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A variational functional for transition amplitudes is applied to atom-atom collisions using a time-

dependent formalism. The transition amplitude is a functional of two independent trial wave func-
tions with specified initial and final conditions, respectively. Transition probabilities are obtained by
evaluating the functional in terms of standard time-dependent Hartree-Fock (TDHF) trial functions.
The TDHF method is implemented by expanding the molecular orbitals as linear combinations of
traveling atomic orbitals. The procedure requires no other molecular integrals than those needed to
construct the Fock operator. The present method is applied to He+He + and H++He+ collisions
with specified nuclear trajectories using a minimal atomic-orbital basis set. Within this model an ex-

act, close-coupling-type solution is also feasible, and has been obtained for comparison purposes.
Numerical values of probabilities and of cross sections obtained from the variational functionals for
elastic, spin-fiip, and one- and two-electron transfer processes show substantial improvements over
the standard TDHF results.

I. INTRODUCTION

In the many-electron theory of atomic collisions, a pos-
sible way of describing electronic energy or charge-
transfer processes is to allow the individual electronic
states to evolve in time under the infIuence of the other
electrons and of the nuclear dynamics.

The physical picture, that each electron moves in a
time-dependent average field, suggests implementing the
time-dependent Hartree-Fock (TDHF) approximation. A
variational derivation of the TDHF equations was first
given by Dirac, ' and later in a more general form by
Frenkel, whose variational principle has been extensively
discussed by many authors. The TDHF theory has
long been applied to atomic and molecular structure cal-
culations in a perturbative form, ' and is also known as
the random-phase approximation with exchange. "

In recent years the TDHF theory has also been success-
fully applied to atomic" and molecular" collisions by
solving the TDHF equations in the coordinate representa-
tion. Stich et al. "presented the first results of a basis-set
expansion for atomic collisions. In the TDHF approach
the many-electron wave functions of the colliding system
are written as antisymmetrized products of molecular or-
bitals. Transition amplitudes are then calculated by pro-
jecting the Hartree-Fock (HF) wave function, evolved
from a specified initial state, at the final time onto a given
final HF state. This standard procedure, however, might
be rather inaccurate since the error of the wave function
appears in first order in the transition probabilities.
Moreover, time reversibility is not necessarily satisfied.

To overcome these difficulties, Demkov' constructed a
variation al functional whose stationary value directly
gives the transition amplitude. In Demkov's method the
transition amplitude is a functional of both the forward
and the backward evolving trial wave functions with fixed

initial and final conditions, respectively. Recently,
different functionals have been used' ' to derive the cor-
responding Euler-Lagrange equations for the wave func-
tions. These equations can be solved only by iteration,
and are similar in nature to the equations obtained via a
functional-integration technique used in nuclear physics.

In the present work we apply the variational-functional
method developed in Ref. 21 to calculate state-to-state
transition probabilities and cross sections within a realistic
model of atom-atom collisions. The method employs only
standard TDHF wave functions, restores microscopic re-
versibility, and improves accuracy. This is a detailed ver-
sion of a previous paper that contained preliminary re-
sults.

The organization of this paper is as follows. Section II
contains a discussion of a semiclassical description of
atom-atom collisions followed by the introduction of the
transition-amplitude functional. In Sec. III we present
the TDHF formalism using a basis-set expansion. We de-
scribe our model and derive the corresponding equations
for helium and helium-ion collisions in Sec. IV. Features
of our numerical procedure and results constitute Sec. V.
Finally, the conclusions and some comments can be
found in Sec. VI.

II. ATOM-ATOM COLLISIONS

A. Time-dependent treatment

Let us consider a colliding two-center (a and b), two-
electron system, where a and 6 refer to two nuclei with
masses m, and Ib, respectively. The corresponding
space-fixed coordinate system is shown in Fig. 1. Select-
ing R, r~, and rq as independent variables, the total Ham-
iltonian & of the system is (in atomic units, fi= 1)
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k =(2ME)' (2.4b)

Substitutin E . 2.4g q. ( .4a) in the Schrodinger equation (2.3),
we obtain
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FIG. 1. Reference frame for a collidin two-
center system.
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where E is the total energy, and x~ stands for r,
being the spin variable of the jth electron.
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B. The transition-amplitude functional
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Furthermore, microscopic reversibility may be lost, i.e.,
p(+ )~p( —)

