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Calculating vibrational-excitation cross sections off the energy shell:
A first-order adiabatic theory
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We report the implementation of a first-order nondegenerate adiabatic theory for vibrational
excitation of H2 by electrons with energies from threshold to 10 eV. Solution of the scattering
equations in this method is far simpler than in a full close-coupling calculation because the
method is based on an adiabatic factorization of the electron-molecule scattering ket. The
method, however, yields low-energy cross sections that are far more accurate than those of tradi-
tional adiabatic-nuclei approximations because its transition matrix is calculated oA the energy-
momentum shell.

Vibrational excitation of molecules by low-energy elec-
trons plays a seminal role in such applications as laser
design, discharge switches, and the electrical properties of
gases. Recent advances in experimental techniques—increased precision of very-low-energy crossed-beam'
and time-of-flight measurements, and increased sophisti-
cation in the Boltzmann analysis of transport data for
electron swarms —have focused attention on the critical
near-threshold region. At these energies serious dis-
crepancies exist between the results of crossed-beam and
swarm experiments and between recent theoretical cross
sections and those unfolded from transport analysis. In-
terest in near-threshold scattering was stimulated by the
discovery of anomalous structures —near-threshold
spikes —in vibrational-excitation cross sections for elec-
tron scattering from several polar and nonpolar mole-
cules. But theoretical methods for calculation of near-
threshold inelastic cross sections are bedeviled by
di%culties in both the determination of the interaction po-
tential and the numerical solution of the Schrodinger
equation. '

Particularly troublesome is the strong coupling that
characterizes the electron-molecule problem: coupling of
a large number of angular-momentum eigenstates of the
projectile by the nonspherical electron-molecule interac-
tion potential, and of a large number of target states by
the Hamiltonian of nuclear motion, & " . One can elimi-
nate the latter coupling by imposing approximate separa-
bility (in the Born-Oppenheimer sense ) on the electron-
molecule continuum state vector, writing it as the tensor
product of a nuclear-motion ket and an adiabatic projec-
tile ket. The resulting scattering matrix is first order in
& " . One can further simplify the scattering problem by
assuming that the target states in the entrance and exit
channels are degenerate. This additional assumption
yields the second-order scattering matrix of the adia-
batic-nuclei (AN) approximation.

This strategy for developing a second-order approxima-
tion to an inelastic-scattering matrix was first suggested
(in the context of nucleon-nucleon scattering) by Chase.
Its subsequent application to rovibrational electron-
molecule scattering by Hara' and Temkin and co-

workers' "made possible the study of rotational and vi-
brational excitation of such diverse molecules as H2, HF,
CH4, and CO

For several years, we have been exploring the accuracy
of AN approximations and the viability of alternative
scattering theories for low-energy rovibrational excitation.
A prior study on low-energy e-H2 scattering' showed
that the AN approximation for rotation (ANR) intro-
duces errors in rotational-excitation cross sections as large
as 30% near threshold. This breakdown of the ANR ap-
proximation has recently been confirmed in a cross-beam
experiment. ' A subsequent study ' showed that far
larger errors befall the AN approximation for vibration
(ANV), which when applied to excitation of the first vi-
brational manifold of H2 introduces errors of hundreds of
percent at near-threshold energies.

These studies indicated that a major factor in the
breakdown of AN approximations is the (second-order)
assumption of target-state degeneracy. In particular, ac-
curate calculation of low-energy vibrational-excitation
cross sections apparently requires treating the target
states in the entrance and exit channels as nondegenerate.
One way to correctly incorporate the target-state energies
in the asymptotic states —while still preserving the
simplifications that ensue from adiabatic factorization of
the state vector —is to calculate the inelastic transition
matrix of the energy-momentum shell. This is the essen-
tial idea of the first-order nondegenerate adiabatic (FON-
DA) method of this Rapid Communication.

