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Quantum states of hierarchical systems
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The quantum states of an electron in a hierarchical potential are investigated in the tight-

binding approximation. The hierarchy is taken to be in the transition matrix elements, in natural

analogy to the classical problem of diffusion in ultrametric structures. The energy spectrum is

found to be a Cantor set, and analytical results are presented for its scaling properties. The en-

velope of the wave function is found to decay algebraically for certain energies and to be constant

for others. The results are in excellent agreement with high-precision numerical work.

The hierarchical organization of a number of complex
molecules and other condensed-matter structures leads to
anomalous properties in their classical transport coeffi-
cients. Specifically, for systems with a hierarchical distri-
bution of energy barriers, the phenomenon of ultradif-
fusion appears as a manifestation of the underlying ul-
trametric topology. ' This effect is characterized by a
power-law decay of the autocorrelation function with a
temperature-dependent exponent. Since many hierarchi-
cal systems possess electron states which can be probed
experimentally, it is of interest to inquire about their
quantum states. This communication presents the results
of such a study. In particular, we solve the Schrodinger
equation in the tight-binding approximation for a system
with an ultrametric distribution of transition matrix ele-
ments. We discover a number of scaling relations con-
necting the width of the spectrum to the parameter R
which characterizes the ratio between transition matrix
elements. Moreover, the whole structure of the spectrum
is analogous to that of quasiperiodic crystals, which have
been extensively studied in the past few years. " We
also determine the fractal set underlying the spectrum
and, most importantly, obtain analytical results for the
relevant indices as a function of R. These novel results
are in excellent agreement with high-precision numerical
experiments. Besides showing that ultrametricity and
quasiperiodicity are related, this study provides an analyt-
ical determination of the quantum signature of hierarchi-
cal systems.

We begin by considering the following tight-binding
Hamiltonian:
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where the transition matrix elements t„—~ „=t„„—~ are
given by
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Clearly, we have detM~ 1; hence, the requirement of yI,
being bounded gives the condition for the bands,

If we now consider a system of period 2", we can carry
out a renormalization scheme to reduce it to the period-2
system solved for above. We decimate the pairs of cells
surrounding the barrier of height V, i.e., cells numbered
4j+1 and 4j+2, j an integer. This leads to a recursion
relation between the renormalized values (E', V') and the
original ones (E,V) given by

V' R(E —V ), E' E(E —V —I)/V .

Equations (4) and (5) above allow one to determine the
band structure for any n. Figure 1 shows the resulting

Here, the hierarchy is in the transition matrix elements,
and the site energies U are taken as a constant. The mod-
el is thus a natural quantum extension of the master equa-
tion in ultradiffusion. We assume R to be in the interval
[0,1] so that t„„~ is an almost periodic function of n

Also, since U is constant, we may absorb it in the energy E
and consider the problem with site energies set to zero.

To analyze the infinite system described by Eq. (1), we
consider a series of periodic systems constructed as fol-
lows: The period-2" system has all transition rates equal
to VRk, k ) n —1, replaced by VR" '. For a period of 2,
we thus have only two matrix elements, 1 and V. We may
solve for the band structure of this system using a transfer
matrix method. The wave function at cells 2k and 2k+1
is related to that at cells 0 and 1 by a transfer matrix M ~,

where

V2
E 2

V
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FIG. 1. The energy bands (arb. units) for periodic systems of size 2", n 1,2, 3,4. We take V R 0.9.

spectra for n 1,2, 3,4 and R =0.9. We will show
momentarily that the total bandwidth goes to zero as
n ~; hence, Fig. 1 shows directly the construction of
the infinite limit Cantor set.

An alternative method for finding the band structure of
the period-2" system, and the one actually employed in
the numerical work for Fig. 1, is to make use of Bloch's
theorem. If p 2", then we have y~+z e' ~yj for some
wave vector k. We choose k to correspond to a band edge;
hence, k 0 or k =+ x/p. The two resulting matrices of
order p are easily diagonalized to find the p bands. This
was done with great precision for systems of size up to
p 2' . Clearly, each band will contain the same number
of states.

A self-similarity in the energy spectrum is apparent
from Fig. 1, and hence it is useful to characterize the cor-
responding scaling properties. First, we expect that the
total bandwidth for the period p =2" system should scale
with n like 8„—p, where 8 is some positive constant
presumably depending on R. From our precision numeri-
cal work for the bands, where we are able to calculate the
band edges to more than eight significant digits, we find,
in fact, the exact expression

series of bands. Defining

k, = lim a;"/a~""
n

(7)

we find numerically, for R =0.9 that k, =4.59~0.01.
Similarly, the bands labeled b&z"+»/3, n odd, are similar
and appear to contract the most slowly. Letting kb be the
analogous scaling ratio of these bands for R =0.9, we find
that kb ——4.20+ 0.02.