To overcome these shortcomings, in Ref. 21 we defined
the transition amplitude as the stationary value of the fol-
lowing functional:

g [q&(+) @(—)] g())[(y(+) @(—)]

+g(2)[q&(+ ) @(—)]

in which

(2.13)

1 )
t2'

~

(I),'+'), exp i f— dt 6' +'(t) + ((I)' '
~

(I&I+'), exp i — dt /). ( '(t)f I (2.14a)

,()"&) ' 'dte», J'dt g(+'(t')+i J dt'b, (t') [(4I 1(X—~+ )@ )+((+
tl l'2

(2.14b)
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(2.14c)

(2.14d)

rangemeni processes in atom-atom collisions, using the
standard TDHF wave functions, D'*', as approximate
solutions to Eqs. (2.9).

III. THE HARTREE-FOCK APPROXIMATION

and the wave functions N' —' are assumed to be normal-
ized. The right-hand side of Eq. (2.14a) is the average of
the transition amplitudes obtained by the standard projec-
tion procedure of Eqs. (2.11) with a specific choice for the
phases of the trial wave functions N'+—'. 4' ', in Eq.
(2.14b), is a variational contribution to the total scattering
amplitude, 4/;, which has the following properties: ' (1)
It is independent of the phases of the N( 's; (2) its first
variation is of second order in |)(Ii'—', (3) it satisfies micro-
scopic reversibility; and (4) it gives the exact transition
amplitudes if N,'+) or 4~ ' is the exact solution of the
Schrodinger equation (2.9). In this latter case b, (*)(t)—=0,
and 82)=0.

The idea of defining the transition amplitude by a varia-
tional functional which has the same properties as de-
scribed above is not new. For example, Demkov' defined
the transition amplitude as the stationary value of the fol-
lowing functional:

(2.15)

Equation (2.15} was derived in Ref. 17 by using a two-
step variational procedure; later it was rederived in a more
direct way by Blaizot and Ripka' employing a modified
functional.

Ho~ever, there is a pitfall in this method if one wants
to obtain transition amplitudes by evaluating SI;, in Eq.
(2.15) for given approximate wave functions. Namely, the
overlap (&PI '(t)

~
@,'"(t)) in the integrand of the right-

hand side of Eq. (2.15) may become zero or extremely
small at some points between t] and t2, hence resulting in
meaningless probabilities. In the following parts of this
paper we wish to apply the variational expression of Eqs.
(2.13) and (2.14} to calculate improved state-to-state tran-
sition probabilities and cross sections for electronic rear-

A. Molecular orbitals

A possible way of obtaining approximate solutions to
Eq. (2.9) is to implement the time-dependent Hartree-
Fock method. The TDHF equations can be derived from
the Frenkel variational principle

(5D
~
[H i (a/a—t)]D)+c.c. =0, (3.1)

by employing a determinantal trial function D in the form

D (x),xp, t) =2'» A g) (x), t)$2(x2, t), (3.2)

containing, in the two-electron case, two spin orbitals g~,
j=1,2, which should satisfy the orthonormality require-
ment

(3.3)

In Eq. (3.2) A is the antisymmetrizing projection opera-
tor.

The spin orbitals P& are generated by taking the inter-
nuclear axis R as the axis of quantization, i.e., they are
given in a body-fixed frame (BF). In Eq. (3.1), however,
a/at is defined in a space-fixed coordinate system [cf. Eq.
(2.9)]. Taking the xz plane as the plane of scattering, the
time derivative in Eq. (3.1) can be transformed to the
body-fixed frame in accordance with

[F) + Vt i (a/at)BF])t), (x—), t) =0, j=1,2, (3.5)

in the body-fixed frame, where I'~ is the nonlocal Fock
operator given by

(3.4)

where cv» is the angular velocity ( =bv /R for a constant
velocity v), and L» is the y component of the orbital angu-
lar momentum operator in the rotating (BF) frame. ' ("

Substituting the HF trial function of Eq. (3.2) into Eq.
(3.1) and taking into account Eq. (3.4), we obtain the
TDHF equations (and the complex-conjugate equations):
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1F)(t)= ——
2 Br1

M„

g c„&(t)g„(t),
n =a, by=1

(3.11)

+ y (q
~

v]p(1 P]p)q')p (3.6)

where P,j is the permutation operator. The term
VL, = co~L—~ in Eq. (3.5) is the Coriolis coupling due to
frame rotation. iS(d ldt)c j=(F+ VL iQ—)c~, j =1,2, (3.12)

where the c's are complex linear combination coeKcients
to be determined, and M„ is the number of TAO's cen-
tered around nucleus n in the expansion.