Shugard and Hazi first proposed using an of-shell
theory in electron-molecule scattering, and this idea has
been applied (in a formalism based on the integral equa-
tion for the transition matrix) to rotational excitation in
the rigid-rotator approximation by Ficocelli Varraccio
and Lamanna. ' The FONDA implementation was
designed to maximize computational efticiency and exten-
sibility to complex electron-molecule systems. To this
end, the formalism is based on the radial scattering func-
tions of conventional body-frame fixed-nuclei (BF-FN)
theory —functions whose physical and numerical proper-
ties have been exhaustively explored during the past two
decades. The FONDA prescription thus permits use of
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standard computer programs for calculation of these radi-
al functions, evaluation of the required coupling coeffi-
cients, and determination of differential and integrated
cross sections from the scattering matrix.

In a recent paper, ' the FONDA transition matrix for
rotational excitation (in the rigid-rotator approximation)
was derived and evaluated for pure rotational excitation of
H2. The resulting cross sections were accurate to better
than 5% even within 3 meV of threshold and to better
than 1% at energies above about twice threshold. The
marked improvement of the FONDA cross sections over
those of ANR theory illustrated the importance of
correctly treating the entrance- and exit-channel energies
for rotational excitation. But the breakdown of the AN
approximation for vibration is far more severe than that of
its rotational counterpart, ' so implementation and evalu-
ation of the FONDA prescription for vibrational excita-
tion is critical. We report here the results of this exten-
sion.

The essential result of the FONDA theory is a first-
order approximation to the laboratory-frame rovibrational
transition matrix in the coupled angular momentum repre-
sentation. ' In this formulation, asymptotic channels are
labeled by quantum numbers for the vibrational (v) and
rotational (j) states of the target, the orbital angular
momentum of the projectile (l), the total angular momen-

I

turn (J), and its projection on the space-fixed z axis (M).
The total energy in each channel is the sum of the kinetic
energy of the projectile, k ~j/2, and that of the target

EU/
= Cva(V+ 2 ) rvaXa(V+ 2 )

+B,j(j+ I ) Dj—(j+1)

where rat„x„B„,and D, are molecular constants. ' The
FONDA reactance matrix 4',JI,,~,I, for the excitation
v pjp vj is written in terms of integrals involving the
BF-FN radial functions for the entrance channel
Iv/'g, (r;kp, R). These functions, which are labeled by the
projection A of the electron's orbital angular momentum
on the internuclear axis, are evaluated at internuclear sep-
aration R and body energy Eb -kp/2. The FONDA in-
tegrals also include the Legendre projections vq(r, R) of
the electron-molecule interaction potential and a Ricatti-
Bessel function (free wave) for the exit channel, ji(k„/r).
With these integrals,

fe OO

II ~ I (l, lp, k„&,R) 'g jI(k,j.r)vt„(r, R)w&. I (r;kp, R)dr

(2)

and the target vibrational wave functions p, (R), the
FONDA reactance matrix is

QAJJ', pe�(l, l';A)(y„(R) ( II.~(l, lp', k,),R) ( p„(R)) Aj~A
(k./kp)' '

~
(3)

The explicit matrix element in Eq. (3) implies integration
over R. The constants AJA and ga(l, l';A) are the matrix
elements of the rotational frame transformation and the
coupling constants of BF-FN theory, respectively. [The
structural similarity of Eq. (3) to the equations of ANV
theory' explains why the calculation of FONDA cross

I

sections requires little more time than an ANV calcula-
tion. ] Equation (3) reduces to the frame-transformed
ANV reactance matrix ' if one imposes on the FONDA
K matrix the further assumption of target-state degenera-
cy.

The e-H2 system is sufficiently simple that one can per-
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FIG. 1. Integrated cross sections for (a) the pure vibrational excitation 00 10, and (b) the rovibrational excitation 00~ 12 of
Ha as calculated using the LFCC (solid curve), ANV (short-dashed curve), and FONDA (stars) methods. The long-dashed curves
were obtained by multiplying the ANV cross sections by k„z/ko. The dotted vertical lines are the thresholds 515.23 meV for excitation
to vj 10and 556.84meV for vj l2.
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TABLE I. Integrated e-H2 rovibrational cross sections ~(00—vj) (a$).

