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Calculation of neutron cross sections and thermalization parameters for molecular gases
using a synthetic scattering function. I
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Based on a synthetic scattering function describing the interaction of thermal neutrons with
molecular gases, we developed analytical expressions for cross sections of interest in reactor-
physics calculations; these are the zero- and first-order angular moments of the double-differential
cross section, cro(EO, E) and o. l(EO, E), respectively, and the total scattering cross section o. (Eo).
The formulas presented here allow then a very fast and reliable evaluation of thermalization pa-
rameters and transport coefficients at any desired temperature of the moderating media. One of
the main applications of this study is the generation of (thermal) nuclear data libraries for reactor
codes, using a minimum set of input information. In the following paper, calculations based on
our formulas are compared with experimental data and other theories for some commonly used
moderators under different physical conditions.

I. INTRODUCTION

Reactor-physics calculations involving thermal neu-
tron energies demand the knowledge of reliable cross-
section information. In fact, this kind of requirement to-
gether with the fundamental interest in the atomic
motion in solids and liquids were the main motivations
for many slow-neutron inelastic scattering studies.
Furthermore, much of that work concentrated particu-
larly on hydrogenous molecular systems due to their im-
portance as reactor moderators.

A central quantity to describe the interaction of
thermal neutrons with condensed matter is the Van
Hove scattering function' S(Q, co), as it embodies all
the structural and dynamical properties of the scattering
system. On the experimental side, a great deal of effort
was dedicated to double-differential cross-section mea-
surements but, even though a large portion of the
relevant features in the co-Q plane can thus be revealed,
there will always be a particular problem for which the
experimental data do not cover exactly the required ma-
terial and physical conditions.

Consequently, many models were developed to de-
scribe neutron scattering from molecules as approxima-
tions to the essentially exact formalism of Zemach and
Cilauber, with the aim of making the expressions more
amenable for calculations. Those models and their range
of applicability have been extensively discussed in the
literature. As a result of these studies, large comput-
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er codes were written to calculate a number of quantities
which are relevant to the problem of neutron thermaliza-
tion. ' It became then possible to perform detailed cal-
culations of scattering kernels and thermal neutron spec-
tra in a moderating media, although they were always
computer-time consuming, even for a simple system
configuration.

Most present-day lattice codes are supplied with a
nuclear data library containing group constants for fast
and thermal neutron energies, the data being usually
generated from an evaluated library like the Evaluated

Nuclear Data File (ENDF/B). ' ' " For practical
reasons, those cross-section libraries involve a certain
number of materials with the corresponding data at a
few temperatures for the thermal groups. Although it is
possible to produce an extended version of a library to
solve a specific problem, ' rather long and expensive
procedures are normally required.

In this work we present some general results —which
are relevant to reactor physics calculations —derived
from a synthetic scattering function T ( Q, co; Eo ) which
has been developed to describe the interaction of slow
neutrons with molecular gases. ' Unlike the dynamic
structure factor S(Q,co), the synthetic function does not
contain a detailed description of the atomic motions in
the molecular units nor correlation between pairs, but
rather it is intended to reproduce satisfactorily some in-
tegral properties of S(Q, co) (the self-component). We
have exploited the very simple form of T(g, co;Eo) to
derive analytic expressions for scattering kernels and to-
tal cross sections. Some preliminary results were already
presented with the introduction of the synthetic model,
and they have encouraged us to produce a consistent set
of formulas which allow a fast and reliable evaluation of
quantities of interest in neutron thermalization prob-
lems. Of course, our final objective is the generation of
cross-section libraries for molecular systems at any
desired temperature to feed a reactor computer code.
Only the incoherent components of the neutron-
scattering process are considered, this approximation be-
ing usually a good one for this kind of calculations.

In the following paper'" we make use of the formulas
which are here presented to perform a rather wide range
of calculations for some hydrogenous molecules (H20,
DzO, C6H6), and these results are there compared with
experimental data as well as with other theories.

II. THE MODEL

The synthetic model has been fully described previous-
ly' and therefore only a brief account of its supporting
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arguments and characteristic features will be given here.
The scattering system is considered to be -an ideal

molecular gas at temperature T, which means that the
translational motion of the molecules' center of mass is
taken as that corresponding to a free particle.

