one can
justify the use of the amplitude (22) by considering the
solution of the Schrodinger equation for the Auger elec-
tron in the slowly varying electric field of the slow pho-
toelectron. Alternatively, one can derive Eq. (22) by ap-
proximating the WKB amplitude for a shake-down tran-
sition and transforming from the variable r to t with the
aid of Eq. (20) for vs.

The derivation of Russek and Mehlhorn blends classi-
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1 1

us(p) uA(p) uz(rz(p))
(24)

where we have defined an effective screening charge Q
such that Q =dry /dp. Consequently, we have

U, (., ) .,(p)1—
US (P ) U A (P )

(25)

For large p, Eq. (25) reduces to Eq. (18), since we have
vz(rs ):—vz(P) =+2E,„, and u„(P) =+2EA in this limit.
Thus Q =Qz becomes independent of p, and we have

Qd =rs/p-
At r =p the exchange of energy amounts to

6=p ', where b is the positive PCI shift. Since
rz tA "t/-—2E,„, and tA ——2/I;, it follows from Eq. (25)
and the definition (18) of Qd that

cal arguments involving time with a quantum-
mechanical description of the Auger decay. It is there-
fore of interest to examine whether the approach of Ref.
8 also leads to the concept of a dynamical charge, intro-
duced in Eq. (17). In demonstrating this fact, we exam-
ine the condition (19) more closely and also derive the
asymptotic PCI-shift formulas of Niehaus' and
Ogurtsov.

Let the slow electron reach the radial distance rz at
time tz. Since r& depends implicitly on p, we have

p dr p dr "&'p' dr
Rs VS RA VA Rs US

according to Eq. (19). Taking the derivative with
respect to p on both sides of Eq. (23) yields

ARs(t) = —f AV(t, t„)dt„,
0

where

(27)

b, V(t, tA )=
—1 1

vz(t +tA )
~

vz(t +t„)—vAt
~

(28)

is the change in the potential energy of the photoelec-
tron due to the Auger electron emission, and where T is
made large before taking the square of the amplitude. In
the model of Russek and Mehlhorn, the energy gain is
given by

ARM(t) p (tA )dt
0

(29)

where p =p( t A ) is determined by Eqs. (19) and (20).
In order to compare with the Coulomb and Russek-

Mehlhorn line shapes in detail, we consider the potential
spherically averaged over the angle between v~ and vz.
Instead of Eq. (28), we thus substitute

1
vs &v~

us(t +tA )(QV(t t )) —. UA

0, vz &v~

(30)

in Eq. (27) and square the amplitude (22) with this ener-

gy gain. The result is

an inner-shell hole, C the residual ion Z +', and 3 and
B are electrons.

Kuchiev and Sheinerman' consider an amplitude
which is similar to Eq. (22). Their method leads, howev-
er, to an energy gain of the Auger electron which is of
the form

1—QdI,

2+2E,„,

Eexc
1/2

(26)

I; /2~
P&(e) =

z K(c.),
(e„—e )'+ I,'/4

where

(31)

where A0 is the shift originally derived by Barker and
Berry. ' The quantity bo as defined in Eq. (26), which
was first given by Ogurtsov, also follows from the for-
mula of Niehaus' for E„,»A.

In order to evaluate the amplitude (22), p
' must be

evaluated from Eqs. (19) and (20) as a function of tA.
Due to the nonlinear nature of Eq. (20), this leads to a
transcendental equation for p=p(tA ) which is not very
transparent. It is therefore of interest to compare the
results of Russek and Mehlhorn with the semiclassical
approach of Kuchiev and Sheinerman, ' in which recti-
linear trajectories of the outgoing charged particles are
assumed. The latter authors consider arbitrary reactions
of the type X + Y—+ A +D ~3 +B+C between any
atomic particles such that 3 +D forms an intermediate
complex which breaks up, with a certain lifetime I, ',
into three charged particles, 3, B, and C. The assump-
tion of rectilinear motion requires that 3, B, and C are
far apart, which is consistent with the assumptions un-
derlying our Coulomb line-shape formula (4) for the spe-
cial case in which X represents a photon and Y, the ion

Kuchiev and Sheinerman' also consider I, to
be small, but as we shall indicate, this is not a necessary
assumption for a reaction in which D is an ion 2 * with

2(eA —e)
K(c. ) = . exp 2g arctan

sinh tr r, (32)

