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We use the generalized WKB method with the Coulomb wave function as the comparison func-
tion to derive expressions for normalizations and phase shifts in a screened Coulomb potential as
simple quadrature integrals. We compare our results with exact numerical results and with those
of the standard WKB method. In most cases our results are good and more accurate than the
standard WKB results. We also obtain the high-energy limits of our expressions and show that
they coincide with the first-order high-energy-limit expansion of the analytic perturbation theory.

I. INTRODUCTION

The normalization of continuum wave functions and
their phase shifts plays an important role in the calcula-
tion of various atomic processes, such as photoioniza-
tion' and pair production.? We report here the results of
applying a modified WKB method to the calculation of
nonrelativistic normalizations and phase shifts in
screened Coulomb potentials. As comparison functions
we use nonrelativistic Coulomb wave functions; for a po-
tential we consider the numerical self-consistent
Herman-Skillman® potential with a long-range Latter
tail.* We consider Coulomb functions corresponding to
the nuclear charge, the ionic charge, and zero charge
(the usual free function case). For each of these we con-
sider both the original and the Langer-modified® forms.
A preliminary report of some of our results has been
given previously.® The idea of generalizing the exponen-
tial reference functions of the ordinary WKB method to
solutions of an arbitrary Schrédinger equation was sug-
gested by Miller and Good.” Subsequently Bartlett,
Rice, and Good® applied this approach to the
Schrodinger equation in the point Coulomb potential,
utilizing free-particle spherical Bessel functions as com-
parison functions. The method was independently rein-
vented by Dingle,” who suggested a list of comparison
functions. Recently, Durand and Durand!® have dis-
cussed this approach, motivated by quark-confining po-
tentials, considering as reference comparison functions
spherical Bessel functions, Coulomb wave functions, and
harmonic-oscillator wave functions.

Our own work is focused on the screened Coulomb
potential appropriate for scattering in the field of an
atom. We examine how well normalizations and phase
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shifts can be calculated with this approach, utilizing
continuum Coulomb wave functions as our comparison
functions. From this formalism we also obtain high-
energy-limit expressions which can be compared with
those which have been obtained in other ways.

It should be understood that we do not expect these
WKB methods to be useful in actual calculations of
wave-function shapes. The effort involved in solving the
differential equation for the coordinate transformation
function p(R), together with the Coulomb functions, is
not smaller than the effort involved in the direct numeri-
cal integration of the Schrodinger equation in a screened
Coulomb potential. Rather, what we have achieved with
this formalism are expressions for the normalizations
and phase shifts, in terms of quadrature formulas. These
expressions are simple to evaluate and relatively accu-
rate.

In Sec. IT we present the generalized WKB formalism,
for clarity summarizing briefly some results from previ-
ous work’”® which we need for our derivation. In Sec.
III we derive our results for the normalizations and
phase shifts of continuum wave functions. In Sec. IV we
derive the high-energy limits of our expressions and
compare them with the analytic perturbation theory
(APT).'"12 In Sec. V we present our results and examine
their accuracy, in comparison with direct numerical cal-
culations. The study was carried out for carbon, alumi-
num, and iron, for energies in the range of 0.001-100
keV, and for angular momenta / =0,1,2,4,10. Results
are generally very good, with the worst error in carbon
for normalization being at the 10% level for / =2 at 10
eV, in phase shift at the 0.1-rad level for / =1 at 20 eV.
These are situations in which the method could have
been expected to become poor, in view of the proximity
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to the double-well feature of the effective potential which
has not been included in the derivation. Otherwise, one
can obtain normalizations to at least 1% and phases to
0.01 rad (except for I =0).

II. GENERAL FORMALISM

We follow the nonrelativistic formulation of the gen-
eralized WKB method”® to compute normalizations and
phase shifts for continuum states in screened Coulomb
potentials. We will concentrate on displaying normaliza-
tions and phase shifts rather than wave functions. Our
aim is to find a WKB-type approximate solution to the
radial Schrodinger equation

d*Y(r)  |2m Ze? I(I+1)
—- |E -t =
a2 + 72 += S(r) e Y(r)=0,
2.1
where S(r), the screening function, gives the

modification of the Coulomb potential of point nuclear
charge Z. Let us define (with 7 negative to conform
with Ref. 13, Eq. 14.1.1)

_ V2mE _ mZe? _ aZ
p ﬁ ’ "7 th - }\Cp ’
2 (2.2)
a=5— A =i
fic’ ¢ mc
Then Eq. (2.1) becomes, for p=pr,
2
4Yp) |\ k2p)¥(p)=0, 2.3)
dp
where
k(z)(p)=1_277S(P)_1(1~;~1) ’ (2.42)
p P
and
s(p)=S % =S(r) (2.4b)

is a function also of energy (p) for fixed p, although we
have suppressed the energy dependence in our notation.

