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Generation of squeezed radiation from a free-electron laser
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We demonstrate that squeezed states of the radiation field in a free-electron laser are possible
only in the small gain and inverse regimes. Moreover, in these regimes, the feasibility of generat-
ing squeezed radiation is severely constrained by the quantum fluctuations in the initial states of
the electron beam.

In squeezed states of the radiation field, the quantum
fluctuations in one Hermitian component are reduced
below its vacuum fluctuation level at the expense of the
enhanced fluctuations in the other conjugate component.
Squeezed states have been realized in the laboratory by
using optical materials which exhibit parametric gain. '

Since the optical nonlinearities suitable for the generation
of squeezed states are generally weak, it is worth examin-
ing whether high-intensity squeezed radiation can be pro-
duced using alternate methods. One such approach has
been proposed using free-electron lasers (FEL's). The
existing studies, however, have investigated the squeezing
of combined radiation field-electron operators, so that it is
not clear what their implications are for the squeezing of
radiation-field operators alone. In this paper, we give a
novel treatment of radiation squeezing in FEL's, and
demonstrate that squeezing can occur only in the small
gain and inverse FEL regimes. Furthermore, we show
that in these regimes, squeezing is limited by the ability to
prepare the initial electron beam in a required state.

We define squeezing as follows: let a and a be the
creation and annihilation operators for a mode of the radi-
ation field, [a,at] =1. We represent the operator a in
terms of Hermitian operators A ~ and A2 as ae'
=A~+iA2, 0 is the phase of the radiation field with
respect to the measuring apparatus, as, for example, with
respect to the local oscillator in a homodyne detector.
Then [A ~, A2] = —,

' i; the associated uncertainty relation is

(AA&) (AAz) ~ —,', , where (dA) =(A ) —(A) for any
Hermitian operator A and ( ) represents the expectation
value. For a coherent state of the field (including vacu-
um) (AAi) =(AAz) = —,', independent of 8, whereas, for
a squeezed state there exists a phase 8 for which (j=1 or
2)

In order to investigate squeezing in FEL's, we use a
Hamiltonian in the laboratory frame obtained from the
Dirac Hamiltonian. In the conventional Bambini-
Renieri analysis, ' it is assumed that the electron dynam-
ics is nonrelativistic in the beam frame. We have shown
that such an assumption leads to the omission of certain
terms in the FEL equations. In the present paper, we
therefore use the correct Hamiltonian in the laboratory
frame. We emphasize, however, that the qualitative con-
clusions of this paper would remain unaltered even if we

x and y are non-Hermitian operators for the electron col-
lective variables,

y=

p2+M2
Npp(k+ k„)

po

N(pp+M )(k+k„)

i/2

gap, e
J

(3a)

(3b)

where 6&J. =&i —
ppJ, Spj =pj —pp, and ppj and pp are the

equilibrium expectation values of the electron momen-
tum and phase relative to the radiation field,

tlt~ =(k+k„)z~ —tot —Dt. pp is shown to be the expecta-
tion value of the average initial-electron momentum,
whereas p satisfies g e ' =0, n = ~ 1, + 2, . . . (Refs.
11 and 12). Other quantities are defined as follows: k,
k„, co =k, co„=k„are the wave numbers and frequencies
of the radiation and wiggler field, respectively, N is the to-
tal number of electrons, D is the detuning parameter

D =(k+k ) [&p(0))/[(p(0))'+M']' ] —to

a'=ae' '

a and P are constants defined as

a =M (co+D )/p p

P =e A„(pp +M ) ' [(k+k„)p pNtt/( Vto) ] 't

V is the quantization volume, M is the eITective mass
M =m +e A„, and A„ is the strength of the vector po-
tential of the wiggler field. For compactness in notation,
we have set 6 =c =1. The equations of motion for x, y,
and a' are obtained using the commutation relations
[x,ytl =[xt,yl =i, [a', a' t] =1, and [x,y] =[x,a']
= [y, a'] =0.