Although the motion of the molecular unit may be
severely hindered in a real system due to the presence of
its neighbors, it is only for very slow neutrons that this
collisional regime will become dominant. Consequently,
we consider a low-energy limit for the incident neutrons
such that the experimental time scale is shorter than
that characteristic of diffusive motion. The attainment
of this condition clearly depends on the particular sys-
tem under study, but for most real cases it implies neu-
tron energies (a few meV) which are outside the region
of main interest in reactor-physics calculations.

The internal degrees of freedom of the molecule are
assumed to be not coupled. This is a first approximation
to the real situation which is valid as long as the ampli-
tudes of the atomic oscillations around their equilibrium
positions are small compared to the interatomic dis-
tances in the molecule. Each of the k internal modes is
represented by an Einstein oscillator with angular fre-
quency co~ and effective mass M~.

From the requirement that the free-atom cross section
be approached at high neutron energies (large compared
with k&T and the largest A'coq), a normalization condi-
tion for these masses is obtained:

where M, l is the molecular mass and M is the mass of
the nucleus under consideration (in neutron mass units).
An additional constraint is imposed on the rotational
mass Mz, namely

1 1 1+M
(2)

where W is the (spherically averaged) tensorial mass in-
troduced by Sachs and Teller' to describe the combined
effect of translations and rotations. The remaining vi-
brational masses are determined by the relative weights
of the related amplitude vectors.

Correspondingly, at epithermal neutron energies the
scattering nuclei are viewed as possessing a kinetic ener-

gy associated with a temperature T given by

Mk~T=k~T+ g (Eg —ksT),
Mg

(3)

where E& is the mean energy of the k oscillator.
From the analysis of the forms that S(Q, co) takes for

small and large energy transfer A'co in the scattering pro-
cess, a function T ( Q, co;Eo ) is proposed which uses the
incident neutron energy Ep as a variation parameter.
The main characteristics of the molecular dynamics are
then retained through the introduction of an effective
mass, temperature, and vibrational factors. This is
achieved by the use of the Krieger-Nelkin' procedure
for orientational averages, and by the introduction of
switching functions Pq defined by

P~(Eo)=
exp

exp

Ep —%cog

Ao. ~

flex) g

Ao g

2
i5co g

Av~

ill g
—Ep1+erf

Ao- q

2
i6co g i6co g1+erf
Ao. ~ Ao. q

where the quantities o.
& are representatives of the width

of the frequency spectrum in the vicinity or" ~~.
Every P~ tends to zero as the corresponding mode k

becomes fully excited from the point of view of the col-
lision process, that is when a quasiclassical treatment is
applicable. At the other end, the value of P~ is 1 if the
neutron cannot excite any of the k-oscillator energy lev-
els. At intermediate energies, the variation of P& should
depend on the shape of that part of the molecu]ar fre-
quency spectrum associated with the mode k. The ex-
pression given by Eq. (4) meets the above requirements
and its supporting arguments are discussed in Ref. 13;
its dependence on the temperature of the system is dic-
tated by the shifting and broadening of the correspond-
ing part of the frequency spectrum. '

An effective mass for the nucleus under consideratioo
is defined by

1 (1 —Pg)

Mmol

In this way, p takes values ranging from M, l to M, ac-
cording to the state of excitation of the different internal
modes.

By requiring consistency between the first and second
moments of the scattering function, an expression for the
effective temperature ~ is obtained:

ks T (1 Pg) kg T — Pg

M ~ M M Mmal

where k&T is given by Eq. (3). Clearly r tends to T, the
actual system temperature, or T, the "free-atom temper-
ature, " according to whether all Pz are 1 or zero, re-
spectively.

Finally, an effective Debye-Wailer factor I is defined

by

Pq (2nq+1)
I =g

Mg %cog
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f2Q2
T(g, co;Eo) =Sp,(g, co)exp —I +C„,,(g, co) .

where nq is the thermally averaged occupation number
of the A, mode.