The generalized WKB method”’ assumes that we al-
ready know a solution of the equation

d*U(R) 5

TE +K5(R)U(R)=0 . (2.5)

Here U(R) is called the comparison function. We will
look for an approximation y (p) to Y (p) which has the

form
y(p)=A(p)U(R(p)), (2.6)

where A (p) is a regular function to be determined. In-
serting Eq. (2.6) into Eq. (2.3) and using Eq. (2.5) yields
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d?A dR
U +k24—K24 |—
de 0 0 dp
dU |.dA dR d’R
= === =0. 27
dR | dp dp + dp? @D

Since A(p) is arbitrary we can make the coefficient of
dU /dR in Eq. (2.7) equal to zero by choosing

A 2(p)d—1;l%L)=C =const .

The physically interesting case is when C=£0. (If
C =0, either 4 =0, in which case y =0, or R =const, in
which case y is the same as 4.) Now, the lowest-order
WKB approximation is made in one of two ways: (i) by
neglecting the second-order derivative d’A4 /dp® (see
Refs. 7 and 9) or (ii) by neglecting

(2.8)

a4, 411 [dr
dp* 4 |p* R? |dp
(see Ref. 5). In either case we obtain, by (2.7) and (2.8),
2
Z—’; =Kk—2i% : (2.9)
where

2

k2(p)=1_ES_(Bl_A_2
P P

2H  A?
KXR)=1—"H——,
(R) R &

(2.10)

while the expression for A depends on the choice noted
above of the term to be neglected. In the first case
above, A=V'[(I +1), and in the second case, A=/ +1.
Note, in the first case, A=0 for [/ =0, while in the
second case, A >0 for all [; this is the origin of the im-
provement for s waves with Langer modification (second
case). Given a solution for R; then A, which is assumed
to be a regular function of p, is obtained from Eq. (2.8).
For the sake of simplicity we impose two conditions on
our comparison function and its argument: (a) We
demand that dR /dp should be nonsingular (hence 4 is
nonzero). (b) The fundamental behavior of the compar-
ison function near the origin (R —0) and in the asymp-
totic region (R — oo ) should be similar to that of the ex-
act wave function (when p—0 and oo, respectively). If
A=0 this will require preferably that H =7, certainly
that H40. Therefore,

dR _ k(p)

= 0, 2.11
dp _K(R) @112
which is equivalent to
P R
JPkodx = [7 K (x)dx (2.11b)

if the integrals exist. Thus a family of solutions R as a
function of p is obtained. It also follows that if k (p) is
zero or singular at a point p, then K(R (p)) must also be
zero or have singularity of the same order at Ry =R (py)
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and vice versa. Equation (2.11b) then becomes

P R

[ kexidx= [ K (xdx . (2.12)
This serves to define the desired particular solution in
the family of solutions. Note that this can be satisfied by
a single-valued real function p(R) only if £ and K have
the same number of zeros and singularities. This can fail
at low energies for effective atomic potentials of a given /
with a double well, as in the barriers which lead to shape
resonances. (The problem will also arise for bound
states.) For / and energies near such a case the results
will not be as good. Even if the problem arises for non-
physical / (i.e., noninteger), nearby physical / can be ex-
pected to be affected.

III. CONTINUUM WAVE FUNCTIONS

We now choose the comparison function U (R) to be a
regular solution of the Schrédinger equation in a point
Coulomb potential of arbitrary nuclear charge and arbi-
trary positive energy but with the same angular momen-
tum as in the original problem [cf. Eq. (2.1)]. We prefer
the Coulomb function since it can have the same behav-
ior near the origin or in the asymptotic region as the ex-
act wave function.!® We will discuss this point in Sec.
IV. Thus we choose for Eq. (2.5)

_2H 10+

F Iy (3.1)

KiR)=1

Here H plays the role of 7 in Eq. (2.4). Since 1 com-
bines nuclear charge and energy, choosing H=£7 in our
comparison function corresponds to changing nuclear
charge or energy or both. H =0 corresponds to zero
charge and the Bessel function as a comparison function.
In the following, the actual choice of H in various situa-
tions will be made according to the nature of the partic-
ular problem we are going to solve.