In the space of atomic states g„(r„;)g,(g;) the TDHF
equation (3.5) becomes

B. Linear combination of traveling atomic orbitals

The spin orbitals QJ in Eq. (3.2) are written as

P&(x;;t) =PJ(r;;t)rb (g; ), (3.7)

where the complex, Hermitian (M, +Mb )-dimensional
square matrices F, V L, and S are the Fock, Coriolis, and
overlap matrices, respectively', 0, is given by its elements

(3.13)
where pj(r;;t) is the jth time-dependent molecular orbital
(MO) at the position of the ith electron, and r)J(g;) is the
corresponding spin function. In the asymptotic region
(R ~ oo ), &0, the solution of Eq. (2.9), can be expressed at
fixed nuclear positions in terms of one-electron or two-
electron atomic wave functions. The one-electron, hydro-
genlike wave functions 7„satisfy the equation

2
1

2 Br„j
+ V„, —E„X„(r„~)=0, (3.8)

(„=X„(r„, )exp [ia„(r,; t) ),

where r„j.——r~ —q„R, X„, with p=(n, A. ) is the A, th eigen-
function of the one-electron atom n with eigenenergy c&.
In the case when both electrons are around the same nu-
cleus at infinite separation of the two nuclei, the asymp-
totic form of N can only be given approximately. It is
usually constructed from the atomic orbitylp 7„, defined

by Eq. (3.8). However, when the nuclei are moving, 4
must be built up from traveling atomic eigenfunctions,

N=—(c Sc)=c —S—Q —Q c .
dt dt dt

(3.14)

But since

—S=Q+Qd
di

(3.15)

the right-hand side of Eq. (3.14) is zero ensuring that the
norm N of a MO does not depend on time.

Transforming the matrix of the kinetic energy operator
K:—=(8/Br) /2 appearing in Eq. (3.6), by means of Eqs.
(2.2) and (3.9), one can derive the following relationship:

(3.16)

where

and c j is a column vector with elements c». The matrix
multiplying c i on the right-hand side of Eq. (3.12) is ob-
viously non-Hermitian. Nevertheless, from Eq. (3.12) and
from its adjoint, it follows that, temporarily omitting the
subscript j,

a„=v„ri —v „t /2 .

Here

v, =q„v, when n =a

(3.9b) E&g&g = ——, dr~exp[ i [a„(—r~) —a„(r~)][

X„(r„()6« (3.17)

= —q, v, when n =b, and

and P„ is the solution of Eq. (3.8). The traveling wave
functions g'„satisfy the following differential equation:

+ V„~ E„i —g„(—r„j—; t) =0 .
SF

(3.10)

It is easy to verify that if the initial conditions for N, in
Eq. (2.9), are properly constructed from traveling atomic
eigenfunctions as given by Eq. (3.9), the transition proba-
bilities, obtained from the asymptotic solutions of Eq.
(2.9), are independent of the choice of the coordinate sys-
tem, i.e., of the particular choice of q„, and, consequently,
no spurious asymptotic couplings occur.

One can attempt to solve Eq. (3.5) by expanding the
MO's in a basis of normalized but not necessarily ortho-
gonal traveling atomic orbitals (TAO's) g&(r„;;t):

2
Vn= ——(Q —Q ) . (3.18)

The matrix IC ', defined by its elements in Eq. (3.17), is a
transformed kinetic energy matrix obtained by shifting the
origin of the electronic coordinates to the nuclear posi-
tions.

Making use of Eqs. (3.15) and (3.16), we obtain the new
Fock matrix

F' '=F+ V g (3.19)

i c.=S ' F' —'+ V L i —S c,—j—=1,2 . (3.20)
dt 2 dt

The Fock matrix F' ' depends on both c 1 and c 2, so Eq.

and the TDHF equations in the TAO basis-set representa-
tion
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(3.20) represents a set of 2 X(M, +Mb ) coupled, complex,
first-order, nonlinear differential equations for the
coeScients c.