Fp (eV) vj FONDA LFCC ANV ANV (scaled) '
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0.024
0.008

0.062
0.037
0.208
0.187

0.767
0.989
0.531
0.750

0.350
0.488

0.209
0.277

0.024
0.006

0.055
0.026

0.181
0.137

0.748
0.978

0.527
0.745

0.348
0.489

0.210
0.276

0.248
0.215

0.304
0.280

0.476
0.488

0.792
1.073
0.524
0.748

0.345
0.484

0.209
0.272

0.093
0.058

0.156
0.127

0.331
0.325

0.720
0.968

0.496
0.705

0.332
0.464

0.203
0.264

'ANV cross sections times k.j/kp.

form fully-converged scattering calculations without hav-
ing to make either the approximation of separability of
the scattering ket or that of target-state degeneracy. '

The resulting laboratory-frame close-coupling (LFCC)
cross sections are the "benchmarks" for assessing the AN
and FONDA approximations.

In this initial implementation, we have simplified the
scattering calculations by approximating the nonlocal ex-
change potential in the Schrodinger equation for the
scattering function by a local, energy-dependent model
potential calculated from the probability density of the
target. ' The accuracy of this potential and its optimiza-
tion for vibrational excitation have been discussed in re-
cent publications. ' The other terms in the electron-
molecule potential arise from electrostatic and polariza-
tion interactions. We calculate tke former from near-
Hartree-Fock J'Zg+H2 electronic wave functions at 11 in-

ternuclear separations using a basis that has been de-
scribed elsewhere. ' We incorporate polarization
eA'ects using a parameter-free variationally-determined
potential that includes an approximate treatment of
short-range correlation. Using the resulting potential,
we calculated FONDA, LFCC, and ANV cross sections
that are converged to better than 1% in all parameters of
the scattering calculation.

In Figs. 1(a) and 1(b), FONDA integrated cross sec-
tions for pure vibrational (00 10) and rovibrational
(00 12) excitations of Hz are compared to LFCC and
ANV results. The values in Table I of these cross sections
at selected energies show the improvement in accuracy
that derives from proper treatment of the target-state en-
ergies.

We show two ANV curves in Fig. 1, because the "raw"
inelastic cross sections one calculates from an AN transi-
tion matrix (e.g. , the short-dashed curves) do not go to
zero at threshold, k„j 0. The standard way out of this
predicament is the ad hoc procedure" of multiplying all
AN cross sections by the dimensionless ratio k,//kn, this

gambit yields the long-dashed curves in Fig. 1. [But tf
this procedure is used at energies well above threshold,
where the "raw" ANV results agree well with their LFCC
counterparts, the resulting "scaled" ANV cross sections
are in error by several percent (see Table I). Unfor-
tunately, unless one already has LFCC benchmarks, one
cannot determine a priori the energy at which multiplica-
tion by the wave number ratio begins to do more harm
than good. ] No such procedure is necessary in the FON-
DA prescription, for the FONDA scattering matrix deter-
mined from (3) goes to zero at threshold and does so ac-
cording to the correct threshold laws.

A more sensitive test of the FONDA approximation is
aAorded by differential cross sections. In Fig. 2, we com-
pare diff'erential cross sections at 0.7 eV for excitations to
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FIG. 2. Differential cross sections at 0.7 eV for (a) the pure

vibrational excitation 00 10 and (b) the rovibrational excita-

tion 00 12 of Hs from LFCC (solid curve), ANV (dashed

curve), and FONDA (dots) scattering matrices. The ANV re-

sults were multiplied by k,~/kp.
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v =1 from our FONDA, (scaled) ANV, and LFCC calcu-
lations. With increasing energy, the FONDA cross sec-
tions come into even better agreement with the LFCC re-
sults; indeed, above 1.0 eV, the two cross sections are in-
distinguishable to within the 1% accuracy of these calcu-
lations.

This implementation of the FONDA approximation
shows that by venturing oA the energy shell while retain-
ing adiabatic factorization of the scattering ket, one can
calculate cross sections of far greater accuracy than ANV

results, with little concomitant increase in computer time.
The next step in the development of this method—inclusion of nonlocal exchange eAects exactly —is now
underway.
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