We choose the normalizations of y and U such that
the asymptotic behavior of the two functions is

y(p)=sin p—'F/anp-—l% +0,;+8 |, (3.2a)
U(R)=sin |[R —H In2R —I% +ou |, (3.2b)
where
7= lim ns(p)=7ns , (3.3)
p— o
and the Coulomb phase is
o, ,=argl( +1+in) . (3.4)

With this choice of the asymptotic behavior we have
A%( o )=1 and therefore C =1, and also

N G 403
=R ~ k) 35
dp
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A. Normalization

The normalization ¢y of the continuum wave function

y (p) is defined here as ¢, =lim,_ o[y (p)/p'*1] when the
asymptotic form of y(p) is given by (3.2a). From Egs.
(2.6) and (3.5) we get

I+1
C
L — (3.6)

R
=A(0)Cy li — ,
Cy ( ) Upl—ir%) [p A(o)21+1

where Cy, is the coefficient of R/*! in the expansion of
the function U (R) near the origin, which is given by Eq.
(14.1.7) of Ref. (13) as

_ 2" PU +14iH) |
- (27 +1)!

One should remember that A4 (0) also depends on /, or
Eq. (3.6) will look even simpler than it is. In calculating
A (0) we distinguish between two cases according to the
behavior of k (p) and K (R) near the origin.

Cy (3.7)

L k(p)~p~172 (A=0)

In this case, assuming H=0 (actually <O correspond-
ing to our choice 7<0), there is one singular point,
po=01in k(p) and Ry=0 in K (R), so that Eq. (2.12) be-
comes

[Pk (x)dx = ["K (x)dx . (3.8)
0 0
Using Eq. (3.1) in the limit p—0 one gets
-1 2 3.9
R Hp+0(p ), (3.9)
so that by Eq. (3.5) we have
AQ)=VH/y. (3.10)

It should be noted that for / =0 and H =7, as we have
argued is preferred, the WKB normalization is equal to
the Coulomb normalization. The near-independence of
screening of s-wave normalizations (down to very low
energy) has been observed in numerical calculations.

2. kip)~p~' (A>0)

In this case k(p) has a singular point (p=0) and a
zero at the classical turning point p,>0. We notice that
Eq. (3.8) cannot be used since the integrals diverge due
to the centrifugal term. Defining

gl x)=—k¥x),

(3.11)
Qix)=—K*x),
enables us to write Eq. (2.12) in the form
P
f ’ q(x)—i\— dx+Aln&
P X P
R R
=[Clow-A lax+am=2 . (.12
R x R

Equation (3.12) gives
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p_Po 11|k _A
R R, P|A fp q(x)—""dx
R
— [ le—2 |ax } (3.13)
R x
Using Eq. (3.5), we can write
—1
4%0)= | 4R =1lim £
dp p=0 paOR
=exp | —lim [f q(x)dx—f Q(x)dx]

=exp (3.14)

1 o
Xfo Re[g (x)—Q(x)]dx

Performing the integrals we get

R,—H P
20)— . Ko 1 ko A
A“(0)=p, SA? exp Afo q(x)—x dx +1
——f\i %—karctan%’~ ], (3.15)
where

RO:H +(H2+A2)1/2

is a solution of the equation K*(R)=0. If we set H =7
and A=/ 47 in Eq. (3.15), we obtain Eq. (62) of Ref. 3,
except for a missing factor of 7 in front of the
tan~'[n/(I +1)] term in Eq. (62). Note that our 7 is
negative, while 7 in Ref. 10 is positive.