To study the spectrum in more detail, we follow the
method of Halsey et aI. ,

' and calculate the fractal spec-

8„4VR" ', n~1, V&1 .

This gives 8 —lnR/ln2. Equation (6) has been ver-
ified analytically for n 1,2. Figure 2 shows the numeri-
cal evidence supporting the expression for 8' as a function
of R. Furthermore, we discovered that for n-ary systems,
as opposed to the binary case of Eq. (2), Eq. (6) still
holds. This gives b —lnR/inn in the general case.

We may also consider the scaling properties of individu-

al bands. Let p„2". Consider the bands labeled ai " in

Fig. 1, where a denotes the width of the band. They all
appear to be similar, and to contract faster than any other

0
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FIG. 2. The solid squares are the numerically determined
values of 8 plotted vs lnR, for R 0.1,0.2, . . . , 0.9, with V R.
The line is the least-squares best fit, with slope —1.44= —1/ln2, in agreement with the result following Eq. (6).
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trum of the resulting Cantor set. To do so, we consider
the partition function

2n pq
r„(q, r) = g AF.;

Here, P; is the probability of a state belonging to the ith
band; since all bands have equal numbers of states in them
and there are 2" bands, we have P; =2 ". We determine
a relationship between r and q by requiring I „(q,r) =1 in
the large-n limit. The behavior of r and q is related to the
scaling properties of the spectrum as follows. Let N(E)
be the integrated density of states. Define the scaling ex-
ponent aE by ~

N(E+AF-) —N(E)
~

—(AE)". The scal-
ing parameters a belonging to various parts of the spec-
trum are given by dz/dq. One can then calculate the frac-
tal dimension f(a) of those points which scale with a
from f(a) = —r+qa

We have carried out this calculation numerically, with
the resulting curve plotted, again for R =0.9, in Fig. 3.
To improve the numerical efficiency, we determined r(q)
through the equivalent condition I „/I „=1,with n =9
and n'=10. Note in particular that the maximum value
of f corresponds to the fractal dimension Do of the set.
We may account for the zeros off from knowledge of the
largest and smallest scaling constants in the spectrum.
From above, we expect a;„=ln2/ink, and a,„=ln2/
In~kg (since the b sequence has period two). For R =0.9,
this gives am;„0.45+ 0.01 and am» =0.97+ 0.01, in
agreement with Fig. 3.

The above numerical results may be explained analyti-
cally. First, let us consider the fractal dimension Do. Let
N(n, I) denote the number of segments of I it takes to cov-

er all the bands for period 2". Then by definition,
N(n I)-l '. The total bandwidth 8„ thus scales like
I ', but we also have 8„—2 " and N(n I)—2".
Thus,

Do-I/(I+6) =In2/ln(2/R) . (9)

For R =0.9, this gives Do =0.8681, in excellent agreement
with Fig. 3. One should note that Eq. (9) gives a value for
Dp which is the same as the exponent for the power-law
decay of the autocorrelation function in ultradiFusion. '

Next, we examine the fixed points of the recursion rela-
tions in Eq. (5), define E„and V„ to be the nth iterates of
E and V, and let T„+~-(E„—V„—1)/V„. We see then
from Eq. (4) that (E, V) is in the spectrum of the period-
2"+' system provided that

~ T„+i ~

~ 2. We may use this
definition of T„ to eliminate E„ from the recursion rela-
tions, obtaining the following set in terms of T and V only:

R T„~2 T„~( + (I —R )V„T„+(
—(1+R ),

V„+ i R (1+V„T„+i ) .
(10)

—+—+R(I)
2 R

—+—+R —2
1 1

2 R

Then E„1+V„+T„+~ V„. We emphasize that these re-
cursion relations are entirely equivalent to those above,
except that we have now avoided any difficulties which oc-
curred in Eq. (5) when some iterate V„O.