With the above definitions, the atomic synthetic
scattering function which describes a scattering process
with energy and momentum exchange fico and Rg, re-
spectively, is written as

(A'co fi Q —/2p)
Q exp

2A' Q p 'keir
(9)

whereas C„,(g, co) is a correction term given by

In this expression S„,(g, co) denotes the scattering
function for an ideal gas of particles of mass p at tem-
perature ~:

S„,(g, co)=(2~rfi Q p 'keir)

f2Q 2 $2Q 2

C„,(g, co) = —,
' g p2 ni R Q+S„„(g+,co~ )exp —I +(1+ni )fi g S„,(g, co )exp —I

2 2

with pi Pi l(Mi,——fico' ).
Here, g+ is the modulus of the scattering vector cor-

responding to a fictitious incident energy Eo &=Eo+Aco&. This correction term accounts for one-
phonon processes which may be operative for those
cases of thermal- or collision-induced excitations but
with a neutron energy not high enough to allow a
quasiclassical treatment of the corresponding mode.

With the notation

f2 2

S„,(g, co) =S„,(g, co)exp —I

one finally obtains

T(g, ~;Eo)=S„,(g, ~)

—g pi. ni. S„,(g+, co+ )

+(1+n ) S„,(g, co )

(12)

This is the mathematical expression of the synthetic
model. It does not pretend to be a real scattering func-
tion model for molecules, insofar as the full dynamics of
the atomic motion is not accounted for in a detailed
manner and also because only the incoherent contribu-
tion to the scattering process is considered. In Sec. III,
however, we take advantage of its formal simplicity to
derive analytical expressions for some magnitudes of in-
terest in reactor physics.

Work is in progress involving applications of the syn-
thetic model to other fields, examples of which are the
evaluation of inelasticity corrections in neutron
diffraction work on molecular liquids' and the optimiza-
tion of neutron production and time response of modera-
tors used in pulsed neutron sources. '

III. EVALUATION OF CROSS SECTIONS

da k NT ~EdQdE k, 4ir
(13)

where ko and k denote the (modulus of) incident and
scattered neutron wave vectors, respectively, v runs over
the species of nuclide in the same environment, each
with a number N of them and with a bound scattering
cross section o. .

This magnitude has been and continues to be' ' ' a
valuable source of information on the dynamics of con-
densed systems. However, from the point of view of
neutron thermalization studies, the measurement of
double-difFerential cross sections was mainly aimed at
the determination of a continuous frequency spectrum
according to the Egelstaff extrapolation method. This
quantity or its Fourier transform, the (self-) velocity-
velocity correlatio~ function, is related to the width
function in the frame of the Gaussian approximation,
so that its knowledge permits us to obtain the scattering
Iaw by numerical Fourier transformation of the inter-
mediate scattering function. Although well supported
on physical grounds, this is usually a rather lengthy and
expensive procedure and furthermore, the information
thus acquired is unnecessarily rich for most reactor-
physics problems.

A. Energy-transfer cross sections

1. The P0 kernel

We start by considering the isotropic scattering ker-
nel, which is

cro(Eo, E)=2ir f d (cos8)
1 d 0

—1 dQdE (14)

or, in terms of the synthetic model

Following in line, the next quantities of interest are
the energy-transfer kernels, defined as the coefficients of
the double-differential cross section expansion in a base
of Legendre polynomials.

The most basic magnitude which is experimentally ac-
cessible is the double-differential cross section. For the
scattering of an unpolarized beam of neutrons from a
molecular system, it is given by

1
cro(Eo E)= ger~ ~o(Eo E)

4m.

where

(15)
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k
0'p(Ep, E)=277 d (cosO)T (Q, ro'Ep)

ko
(16)

This is the contribution to the molecular scattering
kernel corresponding to each atomic species v. In what
follows we will drop this index when writing expressions
for the atomic contributions, keeping in mind that even-
tually they must be added according to Eq. (15) to give
the molecular cross section.

To proceed with the calculation, it is useful to
remember that S„,(g, co) as defined in Eq. (11) can also
be written

d c'osO S„',
ko

=exp (xp —x ) o„,(Ep, E)2 2

=0 0(Ep, E),

and S&, (Q, co) denoting a free-gas scattering function,
Eq. (9), but for particles of mass IM' at temperature r'.