B. Phase shifts

Here we are interested in the asymptotic behavior of
the function R (p) which satisfies Eq. (2.12). [Remember
that 4%(w)=1.] For p— o we find [cf. Egs. (2.4) and
(3.3)]

k(p)=1—2L +0
P p

1
— (3.16)

p

In order to avoid divergent integrals we rewrite the left-
hand side of Eq. (2.12) in the following manner:

fP
Po

dx —po+71n2p,

[ kxdx =
Po

k(x)—14 1L
X

+p—71n2p . (3.17)

Denoting by f the limit of the expression in square
brackets in Eq. (3.17) for p— o, we have for very large

values of p
fppk(x)dx—>f—+—p—1_71n2p : (3.18)
0

Similarly, the right-hand side of Eq. (3.3) is

I Kx)dx = K(x)—1+% dx —R,+H In2R,,
0

fR
Ry
+R —H In2R ,

which for R — « becomes

F+R —HIn2R . (3.19)

(Note that both f and F converge in the limits py—0
and R;—0 in the case A=0.) Equations (3.18) and
(3.19) yield

R —HIN2R +F =p—7In2p+f +0(1) . (3.20)
Therefore,
R=p+(H—f)n2p+f —F+0(1). (3.21)

Inserting these results into Egs. (3.2a) and (3.2b) and
equating the corresponding terms yields

S=f —F+0,4—0,, . (3.22)

Writing out the explicit expressions for f and F,

8=0 40, +H[1—In(Ry—H)]+A %—arctanﬁ

A

dx —py+71n2p, . (3.23)

+ [,

We can get a more symmetric expression if instead of
subtracting 1—7/x from k (x) we subtract
172

) (3.24)

k(x)—1+—7_7‘
x

(2 A
X xz

k(x)=

which has the same asymptotic form as x — «. Noting
that Re[k (x)]=k(x) when x >p, and vanishes when
X <py We get

8=0,y +H[1—ln(HZ—I—AZ)“z]—Aarctan%

01’7_7+T7[1—1n(7‘72+A2)”2]—Aarctan—:\I—

+ [ Relk (x)—k(x)]dx . (3.25)
0

IV. HIGH-ENERGY LIMIT (p —inf, n—0)

A. Normalization

For A=0 we have 4%0)=H/n (Eq. (3.10)]. For
A >0 we assume that in the high-energy limit H also
tends to zero. Then, from Egs. (3.14) and (2.4) we get
2

2o)ma TN=H 1|7 n—H |  37’—H®
470) 1+2 A +2 2 A +2 A2
A
_n2é—df1(r°) : @.1)
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The normalization C, is given by Eq. (3.6). On substi-
tuting H =7 we get

C
—%=1, A=0,
Cy
c A ds(0)
v EES 1< 2 A>0.
. A(0) 1+(l+2)az 2 1 A
4.2)
B. Phase shifts
Defining
P
= k(x)dx , 4.3
I(py fpo (x)dx 4.3)
the integral in Eq. (3.23) is
[ ko—1+T |ax
Po b
. _. b1
= lim |I(p;)—(p;—pg)+7In— (4.4)
pL—® Po

For small enough |7 | we can find a constant p,, such
that the following two conditions hold:

I—s(x)=1-S8 —ﬂx <<1 for pg<x<p,, , (4.5a)
aZ
|29x | <<x?—A? for p,, <x . (4.5b)
We divide I (p,) into two integrals:
Pm Py
= k k(x)dx=I,+1, . 4.6)

Lpp=[ "kxdx+ [ kxdx=I+1, . (
Defining

t(x)=(x*—A»"2, 4.7)

then to first order in n we get

Pm
11=fp0 (x2—2xn—A?)'dx

-~ 1A T
~t(pm)+A tan t(Pm) 2 ﬂln[Pm'H(Pm)]
+—’211n(A2+n2) , (4.8)
=" |12l dx
Pm t(x) X

A
~t Atan='—"—— ¢ —Atan™!
(py)+Atan o)) (om) an T

—n{s ,In[p,+t(p))]—In[p,, +t(p, )]}

f"l/” ds(r)

o o dr In{pr +t(pr)ldr . 4.9)
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Inserting I; and I, in Eq. (4.4), going to the limit
p1— «, and inserting the results in Eq. (3.23), we get

d=~o,y—0, 5+ —Z-In(AZ-i-TIZ)—%ln(AZ—i—HZ)

w dS(r)
+7 fo ar In2pr dr .

(4.10)

When A=£0 we can ignore %? and H? in the logarith-
mic terms. Setting H =7 and =0, Eq. (4.10) agrees
with the first-order term in the 1/p expansion of the
phase shifts given by Bechler and Pratt.'?