In the parameter g= —QdKs ', the quantity Qd is the dy-
namic charge, given by Eq. (18). The result (31) agrees
with the general line-shape formula of Kuchiev and
Sheinerman. ' The Auger electron line shape (31) can
also be obtained from the Coulomb line-shape formula
(4) by assuming that Q/K is small, and replacing e by

~ =Eexc + ~A

IV. RESULTS OF THE MODIFIED COULOMB
LINE-SHAPE FORMULA

In this section we compare our results based on the
Coulomb line-shape formula (4) including the dynamic
charge [Eq. (18)] with predictions from the semiclassical
models of Russek and Mehlhorn and Kuchiev and
Sheinerman, ' and with measured PCI shifts.

First, we tested the formula (18) against the semiclas-
sical equation (25), which gives the effective screening
charge as a function of the "passing" radius p=p(t„),
where tz is the time of emission of the Auger electron.
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Both r& and p in Eq. (25) can be calculated using
t„=2/I, and self-consistent-field values of R~ and R~.
As in the derivation of Eq. (26), we have chosen the
average time of Auger electron emission here. No not-
able differences were found in the range 0.01&E,„,/
ez & 1 for the Ar K L2L-3 ('D) and the Xe L3 M4-Ms
('G), Lz L3Xz-(J =3), and N& 02 3-02 3 ('S) transitions.
This result was not affected by changing t~ =2/I, to
t~ =1/I, , suggesting that it is an excellent approxima-
tion in the semiclassical approach to use rs ——Qp, where
Q is time independent and equal to the dynamic charge

V)

0.5—
CL

0

d'
The second test consisted in constructing a charge Qs,

such that our Coulomb line-shape formula produces the
same PCI shift as the Russek-Mehlhorn formula for the
four transitions indicated above. The result indicates
that for E =E,„,/t-~ ~ 0.5 there is no difference between
Q„, and Qd. Below this limit, there is some spread
among the individual Qs, curves, indicating that Q« is
about 15% lower than Qd for E =0. 1 when e„/I 5 10 .
For E~ /I ~ 5 X 10, agreement between Q„, and Qd
remains excellent down to E=0.05. It should be noted
that the ratio c.~/I varies between 4X10 and 75 for
the four transitions considered. The highest value corre-
sponds to the Ar K L2L3 ('D)-Auger transition, and the
lowest to the Xe L2 L3Xz (J =3)-Coster-Kronig transi-
tion.

These two tests indicate that, at least asymptotically,
the dynamic charge correctly describes the PCI distor-
tion of the Auger line shape —both in the semiclassical
and in the Coulomb approximations. In practice, the
"asymptotic" condition prevails for E,„,/QI E~ 1, ac-
cording to our analysis.

Figure 1 contains a plot of PCI shifts which universal-
ly displays the no-passing effect. As a function of E, we
plot the semiclassical PCI shifts 60 and 6, scaled in
units of I,' =I, (e „) '~ . This scaling removes any
dependence on particular Auger or Coster-Kronig tran-
sitions. According to Eq. (26), b,o does not account for
the no-passing effect, whereas 6 does. It should be not-
ed that the difference between the scaled 6 values does
not depend on E and is equal to I/&8, in accordance
with Eq. (26). The circles in Fig. 1 correspond to the
maxima of the Coulomb line-shape formula (4). The
points lying on the b, o curve were calculated from Eq. (4)
with Q = 1, for two sets of e„and I, values. The points
on the lower curve were calculated similarly, except that
Q =Qd was used. The differences between the calculat-
ed Coulomb values and the semiclassical curves are
negligible, even though the Coulomb results correspond
to entirely different E,„,/I, values, as shown in Fig. l.
The results displayed in Fig. 1 emphasize the universal
character of post-collision interaction, even when the
no-passing effect is taken into account. The PCI
phenomenon does not depend on the atomic structure
but only on the asymptotic properties of the continuum
wave functions outside the ionic core.