Then, from Eq. (16) and the principal term of Eq. (12),
we have

S„,(g, co)=exp —,S„(g,co),xnr (1—f)&~
2 +7

with

f =(1+4I k rp) ', p'= fp, , r'= fr,

(17)
where we are using the notation

krr„, (Eo,E)=2~ d (cosO)S„, (Q, co)
ko

and x =E /kz~'.
Similarly, we obtain

(19)

1/2

2m f d (cosO)S„,(g+, co+) = 1+
o Xo

exp
1 f 2

— z z +(x o
—x +x i ) o „' ~'(Eo i„E)

2 p )& (20)

cro(Eo i,E)+(1+ni ) 1—

for the contributions originated in the correction term of the synthetic function. Collecting the previous results, we
formally can write the (isotropic) atomic scattering kernel as

1/2 ' 1/2
0 Xp a

cro(Ep, E)=crp(Ep, E)—g pi ni 1+ rr p(E p i„E) . (21)
Xo Xp

Clearly, it is the formal simplicity of the synthetic model that allows us to make further progress in this derivation,
because in spite of the appearance of derivatives with respect to I in the last formula, we know the analytic expres-
sion for the free-gas scattering kernel, Eq. (19). With the notation

p'+1 p' —1

I1/2 ' ~ ~ I1/22p 2p

and after some lengthy algebra, we finally obtain

(22)

pro(Ep, E)=exp (xp —x ) o„,(Ep, E)

1/2
Xg

+2@'k 'iigrpi ni 1+
&

X(Ep Ei)+(1+ni ) 1—
Xo

Here we have defined

1/2
Xg

X(Ep i,E)
Xo

(23)

g(Ep, E)=exp (xo —x )
2

Xp —X2 2

o „,(Eo,E)+g„,(Ep, E) (24)

with
I

o„,(Eo,E)= ~ Ierf(ilx —pxp)+erf(i)x +pxo) —exp(xp —x )[erf(px —r)xp)+erf(px +ilxp)]I,
2ka&'xo

(25)

and
I

g„,(Ep, E)= [(xo
—x )exp(x o

—x )[erf(px —exp ) + erf(px + rjxp ) ]
2k~~ xp

1 x +xo)exP[ —(ilx Pxo) ]+ (x xo)exP[ —(i)x +Pxo) ]
2 2

(
I )i/2

+exP(x o
—x ) I (x +x o )exP [—(Px —ilx p ) ] + (x —x o )exP [ —(Px + ilx p ) ] ] )],

(26)
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where the upper (lower) sign holds for upscattering
(downscattering) processes.

The formulas given above, Eqs. (23)—(26) with the
definitions (22), are the analytic expression of the isotro-
pic energy-transfer kernel derived from the synthetic
scattering function. It is convenient to make a few com-
ments on some of its features.

As the model itself, the kernel contains a principal
and a correction term as clearly displayed in Eq. (23),
the correction part involving the evaluation of quantities
at the fictitious neutron energies Ep &. The term propor-
tional to n~ accounts for phonon annihilation processes,
while that containing the factor (I+ni, ) corresponds to
phonon creation. Of course, this latter term only exists
when the incident neutron energy is high enough to al-
low the transfer of a quantum of energy to the A, oscilla-
tor.

The assumption that an Einstein oscillator represents
the relevant part of the actual frequency spectrum could
be unrealistic, specially for rotations where usually a
fairly broad band of eigenfrequencies shows up. In the
spirit of our prescription, ' this is accounted for through
the widths o.~ associated with each eigenfrequency co&,
such that the phonon contributions X~ are evaluated at
the eff'ective frequencies co~ ——~~ —o.~.

2. The P~ kernel

The first anisotropic scattering kernel is defined by

1 d 0o. i(Ep, E)=2m. d (cos8)cos8—1

and, according to the synthetic model, it will be
represented by an expression of the form

' 1/2
0 Xg

o i(Ep E)=o i(Ep E)+2@ kiter +pi ni 1+
Xp

ir(Eo+i„E)+(1+ni ) 1—
' 1/2

2
Xp

a(E p i„E). (27)

where the functions F1 and ~ arise from the principal and correction terms, respectively. Their explicit forms are de-
rived in the Appendix, with the result

—1(xx, )-
oi(Eo, E)= [(xo+x )oo(Eo E) AX(Eo E)] (28)

and

(x,x)-'
x(Eo,E)=

2

Xp —X2 2

(xo+x ) 1+
I

[12+6(xo—x )+(xo —x ) ] oo(Eo, E)

+exp
1 f »—», », a(xo x ) [xo+x 2p (4+xo x )]f(Eo E) 2p f g(Eo E) (29)

where the functions X and g„, are given by Eqs. (24)
and (26), respectively, while oo denotes the principal
term of the isotropic kernel, Eq. (23).