In order to study squeezing of radiation, it is convenient
to introduce new operators bi =2 't (x+iy) and

(xt+iyt) ' Then [b;,bz~] =SJ, [b;,bj] =0, and
[b;,a' t] =[b;,a'] =0 for i,j =1,2. The Hamiltonian for

used the Bambini-Renieri Hamiltonian.
We work in the Heisenberg picture and examine if,

starting from a radiation field which does not obey in-
equality (1), an FEL can generate radiation in a squeezed
state. The Hamiltonian for the linearized one-di-
mensional, one-mode FEL problem is given by

H =ay ty Da 'ta '+ P—(ia 'y t —i a 'ty +a 'x t+ a 'tx ) . (2)
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the linearized problem now becomes

H= (b—)tb)+b jb2 —bj~b j —b)b2)

—Da 'ta '+ J2p(a 'b 2+ a 't b j),
where the equations of motion

(4)

Here the dot indicates derivatives with respect to time. It
is easy to verify that these equations are equivalent to the
ones for x, y, and a' that result from the Hamiltonian
given by Eq. (2). From Eqs. (5), we obtain the solution
for a '(t), from which it follows that

a (t ) =G ) (t )b ) (0)+ G2 (t )b j(0)+F3 (t )a (0) .

b) = — (b) —bj),
b2t = (b j b))+—iJ2pa',

a'=iDa' I J—XPb j .

(sa)

(Sb)

(5c)

G~, G2, and F3 are functions of time determined from the
linearized equations. ' We note that a(t) does not de-
pend on b) (0), b2(0), or a (0); this is a consequence of
the form of the Hamiltonian.

Since the oscillators b~, b2, and a are independent at
t =0, the variances of 4 ~ and A2 are computed to be

[~)2(t)] =[AB) 2(t)] +[AC) 2(t)l +' —' [&[F3(t)a(0)~ H.c.l ) —&F3(t)a(0) +'H. c.) l

where B~ 2 and C~ 2 are Hermitian operators explicitly
dependent on time, 8) (t) = [G) (t)b) (0)+H.c.]/2,
B2(t) = [G) (t)b) (0) —H.c.l/(2i), C) (t) = [G2(t)b j(0)
+H.c.]/2, C2(t) =[G2(t)bj(0) —H.c.]/(2i). The un-
primed quantities G)(t), G2(t), and F3(t) are G)(t),
G2(t), and F3(t), multiplied, respectively, by e'. We
now assume that the radiation field is initially in a
coherent state, i.e., in an eigenstate of the annihilation
operator a. This is what is realized in FEL experiments
which start from noise (initial state of the radiation field is
the vacuum), or from a given laser field. Then

4A) 2(t)]'= [&B)2(t) l '+ [&C)2(t)l '+ —.
I F3«) I

'
(7)

It is easy to show that the last term on the right-hand side
of Eq. (6) cannot be made any smaller if the initial state
of the radiation field is taken to be the number state, or to
have a thermal distribution with the density operator'

p= g[&n)/(I+&n))] I j)&jI1+&n),
For the number state, the last term is multiplied by 2n+ 1,
whereas for the thermal distribution it is multiplied by
2&n)+1. We also remark that [~)2(t)] given by Eq.
(7) is manifestly positive definite (as it must be), and that
42) 2(0)l = —,', in agreement with the assumption that
the radiation field is initially in a coherent state. Further-
more, Eq. (7) is valid for any initial state of the electrons.

We now examine the behavior of
I F3(t) I as a func-

tion of parameters specifying the system, but prior to do-
ing this we redefine some constants and determine the re-
gimes of FEL operation. Since it is conver)tional to use p
(Pierce's parameter) and b (detuning parameter) as the
relevant parameters of the FEL, "we expand a,p, D to or-
der M /p)) to get (P/a) t =p and D/(ap) =b. This also
necessitates the change of t into a dimensionless variable
z=t(ap ) 't . We use the instability condition 8p3
—p 8 +9pb —83+27/4~ 0, ' and set p=1 &&10

which is a typical experimental value of Pierce's parame-
ter. We distinguish three regimes of FEL operation:
8& 0 (inverse FEL), 0 & b& 1.9 (exponential gain re-

6.0 I I I I [ I I I I I I I I I I I )
I

IFs(r)I

4.0-

I

I

I

I

l

r

r

/

2.0—

1.0

0
0 ].0 2.0 3.0 4.0 5.0 6 0

I I I

7.0 8.0

FIG. l. I F3(z) I vs z for b= —4.6 (solid line) and b'=1.8
(dashed line). p 1.0&& 10

gime), and b) 1.9 (small gain regime). From the insta-
bility condition it follows that for 8' & 1.9 the solutions are
unstable.