In Fig. 2 we compare Coulomb line shapes calculated
from Eq. (4) including the dynamic Qd with hne shapes
derived from the semiclassical model of Ref. 8, for the

0 0
Ar 0 385

I

l I

Xe 0

0.5
l927

I

37

5855
Eexc«

75

Ar E -L2L 3 and Xe L2-L 3N4 transitions discussed
above. The smaller E values correspond, in each case, to
E,„,/QI ez ——1; at these energies some deviations occur
between Q„, and Qd. It can be seen that asymptotically
there is no difference between the modified Coulomb and

1
O
1

JD
O

0

2 -2 0 2

Relative Auger energy ( ep )

FIR 2 Compar. iso.n between Coulomb line shapes [Eq. (4)]
with Q =Qd (solid curves) and semiclassical line shapes accord-
ing to Russek and Mehlhorn (Ref. 8) (dots). In both cases, the
lesser value of the reduced energy E corresponds to
E,„,/(I-, c„)'"=1.

FIG. 1. Comparison between PCI shifts predicted by the
Coulomb line-shape formula [Eq. (4)] and by the semiclassical
theory of Ref. 8. The PCI shifts, scaled by a factor of
c &

' I, ', are plotted as a function of the reduced energy
E=E,„,/c, ~. The dashed curve corresponds to Ao, and the
solid curve to 6, both as given in Eq. (26). The circles on the
dashed curve were calculated with Q =1 in Eq. (4), and the cir-
cles on the solid curve with Q =Qd in the same formula. For
each circle shown, two sets of c, & and I; values were used, cor-
responding to the Ar K-L2L, {'D}and the Xe L2-L3%4 (J =3)
transitions. With the scaling used here, the correspondence be-
tween the quantum-mechanical and the semiclassical shifts is
applicable to any Auger or Coster-Kronig transition.
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the semiclassical line shapes, as anticipated by the
theoretical considerations in Secs. and II and III. It can
consequently be inferred that the modified Coulomb
line-shape formula will also correctly describe the mea-
surements of Xe N5-02 302 3 ('S) Auger line shapes re-
ported by Borst and Schmidt. " In Fig. 3 a similar com-
parison is carried out between Coulomb line shapes and
line shapes derived from Eq. (32). The results show that
the spherically averaged Kuchiev-Sheinerman' formula
is an excellent approximation to the quantum-
mechanical result.

In Figs. 4 and 5 we compare PCI shifts predicted by
the Coulomb line-shape formula (4) incorporating the
dynamic Qd with experimental results. Two corrections
are required before a comparison is possible. First, the
calculated line shape must be convoluted with the final-
state density function

Lff'(e, , E )=(I ff /277)[(E E E ) +I ff /4]

(33)

where I ff' is the lifetime of the final double-hole state.
For the Xe N& 02 302-3 ('S) transitions, we have
I ff ——0, but for the Xe L2 L3N4 (I-=3) transitions,

rff —2. 82 eV is comparable to the initial-state width

I, =3.05 eV. Second, the resulting calculated line shape
must be convoluted with the spectrometer window func-
tion, which is different in the two experiments. "' ''

In Fig. 4, we further compare the experimental PCI
shifts with lowest-order Dirac-Fock calculations, carried
out by the numerical procedure described in I. The
Dirac-Fock predictions do not agree with the experimen-
tal results, unlike the predictions from the modified
line-shape formula (4) including Qd. On the other hand,
as Fig. 4 shows, the Dirac-Fock predictions coincide
with those of the unmodified Coulomb line-shape formu-
la (4) with Q = 1. This is also true for the line shapes. '

I
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I
I

30.2 — . t

CD

tD

CD

CP

30.0—
0—— o------o

70 80
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too

Photon energy (eV)

IIO 120

FIG. 4. Measured energies of the Xe N5-02 30& 3 ('S) Auger
electron line, from Ref. 19, as a function of incident-photon en-

ergy (crosses). The solid curve was calculated by convoluting
the modified Coulomb line shape [Eq. (4) with Q =Qd] with
the instrumental window function (Ref. 19) and adding the re-
sulting PCI shift to E~ =29.97 eV, which is the measured
asymptotic Auger electron energy (Ref. 11). The dots indicate
the results of lowest-order Dirac-Fock calculations of the PCI
shift (Ref. 1); the dashed curve represents shifts predicted from
the unmodified Coulomb line-shape formula [Eq. (4) with

Q = ll.