IV. THE MODEL
where

s(t)=(X.(t)
i
Xb(t) & .

(4.4a)

(4.4b)

We shall consider collisions of the systems He+ He +,
and He+(1)+He+(1), where the arrows indicate an elec-
tronic state with spins up or down.

In the collision energy range of E =10—100 keV, the
ratio of the nuclear velocity to the characteristic electron
velocity in the ground state of the He+ ion varies between
0.112 and 0.354. This indicates a need for translation fac-
tors in any realistic calculation that aims to compare with
experimental results.

The goal of the present paper, however, is to compare
results of different approximations within a reasonable
realistic model where exact solutions are also feasible.
Therefore, in order to simplify things, we shall consistent-
ly neglect the effects of the translation factors, i.e., we let
a„~0, after having calculated the necessary matrix ele-
ments in Eq. (3.20). In what follows, matrices will

represent operators in an ordinary atomic orbital (AO)
basis.

As our model, we chose a minimal AO basis set with
only one ls Slater-type orbital X„(r„)centered at each of
the two nuclei n =a, b:

The matrices S ', S', and ds ' Idt are easy to calcu-
late, and one finds that the commutator in Eq. (4.3) van-
ishes, i.e., that Vs=—0, in this model. Equation (4.2) then
reduces to the following simple form:

C ' =S 1/2F (+]S
t

(4.5)

D, (t, ) =X.(1)X.(2) 'e(1,2),
Dz(ti)=Xb(1)Xb(2) e(1 2)

D 3 ( t & ) = ( —,
'

)
' [X, ( 1 )Xb ( 2 )a( 1 )/3( 2 )

Xb(1)X, (—2)p(1)a(2)],

(4.6a)

(4.6b)

(4.6c)

D4(t & ) = ( —,
'

)
'

[Xb (1)X,(2)a(1)p(2)

All the matrix elements of S ' and F ' can be calcu-
lated analytically.

Let us introduce the following notation:
X„[r„~(t~)]=X„(j),n =a, b, where t~ is the initial time.
At t =t~ (R ~ oo ) there are four linearly independent
Hartree-Fock states, D; (t ~ ), i = 1, . . . , 4, with Mt =0:

X„=(y„'ln)' exp( y„r„), — —X, (1)Xb (2)p(1)a(2)], (4.6d)

A. Solutions of the TDHF equations

For computational purposes we have chosen to write
Eq. (3.20) in a Hermitian form by applying the basis-set
transformation

c=S'/ C . (4.1)

We then obtain from Eq. (3.20) the following Hermitian
matrix-di6'erential equation for C(t):

~ d
t c=s '"(F' —+v +-v, )s-'"c (4.2)

where

with exponents y, =y~ ——2.Oa~ ', in atomic units, for
helium.

where 'e(1,2) is the two-electron singlet spin function
constructed from the spin eigenfunctions a and P.

The antisymmetric two-electron functions D; (t ~ ),
i =1, . . . , 4, form an orthonormal set, and correspond to
the following initial channels, respectively, He+ He +,
He ++He, He+(&)+He+(1), and He+(l)+He+(t).

From Eqs. (3.2), (3.11), and (4.6) it follows that the
TDHF equations (4.5) should be solved by setting CJ„(t~ )

equal to zero or one. For instance, the initial values
C~, (t~)=C2, (t~)=1, and C~b(t&)=C2b(t~)=0 give the
initial state specified in Eq. (4.6a). Note that at t =t~, i.e. ,
when R ~~, S becomes the unit matrix and, in accor-
dance with Eq. (4.1), one has C(t~)=c(t~ ); the same is
valid at the final asymptotic time t =t2.

B. The "exact" solution

Vs ———S,—S1/2 ~ 1/2

2 'dt (4.3)

From the two ls AO's, X„[r„~(t)]=—X„(j), n =a, b,
j=1,2, one can construct the following set of linearly in-
dependent, antisymmetric two-electron basis functions,
4;(x~, xq, t):

The use of the 1s AO basis set greatly simplifies the
structure of the TDHF equations (4.2).