From numerical studies of F3(z) (Fig. 1) we determine
that in the exponential gain regime I F3(z) I

is an ex-
ponentially increasing function of r which has no minima
at or below 1 (except at t =0). Hence, regardless of the
initial state of the electrons, an FEL operating in the ex-
ponential gain regime cannot produce radiation in a
squeezed state. For 6& 0, or 8& 1.9, on the other hand,

I F3(z) I does have minima below 1. The most pro-
nounced one, I F3(z) I

=1X10, for example, occurs at
z=6.36, 8= —4.6. (The numerical simulations are done
for z ~ 10.0 and —5 & b & 5.) Thus, in these regimes the
squeezing of radiation depends on the initial state of the
electron beam [first two terms in Eq. (7)], to which we
now turn. For simplicity, from now on, we limit our con-
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siderations to squeezing of the Hermitian component A ~.

The analysis for the operator A2 is identical, with 8 re-
placed by 8 —lr/2.

Formally, the most favorable initial electron state can
be derived as follows: let ~F3(r)

~
have a minimum at

s= ~0. Then, if the initial electron state is an eignstate of
operators Bl(rp) and Cl(zo), the variances of Bl and Cl
evaluated at r = ro are zero, and [hA l (ro) ]

~
F3(ro)

~
& 1. For convenience, we introduce the

following Hermitian operators:

u l z
= [G l z(ro) x (0)+ G l*z (ro)x (0)],

and

Ul 2
= +. i[G2 l(ro)y(0) —Gz l (rp)y (0)],

which satisfy the commutation relations [u l, u 2]
=[vl, v2] =0, and [u;, U~] =ibj ImA(i j =1,2), where

A =2Gl(ro)G2 (zo) (independent of 8). In terms of these
operators, in the [vl, uz] representation, the eigenvalue
equations for Bl(zp) and Cl(zo) take the form

and

f bl +Kgbpj Imp, iK'QRep, (pf/Qp~ ).
with the solution

p = (2') 'exp —i (ImA) ' bl+KgbpJImp~
J

cl K+8—p~Imrj

Here

K=2{pa/[(p(+M')&(k+k )]]' '
K'=2[(p +M )(k+k„)/(p0%)]'

p) =e ""Gl(rll), r, -e ""G2(ro) .
This expression for p gives the normalization

(vl, vz ~ Bpl. . . Spiv) = 8 vl+KQBpJImrj
J

x 8 v z
—Kgb~ lm p J

i ImA
V&

—vz p =big, (8)

i ImA
V2

Vl 4 Clf (9)

where b l and cl are the eigenvalues of Bl(r ) and Cl (ro),
respectively, multiplied by 242. From Eqs. (8) and (9)
we get the eigenfunction

y-(2x) 'exp[ —i(ImA) '(bl+U2)(cl+vl)l . (10)

It is easy to show that p allows for the required normal-
izations, (bl, cl ~ bl, cl) =8(bl —bl)b'(ci —cl) and

(vi, vz ~ vl, v2) =B(vl —vl)8'(vz —U2). The solution to
Eqs. (8) and (9) can also be obtained by a unitary trans-
formation U =exp(iu lu2/ImA) from the eigenstate of
operators v~ and v2 with eigenvalues —e~ and —b~,
respectively, or by a unitary transformation V

exp( —ivlv2/ImA) from the eigenstate of operators ul
and u2 with eigenvalues b &

and c&, respectively.
To compute p in terms of single-electron momenta, we

write Bl(ro) and Cl(ro) as sums over single-electron vari-
ables. Then the equivalents of Eqs. (8) and (9) are

r

f cl KgbpJImz~ —iK'QRerj. 'df/dp~
J J

We find, however, two objections to the physical real-
izability of state p. First, even though a momentum
eigenstate can be approached experimentally, a Hamil-
tonian whose interaction part in the interaction picture
would give the unitary transformation U would have to
contain terms proportional to BpJ6p r . This holds ir-
respective of the value of 0, as is manifest from the fact
that the form of Eq. (10) is independent of the phase of
G~ or 62. It is not clear that a Hamiltonian which gives
this transformation can be realized experimentally.
Second, the solution p cannot be written as a product of
single electron wave functions, which seems to be a
reasonable requirement for all electron beams produced
by accelerators prior to FEL interaction. In those beams
the overlap of electron wave packets and the interaction
between electrons can be treated as small perturbations.
Hence in view of the difhculties of physical interpretation
and possible experimental realization of the eigenstates of
Bl (ro) and Cl (zo), we turn to initial states which have
natural physical interpretations, and we investigate
whether they can produce squeezing in the allowed re-
gimes.