It is worthwhile to emphasize that oo(Eo, E) and
o i(Ep, E) are the analytical expressions of the Po and P,
energy-transfer kernels, respectively, corresponding to a
nucleus bound to a semirigid molecule. By this we mean
a situation in which its complete dynamics can be de-
scribed in terms of an eff'ective translational motion
modulated by a vibrational factor [cf., Eq. (11)], as first
proposed by Krieger and Nelkin. ' Furthermore, by
taking the limit I ~0 in those formulas one regains the
Pp and P1 kernels corresponding to a monatomic gas of
particles of mass p in equilibrium at temperature ~.

B. Total cross section

o (Eo ) = g Nvcr v(Eo)~
4m

(30)

where v, o. , and N have the same meaning as in Eq.
(13) and cr „(Ep) denotes the atomic contribution.

For this quantity we obtain

The expression of the total cross section derived from
the synthetic model has been already presented, ' but for
the sake of completeness we write down the formulas
again using the notation of the preceding sections.

The total cross section per molecule for an incident
neutron energy Ep is

1/2
Xg

A(Eo i )+(1+ni ) 1 — A(Eo i )
Xp

' 1/2

o (Eo)=o (Eo)+—g pi ni 1+ (31)
X 02

where the first term of the right-hand side is the result derived by Krieger and Nelkin' for the total cross section cor-
responding to the scattering function S„,(Q,m) as defined in Eq. (11):

o (Eo)= [erf(Z' ) —(1 —C)' erf[Z'~ (1 —C)' ] exp( —ZC)]ZIk ~' (32)



5590 J. R. GRANADA, V. H. GILLETTE, AND R. E. MAYER 36

The other quantities appearing in Eq. (31) are
1/2

A(EO )=, —erf(Z ) —AAT@ 1 )/2 Z
Zk ~' I 77

e —(1—C)' e erf[Z' (1—C)' ] —+ AZ+ A

r 2(1—C)
(33)

with

Z =pxp2

C=
2

[1+V'(V'+2f)] '

and
2

1 —C
A =4p'kgb'

+p

Also, from Eq. (32)

k T8a~"(E, 0}=a
mM, )Ep

where

(35)

a=8aM „/[(1+M „)+4I,„M „ksT] .
There is no possibility of phonon creation in this limit

of subthermal incident neutrons, and then we finally ob-
tain

cr (ED~0)

=Ep e—1/2

Of course, the value of cr thus obtained coincides at
each incident neutron energy Ep with the integral over
final energies of the synthetic scattering kernel, Eq. (23).

By an analogous reason to that already discussed in
Sec. III A 1, the functions A(E o & ) are evaluated at
effective phonon frequencies co&

——co& —o z(x ~ =A'co~ /
ksr'). The term involving A(EO &) in Eq. (31) accounts
for the contribution due to phonon creation processes
and only exists when Ep )Ac@&.

We must emphasize again that the phononlike contri-
butions to the cross sections are originated in the correc-
tion terms introduced to account for those scattering
processes involving small energy transfers. On the other
hand, the principal (or A, independent) term collects the
inelastic contributions as the neutron energy increases,
because all the terms in the phonon expansion are then
accounted for through the short collision-time treatment
of the molecule internal degrees of freedom.

The forms adopted by the total cross section, Eq. (31),
in the limits of low- and high-incident neutron energy
(compared with the characteristic excitation energies
%co~} are easily obtained from the prescribed variation
(Sec. II) of the effective quantities Icc, r, and I .

For ED~0 we find from Eqs. (4) to (7):

(2ni +1}
@~M „, r T, andI I (34)

MgAmg

because all P~'s are then equal to zero. The synthetic
model reduces to the form S~ r-(Q, co) and therefore the
total cross section in this energy range is given by

cr „(Eo»A'coo)

4~M
(1+M)'

erf(y ' )+ e
1

&my
(37)

with y =MEp/k&T. Moreover, in the limit of very high
neutron energy one recovers the asymptotic expression

4~M~ 1 kg T
cr, (EO~ oo )= 1+—

(1+M)2 2 MEo
(38)

which clearly shows that in this energy limit the atoms
are seen as possessing a kinetic energy associated to the
temperature T rather than T. This is a general result
valid for any state of the scattering system.