V. RESULTS AND DISCUSSION

We present in Tables I and Il some numerical results
which illustrate the utility of our generalized WKB ex-
pressions. We consider the Herman-Skillman® self-
consistent field (with Latter tail) for carbon. We consid-
er the three choices H =0,7,7 combined with the two
choices A;=[/(I +1)]'?, A,=1+1. For each of these
six cases we show the predictions for normalizations and
phase shifts, for / =0,2,10 and energies from 1 eV to
100 keV (by decade). The integrals appearing in the ap-
proximate expressions for the normalization [Eq. (3.15)]
and for the phase shift [Eq. (3.25)] were computed nu-
merically, using values of the screening function ob-
tained by interpolation of a numerically generated poten-
tial table. In Table I we show the “‘exact” numerical re-
sults for the ratio of normalization in the potential to the
nuclear point Coulomb normalization, together with the
relative error of the various WKB forms. In Table II we
show the “exact” numerical results for phase shifts §,
i.e., the difference of phase from the Latter-tail Coulom-
bic o .5 together with the absolute error of our various
WKB forms. We note that for A;=0, for which H =0
is unacceptable, results for H =7 are much poorer than
for H =m (except for very low energy), as we had pre-
dicted. At high energy the normalization approaches
the nuclear point Coulomb value (more slowly for high
D); the phase shift vanishes and phase-shift differences ap-
proach nuclear point Coulomb values, as is predicted by
Eq. (4.10). At low energy the phase shift (relative to the
Latter-tail Coulombic phase shift) vanishes if there are
no bound states of the given angular momentum (gen-
eralized Levinson’s theorem). For normalizations, Table
I indicates that A, is always the best choice, more so at
high energy (and especially for / =0). H =n is better for
low [ and high energy; H =7 is better for high / and low
energy. H =0 is poor for low / and low energy; other-
wise, it is adequate though not generally optimum. For
phase shifts, Table II indicates that A, is again better
than A,, while 1 is now better than % in all cases. In
general, we obtain an accuracy of at least 1% for nor-
malizations, 0.01 rad for phases. Results are worse for
I=1and I =2 at 10-20 eV. This is connected with the
fact that the effective potential for carbon develops a
double well for unphysical / (1.4—1.6) between these
values. As originally indicated, for such / and for ener-
gies comparable with such structures, our procedures
would not be expected to work as well.
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TABLE I. Relative error of the generalized WKB approximation for the normalization of carbon continuum wave functions of
1

various angular momentum / and energy E, using the choices H =0, % or 1, and A*=1(I 41) or (I 4+ 7)2. Also shown is the ratio

of exact screened to nuclear point Coulomb normalization in the same Herman-Skillman potential. Here a X 10™.

Relative error of WKB (A2, H)

Exact A=I1(1+1) Al=(+1)