We begin by writing (b,B l ) + (ACl) in terms of single
electron variables Szj and Bpj [Szj = b&z. (0)/(k+ k„)].
This can be done by expressing either u~, u2, v&, v2, or
bl, b), b2, b j as appropriate sums over Bzj. and Bpj. The
result is

(ABl) +(ACl)z= —,
' +[K' (Re@~Re@'+RerJRer')((zjz') —(zj)(z ))

+Kz(lmpjimpj, +Imrjlmz )((pjp. ) —(pj)(pj ))

KK'(Re@—~Imp—RezJImz , )((zjp +p zj) —2(zj)(p. ))]. .

We now introduce assumption 1: The electrons are initially statistically independent, i.e., the initial state is a product of
single electron states. Using the definitions z~' zj —(zj) and pJ p~.

—(pj), and assumption 1, the expression above yields

(AB l ) z+ (AC l ) z =
8 g j(K ' [(Rep J ) + (Re zj ) ]zJ

J

+K [(Imp ) + (Imr. ) ]p' )+KK'(Rerj Imz~ —Repjlmpj )(z~'pj'+pj'z~')] (12)
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In order to proceed further we introduce assumption 2:
the wave packets of all electrons have the same width in
position and also in momentum. This assumption can be
less restrictive: all electrons can be divided into groups
consisting of a large number of particles, and all particles
within the same group can be described by wave packets
with the same width in position and momentum. We note
that it is not important that the shapes of the wave packets
be the same for all electrons, nor is it necessary to consider
the distribution of the centers of wave packets in position
and momentum. Since in most experimental manipula-
tions of electron beams one deals with large aggregates of
particles, rather than individual particles, we expect the
less restrictive form of the assumption above to hold for
the preparation of almost all electron beams used in FEL
experiments. Therefore, we use assumption 2 to simplify
Eq. (12). Adhering to the linearization procedure

g e'" '=0, n = ~ 1, + 2, . . . we obtain for the first two
terms —,', N( i G| i

+
i Gz (

)(K' z' +K p' ) (no index on
z' or p'). But the quantity in angular brackets is exactly
the expectation value of the Hamiltonian for a harmonic
oscillator with angular frequency 2KK'. It is therefore
subject to a lower limit of KK'. To consider the third
term we note that in the absence of momentum-dependent
potentials, all particles satisfy

((z,') —(z,)') = -((z,p, +p,z, ) —(z, )(p, ))
d~ ' ' m

1
1'pJi pJ zjiI

Hence, the third term of Eq. (12) is —KK'm(d/dt)(z' )
xg Repjimpj, which is zero. Therefore, under assump-
tion 2,

(68 ) +(ACE)» —'(iG
i + iGzi )NKK',

We note that the functions Gi, G2, and F3 are not in-
dependent. From the requirement that [a(t),at(t)] 1

at all times, we get i G|(t) (
—

i Gz(t) i + i F3(t) i
=1.

We thus obtain the lower limit on the variance of A i,

[~1(r)]'» l+ z IGz(r) I'. (14)

Since the inequality is independent of 8, an identical re-
sult holds for 4Az(t)] . Therefore, to the extent of valid-
ity of linear theory and assumptions 1 and 2, a free-
electron laser cannot produce radiation in a squeezed
state.
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lating discussions.

or, using the definitions of K and K',
(~S )'+(~C, )'» —,

' (iG, i'+ iG&i') . (13)
There is another way to obtain inequality (13) starting

from Eq. (12). Our linearization procedure is valid for
small departures from equilibrium which corresponds to a
uniform distribution of particles in phase, i.e. , g e'" " 0.
Then, in the domain of validity of our theory, the terms in
the sum of Eq. (12) which are multiplied by a factor of~ 2l+Je +' contribute much less than terms without such a
factor, and can therefore be neglected. The remaining
terms give

(5,8 )z+ (AC, ) z = —,', ( i G, i
z+

i G z i
z)

xg(K' zJ +K pJ ),
J

which has the same lower limit as that given by inequality
(13).

Using Eq. (7) and inequality (13) we now have for the
variance of A i,

4A|(&)]'» —,
' [iG|(r) i'+ iGz(r) i'+ iF3(r) i'] .
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