C. Diffusion parameters

With the magnitudes previously defined in this sec-
tion, we are in a position to evaluate a number of quanti-
ties of interest in neutron- and reactor-physics calcula-
tions. These are the transport coefficients whose expres-
sions can be found in standard textbooks, but we write
them here for the sake of completeness as they are used
extensively in the following paper to test our model pre-
dictions.

The average cosine of the scattering angle is given by

(cos8(EO) ) = f dE cr, (EO, E) f dE cro(EO, E),
p p

(39)

where o.
p and o.

&
are the zero- and first-order angular

moments of the double-di6'erential cross section, respec-
tively, which are expressed by Eqs. (23) and (27) accord-
ing to the synthetic model.

For a molecular system, the macroscopic transport
cross section is

!

where the variables entering in the definition of A, Eq.
(33), are evaluated according to the values of the basic
parameters as given in (34). It is clear that in the case of
a hypothetical nonvibrating molecule (I =0), the above
expressions reduce to the well-known result for a gas of
particles of mass M, ] at temperature T.

In the opposite limit, when Ep))%co& for all A, , we find
that p~M, I ~0, and

M 'Acogr~'r=T+ g (n, + —,') T-
Mg k~

(ks T)'r~
+ ~ g» ~(~o+x~)'"«Eo, ~)

(36)

X,„(E )=oN o (Eo)[1—(cos8(Eo) ) ], (40)

where N denotes the molecular number density.
cr (Eo} is the total cross section per molecule as defined
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by Eq. (30) and explicitly given by Eqs. (31)—(33) for the
synthetic model. Clearly, X„(E0) is a strongly
temperature-dependent quantity, basically due to the
variation of density but also because the energy transfer
and total cross sections themselves depend on the tem-
perature.

The diffusion coefficient D can be written as

D ( T) = f dEOD (Eo, T)Mz. (EO ),
0

(41)

where Mr(EO) is a normalized Maxwellian fiux distribu-
tion

E
Mr (E)= exp( E /k—z T),

(ks T)
(42)

and D (Eo, T) is an energy-dependent function defined by

D (E, T) =
I 3[X„(E)+X,(E)]) (43)

Do(T)=D(T)u(T), (44}

where U ( T) is the average velocity for a Maxwellian
spectrum at the temperature T of the medium

U ( T) = l.448 813 X 10 &T (cm/sec ) . (45)

Another related quantity is the thermal neutron
diffusion length, given by

L(T)= [D(T)/X, (T)]'~2,

where

X, (T)= f dE X (E)MT(E) .
0

(46)

Finally, the diffusion cooling constant C(T) is given
b 27

2— 2

C(T) D U 1+2 d 1~
2N M2 d lnT„

(47)

where

M~(T) =(ks T) f f dEodE Mr(EO)
0 0

In this last expression X, represents the macroscopic ab-
sorption cross section of the molecular system. We
wanted to write down explicitly the form of D(E, T), as
there are experimental data available for this quantity at
several energies and temperatures; this information has
been very rarely used to test theoretical models.

The neutron diffusion constant Do( T) of a homogene-
ous medium is related to the diffusion coefficient D(T)
by

with the definitions

sg)(T)= f dEMr(E}D(E, T)(E E—),
0

and

E=—2k~T .

Values of the diffusion cooling constant obtained from
these expressions should only be taken as estimators of
the actual ones, because Eq. (49) is based in the neutron
temperature concept and diffusion theory to represent
the energy and space dependence of the neutron field.
Of course, the real value corresponding to the synthetic
model is that one obtained by solving the Boltzmann
transport equation with this kernel. In spite of the ap-
proximations made en route to deriving Eq. (49), we
show in the following paper' that it provides good re-
sults compared with experimental data for the modera-
tors there considered.

IV. SUMMARY

We have used the synthetic scattering function
T(Q, co;Eo) describing the interaction of thermal neu-
trons with molecules to derive some expressions for
cross sections of interest in neutron and reactor physics.
Certainly, there are many other quantities which can be
evaluated once the scattering law is known, but in this
work we wanted to concentrate ourselves on the formal
derivation of those analytical results from the synthetic
model. In the following paper we show a range of calcu-
lations based on the expressions presented here for some
commonly used moderators, namely H20, D20, and
C6H6. From the comparison with experimental data and
other theories, it becomes clear that our formulas pro-
vide a very good representation of many quantities
relevant to the problem of neutron thermalization. We
hope that the results presented here could serve as a tool
to produce in a very fast—yet accurate —way the basic
nuclear data to describe the behavior of the neutron field
in a moderating media.