~max ~+ ~A (34)

Measured' and calculated Xe L 2-L 3' 4 Coster-
Kronig energies are plotted in Fig. 5. The L2 hole-state
width is much larger than the N5 width, whence the PCI
shifts shown in Fig. 5 are much larger than in the X-OO
case of Fig. 4. It was not possible to determine the abso-
lute Coster-Kronig energy scale in these measurements. '

Consequently, cz was used as a fitting parameter in the
comparison between theory and experiment. The mea-
sured maxima c,„were given in the form

O
L

O

Ia—

IO

I i i I

I

I I I l I I

I I t I I I I

where b, is the PCI shift calculated from Eq. (4) using

Qd with E~ =228 eV, convoluted with Eq. (33) and the
window function. As shown in Fig. 5, it was possible to
obtain a very good fit of the experimental data using the
least-squares value of c~. Replacing 5 with shifts calcu-
lated from Eq. (4) with Q =1 leads to systematic devia-
tions between theory and experiment. The measured re-
sults of Ref. 16 thus confirm the findings of Borst and
Schmidt" regarding the no-passing effect.

V. CONCLUSIONS

I 2 -2 0 2

Relative Auger energy ( eV )

FICr. 3. Comparison between Coulomb line shapes [Eq. (4)]
with Q = Qd (solid curves) and semiclassical line shapes accord-
ing to Kuchiev and Sheinerman (Ref. 15) (dots).

We have demonstrated that introduction of a "dynam-
ical" charge Qd [Eq. (18)] in the analytical Coulomb
line-shape formula [Eq. (4)] takes adequate account of
the no-passing effect ' ' in post-collision interaction dur-
ing Auger transitions following near-threshold photoion-
ization. The present analysis furthermore shows that the
dynamical charge Qd is associated with the final two-
electron continuum state in a resonant scattering process
in which a photoelectron and an Auger electron are em-
itted. It appears that Qd accounts for the screening by
the fast electron of the ionic charge "seen" by the slow
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FICx. 5. Measured Xe L&-L3N4 (J =3) Coster-Kronig elec-
tron energies (Ref. 16) (dots with error bars) as a function of
photon excess energy. The solid curve was calculated by con-
voluting the modified Coulomb line shape [Eq. (4) with

Q =Qd] with the final-state density function and the instru-
mental window function. The energy E~ was derived from the
data by least-squares analysis.

Qd= 1 —&s/ I
&s— (35)

which depends on the angle 8 between the directions of
the photoelectron and the Auger electron. However, Qd
cannot be used in association with the Coulomb line-
shape formula (4) because it is based on the angle-
integrated noncoincidence double photoionization cross
section (1), nor can Qd be incorporated in the semiclassi-
cal model of Russek and Mehlhorn. In contrast, the
approach of Kuchiev and Sheinerrnan' allows for an es-
timate of the dependence of the Auger line shape on 0.

electron, whenever two electrons are emitted into the
continuum, either resonantly or nonresonantly. The
infiuence of Qd becomes significant at rather high veloci-
ties, hence this interaction mode is not directly related to
the Wannier effect which prevails between two slow-
moving electrons in a Coulomb field. ' ' In fact, at high
photon excess energies the major contribution to the
nonresonant double photoionization cross section comes
from a final-state phase-space part which corresponds to
a slow- and a fast moving e-lectron. It is therefore only
when the photoionization process becomes resonant that
segments of the final phase space are probed in which
the two electrons move with high and comparable veloci-
ties. It is for this reason that this delicate screening
effect does not show up in nonresonant double photoion-
ization nor in ordinary electron ionization cross sections.

The conclusions reached above should also follow
from a more detailed quantum-mechanical treatment of
the quadruply differential cross section of process (11),
describing the ejection of the two electrons in specific
directions and with given energies. Here we only make
a few exploratory remarks regarding the angular and ra-
dial correlations of the emitted electrons and their rela-
tionship to the dynamic-charge concept.

According to Eq. (15), one may also introduce a dy-
namic charge

This follows from using Eq. (28) rather than its spherical
average (30) in the evaluation of the line shape. ' One
finds that the parameter g in Eq. (32) is replaced by
g= —Qd/a. „which makes the Auger electron line shape
angle dependent. According to Eq. (35), Qd is singular
for l~s ——Ir„and 8=0. When E=E,„,/E„=l and 8 is
small, the line shapes obtained in coincidence measure-
ments may thus be very different from those observed in
noncoincidence experiments. ' This trend has been
confirmed by detailed calculations of the profile (31) as a
function of E and 8 for the Xe Ns Oz 30-2 3 ('S) transi-
tion. In this analysis the spherical average over angle-
dependent profiles was also obtained and compared with
the profile (31) in which the "spherically averaged"
charge (18) was used. The two results are not identical
except for very low and very high E values. This
discrepancy may be due to the fact that in the cross sec-
tion the 0-dependent profile is multiplied by a factor
which in general depends on the angles between the in-
cident photon beam and the emitted electrons. More
work is clearly needed to clarify this point as well as the
significance of the cusp in Eq. (35).