The fixed points of Eq. (10) are easily identified. First,
we have the point Tt 1, V& -R/(1 —R), and E, z

=(1 —R+R )/(1 —R) . The eigenvalues of the matrix
8 (V', T ')/8 (V, T ) are

Do
0.9

0.8

0.7

Note that regardless of R, X,m,„&1; hence, the fixed point
is repulsive. This is consistent with the Cantor property of
the spectrum in the infinite limit. Second, we have the
fixed point T2 —I, V2 R/(1+R), and E2 (1+R
+R )/(1+R) . The corresponding eigenvalues are

0.6
————R(2) 1 1

2 R
1 1————R —2
2

(12)
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FIG. 3. The numerically determined fractal spectrum f plot-
ted as a function of a, drawn with a smooth curve connecting the
data points. We take V R 0.9. The arrows and horizontal
line correspond to the analytical values. The dashed portion of
the curve is extrapolated.

Again, for any value of R we have
~
X ~,„)1, and thus

this fixed point is also repulsive. Third, there is the fixed
point T3 =(1+R )/R, V3 = —1/R, and E3 0.

Because
~ T3 ~

) 2, only the first two fixed points listed
above are relevant to the scaling properties of the spec-
trum. Moreover, note that for any value of R C [0, 1 j, we
have 0&k~' & 1 &k ') and k & —1 &A. &0. Thus
the first fixed point is hyperbolic and the second hyperbol-
ic with reflection. From examination of the (T,V) phase-
space diagram, we find that there are two heteroclinic
points where the stable invariant manifold of one fixed
point intersects the unstable invariant manifold of the oth-
er. As is well known, the existence of one heteroclinic
point implies the existence of an infinity of them, implying
that the stable invariant curves for the two fixed points
must be extremely complicated, twisted objects. The in-
tersections of these curves with the segment V Vo,
T C [—2, 2l provide the set of initial T (and hence E)
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values which will relax to the fixed points. Furthermore,
small intervals around these points will scale with
~A, ~

(')„,i 1,2. Note from Fig. 3 that initial T values
which iterate to the fixed points correspond to sets of frac-
tal measure zero (the edges of the fractal spectrum) and
hence compose only a part of the total energy spectrum.

The sequence of bands labeled a in Fig. 1 belongs to the
first fixed ~oint. Thus, we expect a scaling value of
ln2/ln

~
A,

~

(',„. For R -0.9, this gives ln2/ln4. 5861
0.4551. This is in excellent agreement with both Fig. 3

and with the numerical value of k, found above. The
bands labeled b in Fig. 1 belong to the second fixed point,
and hence we expect a scaling value of ln2/ln

~
X

~
(,)„. For

R 0.09, this expression yields ln2/ln2. 0435 =0.9699.
Again, we have excellent agreement with the numerical
results. Note that the second fixed point of Eq. (10) cor-
responds to a two-cycle V2 V2, E2 E2 in E—q.
(5), accounting for the observed period-2 structure in Fig.
1.

It is interesting to note that the one-step recursion rela-
tions (10) can be cast in terms of a single two-step rela-
tion involving T alone:

r

T„+2 R+ —T„+(+(2 —T„)T„~(—R+—1 1

(13)

We suggest that bounded chaotic solutions to Eq. (13)
may account for the uncountable set of energies in the
spectrum which do not iterate to one of the fixed points
listed above.

The presence of a Cantor set in the energy spectrum
suggests, as in the quasiperiodic case, " that we have

eigenstates that are intermediate between localized and
extended. To study them, we consider the transfer matrix
Mk for the system of period pk=2 . Then we have
Mk+ i AMk, where the matrix A has elements A i i =R,
A~2=E(1 —R )/R, A2~ =0, and 222=1/R. M~ is given
by Eq. (3). From examination of this recursion relation at
the fixed points, we find that (1) for the first fixed point
the envelope of the wave function has power-law decay
from the maximum with an exponent depending on R, and
(2) for the second fixed point the envelope is a constant.
Details will be published elsewhere.

In summary, we have investigated a simple quantum
model which is a natural extension of the problem of clas-
sical diffusion in hierarchical systems. We have examined
in detail the structure and scaling properties of the energy
spectrum, and have been able to account analytically for
the most relevant features. We have also briefIy described
the shape of the wave functions at the fixed points. The
observed properties quite closely mimic the behavior
found in quasiperiodic systems.

In closing, we should mention that after completion of
this work we became aware that a related problem, that of
electronic states in hierarchical heterostructures, has been
recently solved. ' It corresponds to a hierarchical distri-
bution in the site potential energies, as opposed to the
present case where the hierarchy is in the transition ma-
trix elements. The authors find for R & 1 a narrow band
structure instead of the Cantor set uncovered in this
study.
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