) E (keV) ratio H=0 7 n H=0 7 n

0 0.001 9.52[ —1] 5.1[—2] 5.1[—2] —3.2[-2] 3.9[-2] 4.1[-2]
0 0.010 9.67[—1] 3.4[—2] 3.4[-2] —4.7[-2] 1.0[ —2] 2.4[ 2]
0 0.100 9.99[—1] 5.4[ 2] 8.9[ —4] —74[—-2] —5.6[—2] 8.2[ —3]
0 1.000 9.99[ —1] 3.8[—1] 9.1[—4] —4.6[ 2] —4.4[-2] 6.3[ 3]
0 10.000 9.98[ —1] 9.1[—1] 2.3[-3] —8.1[—3] —7.9[-3] 29[ —4]
0 100.000 10.00[ — 1] 1.2[+0] 4.0[ —4] —8.7[—4] —8.4[—4] 8.0[ —6]
2 0.001 5.83[ —2] 1.2[—1] 8.1[—2] 8.1[—2] —1.8[—2] —7.1[-3] 2.1[—3]
2 0.010 1.33[ —1] 2.3[—1] 2.0[—1] 1.9[—-1] 9.5[—2] 9.8[—2] 1L.1[—1]
2 0.100 437[—1] 5.5[—2] 4.4[-2] 2.3[-2] 3.9[-3] 4.2[ 3] 1.1[ —-2]
2 1.000 8.32[ —1] 2.0[-2] 1.6[ —2] 2.0[-3] —6.7[—5] —5.5[—5] 1.1[ —3]
2 10.000 9.75[ —1] 6.8[ —3] 5.6[ —3] 1.7[ — 4] —29[—5] —29[-5] 8.4[ —5]
2 100.000 9.97[—1] 2.2[-3] 1.8[—3] 8.0[ —6] —1.2[-5] —1.2[-5] 2.0[—6]
10 0.001 1.74[ —6] 5.5[—3] 6.9[ —4] —3.2[-3] —4.6[ —4] 5.7[ —5] 29[ -3]
10 0.010 1.16[ —3] 2.6[ —3] 7.0[ —4] —4.1[-3] —17.8[—5] 8.6[ —6] 1.1[—3]
10 0.100 9.22[—2] 1.2[ 3] 5.9[—4] —2.0[—-3] —9.5[—5] —8.5[—5] 1.0[ —4]
10 1.000 5.61[—1] 1.0[ —3] 8.2[ —4] —1.6[ —4] 1.8[ —4] 1.8[ —4] 1.8[—4]
10 10.000 9.07[ —1] 4.0[ —4] 3.3[—4] 1.3[ 5] 3.5[—5] 3.5[—5] 3.5[—5]
10 100.000 9.88[ —1] 1.2[ —4] 1.02[ —4] 1.0[ —6] 1.0[ —6] 1.0[ —6] 1.0[ —6]

TABLE II. Error of the generalized WKB approximation for the phase shifts 8 of carbon continuum wave functions of various
angular momenta / and energy E, using the choices H =0, % or 1, and A2=1I(/ +1) or (I +%)2. Also shown is the difference be-
tween exact screened and nuclear point Coulomb phase shifts in the same Herman-Skillman potential. Note that the full phase
shift is 8+ 0, ;, where o  is the phase shift in the Latter-tail Coulomb potential.

Error of WKB (A2, H)

Exact A’=1(I+1) Al=(1+1)?
{ E (keV) difference H=0 7 n H=0 7 7
0 0.001 3.06 0.08 0.06 —0.03 —0.07 —0.06
0 0.010 2.92 0.13 0.06 —0.05 —0.05 —0.03
0 0.100 2.35 0.24 0.04 —0.07 —0.02 —0.01
0 1.000 1.37 0.37 0.02 —0.05 0.03 0.00
0 10.000 0.64 0.30 0.00 —0.01 0.02 0.00
(0] 100.000 0.27 0.16 —0.00 —0.00 0.01 —0.00
2 0.001 0.04 0.02 —0.04 —0.05 —0.02 —0.04 —0.03
2 0.010 0.14 0.07 0.05 0.01 0.09 0.00 0.01
2 0.100 0.58 0.04 0.03 —0.00 0.00 0.01 0.00
2 1.000 0.57 0.02 0.01 —0.00 —0.00 0.00 0.00
2 10.000 0.36 0.01 0.01 —0.00 —0.00 0.00 0.00
2 100.000 0.18 0.00 0.00 —0.00 —0.00 0.00 —0.00
10 0.001 0.00 0.01 —0.00 —0.01 —0.00 —0.00 —0.00
10 0.010 0.00 0.00 0.00 —0.01 —0.00 0.00 —0.00
10 0.100 0.00 0.00 0.00 —0.00 —0.00 0.00 —0.00
10 1.000 0.07 0.00 0.00 —0.00 0.00 0.00 —0.00
10 10.000 0.13 0.00 0.00 —0.00 0.00 0.00 —0.00

10 100.000 0.10 0.00 0.00 —0.00 0.00 —0.00 —0.00
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The high-energy expression, Eq. (4.2), for the normali-
zation, which becomes increasingly accurate with in-
creasing energy, gives very good results for the case
! =0, in which screening effects remain small down to a
few eV. The relative error with respect to the exact re-
sult amounts to =~0.003 for E =10 keV and to ~0.001
at 100 keV. The relative error increases with /; it is
~0.015 at 10 keV and =0.0011 at 100 keV for I =10.
The high-energy expression, Eq. (4.10), for the phase
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shift gives good results for energies above 5 keV, where
the difference from the exact value amounts to less than
0.005 rad for small / values. The results are not as good
for / =10, where the difference is only =0.08 rad.
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