In subsequent publications we will present results of
moderator optimization for pulsed neutron sources using
the synthetic scattering function at the core of a Monte
Carlo simulation, as well as a combined treatment of
multiple-scattering and inelasticity effects (on the self-
component) in neutron diffraction work on molecular
systems.

X (Eo —E) o 0(EO,E) (48)

2v GDC(T)=
N~ M~(k~ T)

(49)

is the rate of mean squared energy exchanged by col-
lision between a thermal neutron and the scattering sys-
tem. In the approximation of evaluating the derivative
in Eq. (47) with respect to the medium temperature T
rather than the neutron temperature T„, we obtain the
formula

APPENDIX

We present here the derivation of the explicit forms of
the functions o,(Eo,E} and Ir(EO, E), which enter in the
expression of the P, energy-transfer kernel, Eq. (27). In
order to evaluate them taking advantage of some results
already derived in Sec. III, let us first consider an inter-
mediate kernel
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k f2Q 2

o; (Eo,E)=2m. d (cosO) T(g, co;Eo ),k, 2

where

f2 2

2
=Eo+E —2(EEp)'i cosO,

and T(g, ro;Ep) is the (atomic) synthetic scattering function.

According to Eqs. (8) and (10), we find

(Al)

Eo,~
cr;(Ep, E)=2@'ksr'X(Eo, E)+ QP2 n2

Eo

' 1/2
Eo,~P+(Eo,E)+(1+n & )
Eo

1/2

(E E) (A2)

where P (Eo,E—) denote the integrals
1/2

2 2 2 2
Eo,~ ~ k

(Eo,E)—=2~ j d (cosO) S„,( Q+, co+ )
2Q g+ KN

Ep kp 2

=2p kg%

1/2
Eo,~ + +[(Ep+E)X(Ep 2 E)—2+EpE K(Ep 2 E)] (A3)

On the other hand, from Eq. (Al):

rJ (Eo E)= (Eo+E)op(Eo E) 2+EpE ~ i(Eo E)

and therefore

(A4)

o i(Ep,E)=, [(Eo+E)cro(Eo,E) 2p'kgb'X(E—o,E)]
2(E,E)'"

Eo,~+28 km& gp~
1/2

Eo, ~
K(Eo+2,E)+(1+n2 )

' 1/2

K(Eo ~ E) (AS}

Here we are denoting by o o(Eo,E) the principal term of the isotropic energy-transfer kernel o o(Eo,E), Eq. (23), the
remaining correction term in it being cancelled out by those proportional to X(Ep q, E) contained in cr &(Ep,E) through
Eq. (A3).

From the comparison of Eqs. (27) and (AS), it follows

o ~(Eo,E)=2m. I d (cosO) cOoSs„, (g, )r=o, &2 [(Ep+E)pro(Eo, E)

2P'kyar'X(E—

p, E)],
ko 2(E E}'

(A6)

which is the analytical expression of the P1 kernel for a nucleus in a semirigid molecule. The corresponding mona-

tomic gas formula is immediately obtained by taking the limit I ~0 in Eq. (A6).
To complete this calculation we must evaluate the correction term in cr ~(Ep, E). Noting that

2p kgb

1/2
O, A,

Ep

2 2
k g+ KN

K(E+p&, E) —=2m. d (cosO) cosO S„,(g+, co+)
k, 2

a
2m. d (cosO) cosOS„,(g+, co+)KX

0 —1

from which

1K(Ep 2 E)=(—2p kgb ) 0'](E gt Eo) (A7)

we finally obtain

K(Eo,E)= 1

2x px

2 2
Xp —X

(xo+x ) 1+
t

2
[12+6(x p

—x )+ (x o
—x ) ] O. o(Ep, E)

[xo -+x —2p'(4+x 2o —x ) g(Ep, E) 2p'f g(Ep, E) e—xp
df

(x,' —x ') . (A8)
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