A fully consistent but very elaborate way to account
quantum mechanically for the no-passing effect ' " in
none oincidence experiments is to evaluate the angle-
integrated double photoionization cross section near the
Auger electron resonance using a final-state wave func-
tion which is a superposition of antisymmetric products
of two central-field wave functions, both describing a
continuum electron in the field of the ion with the un-
screened charge Z+1. This procedure in which the
Hamiltonian matrix is diagonalized with respect to the
unscreened basis requires a generalization of the E-
matrix theory of single-electron photoionization. ' In
this theory, the Hamiltonian matrix is diagonalized with
respect to a basis which consists of linear combinations
of Slater determinants that describe one excited continu-
um electron coupled to the electrons of the excited core.
The new feature that arises when there are two continu-
um electrons is the electron-electron interaction between
doubly ionized states of the same symmetry and parity.
This interaction involves matrix elements of the type
(s,E2

~

r i2'
~
E3e4) with four continuum spin orbitals, la-

beled E„(n =1—4) which may be evaluated using a re-
cently developed computer program. For example, the
treatment of the no-passing effect for the Xe N~-Op 302 3

('S) transitions would involve the calculation of these
electron-electron interaction matrix elements between
continuum orbitals of (5p ) ('S) E&liEzlz ('P) states,
constructed from bound-state Dirac-Fock wave func-
tions and from the two continuum four-spinors that cor-
respond to Qf ——+2, i.e., Z =+1 in Eq. (11). It remains
also to be seen whether the dynamic charge (17) can be
related to the phases of the generalized two-electron I(-
matrix eigenfunctions in the asymptotic region.
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APPENDIX: DERIVATION OF THE COULOMB
LINE-SHAPE FORMULA

In I we considered the process

co+X X++e +e (A 1)

and evaluated the cross section with the use of asymptot-
ic wave functions for the continuum states. The cross
section was calculated in the shake-down limit by taking
into account only the overlap element (5), where the re-
duced dipole matrix (3) was taken to be constant. The
final-state wave function (6) was assumed to be an s wave
in an arbitrary Coulomb field corresponding to an
effective charge Q. The intermediate-state wave function
(7) was taken to be a free spherical s wave. Any short-
range phase shifts were thus neglected.

The resultant amplitude is of the form

(E
~

r') = —[A (tc)+A (tc)],

where tc =&2e,

+ t —mQ/2v(p )
—1/2

2
'

(A2)

—c [(tc+P) —(tc —P) ]I, (A3)

Y. Kuchiev and S. A. Sheinerman for sending us a copy
of their work prior to publication. This research was
supported in part by the National Science Foundation
through Grant No. PHY-8516788, by the U.S. Air Force
Office of Scientific Research through Grant No.
AFOSR-87-0026, and by the Finnish Academy of Sci-
ences.

The quantities appearing in Eqs. (A3) and (A4) are
defined as follows:

c+ ——I (+iQ/tc)(2tc) '~ 'exp[+i argI (1 —iQ/ tc)], (A5)

a+= I+iQ!tc,

P =2E,„,+i I, ,

(A6)

F ( —
—,', i Q /tc; —,

'—
; +P/x. )

(a. +p) +

(A7)

F ( —
—,', +iQ/tc; —,';+P/tc)

(tc+ p)
(A8)

In Eqs. (A7) and (A8), the upper signs refer to J, and J3,
and the lower signs to Jz and J4', F is the hyper-
geometric function.

The Coulomb line shape is given by Eq. (4) for the
photoelectron line. In order to obtain the Auger elec-
tron line shape, E in Eq. (4) must be replaced by
E' —c =E„,+ c.~ —E. This expression is normalized so
that it becomes a normalized Lorentzian profile in the
limit Q~O. Depending on Q, various line shapes are
obtained. The two line shapes discussed in the text cor-
respond to Q = 1 and Q =Qd, with the dynamic charge
Qd defined by Eq. (18).

and

Az(tc)=(+2/2P)e ~ "[c+(J&—J2)+c (J3 —J~)] .

(A4)
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