First of all, only X states may occur with ML ——0,
where ML is the component of the total orbital angular
momentum along the axis of quantization. It follows that
in this case the Coriolis coupling VL is identically zero,
which can be seen by recalling that the operator I.~ cou-
ples only those states for which

~
bML,

~

=1.
Secondly, the overlap matrix S has the very simple

form

4 ) =N~ [X,(l)X, (2)+Xb(1)Xb(2)] 'e(1,2),
&bP =N [X,(1)X,(2)—Xb (1)Xb (2)] 'e(1,2),
4 3 —N [X, ( 1 )Xb(2)+Xb ( 1 )X, (2)] 'e( 1,2)

C4 =N [X,(1)Xb (2)—Xb (1)X,(2) ] e(1,2),
where

N =(1ZI2[i+s(t)']I )'",

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.8)
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'e(1,2) =( —,
')' '[(((1)P(2)—P(1)(((2)],

'e(1,2) =(—,')' '[(((1)P(2)+P(1)(2(2)],

and s (t) in Eq. (4.8) is given by Eq. (4.4b).
We define

(4.9a)

(4.9b)
(I r)1/2 (I i)1/2 0'di

d
i —G'=(I") ' H'(I") ' G''dt— (4.15b)

4

@'(x1,x2', t)= y g;(t)e;(x1,x2, t} (4.10)
Equation (4.15b) can be easily transformed into the in-
teraction picture

as the "exact" solution of the Schrodinger equation (2.9)
within our minimal basis model, where g = [g, ] satisfies

i—g=I H —i I g .d ] (N) . ld
dt — 2dt

(4.11)

=y(t), for i,j =1,3, i&j
=0, otherwise,

y(r) =2s (r) l[1+s (r)2],

(4.12a)

(4.12b)

and also that the only nonzero ofI'-diagonal elements of
H ' are H'~3' ——H3~'. The determinant of the overlap
matrix is det(I )=1—y (r). As one can see from Eqs.
(4.12b) and (4.4b), I is singular in the united-atom limit
(R ~0).

From the structure of the matrices I and H ' ' it fol-
lows that only two of the coefficients (g1 and g3) are cou-
pled, and that

This equation was derived following the same pro-
cedure as in the TDHF case in Sec. III. First, we wrote
the functions C&J in Eqs. (4.7) in terms of TAO's and cal-
culated the necessary matrix elements. In this way we el-
iminated the spurious momentum-coupling term, and
then took the limit a„~O arriving at Eq. (4.11) where
H' ', similarly to F' ' in Eq. (3.16), contains matrix ele-
ments of the one-electron kinetic energy operator in coor-
dinates referred to the positions of the nuclei.

From Eqs. (4.7)—(4.9) it follows that

I;~ —= ( 4&;
~
+z ) = 1, for i =j

dt

I (U )t[(l )
—1/2H (I )

—1/ H ]U

U 0(r, O) =exp i —f dt'H 0(t')
0

Ho ——lim H',
A~co

(4.16a)

(4.16b)

(4.16c)

(4. 16d)

and it can be solved by standard numerical techniques.
At the initial time t =t1, the basis functions 4, (t), in

Eqs. (4.7), can be expressed in terms of the HF initial
states D; (t1) of Eqs. (4.6):

41(r, ) =(—,
' )' [D1(&1)+D2(t1)],

42(r 1 ) =( —,
' )' [D1(t1 ) —D2(t1 )]

43(t1 )=(—,
' )' [D3(t1 )+D4(t1 )]

44(r1)=( —,
')' '[D3(&1) D4(&1)] —.

(4.17a)

(4.17b)

(4.17c)

(4.17d)

V. NUMERICAL PROCEDURE AND RESULTS

We obtain the initial values g;(t1) for a given initial
state D' +(t )1by inverting Eqs. (4.17). For example, to
calculate transitions from initial channel 1 (He + He +, in
state D1) to final channel 3 [He+(1)+He+(1), in state
D3], one first solves Eq. (4.13) with g2(t1)=( —,')', Eq.
(4.14) with g4(t1)=0 which gives g4(t1)=0, as well as Eq.
(4.15b) with initial conditions g1(t1)=G'1(t1)=(—,

')' and

g3(t1)= G2(r1) =0; then one calculates @" from Eq.
(4.10), and finally one projects N"(t2) onto D3(t2) which
is similar to D3(t1) defined by Eq. (4.6c).

g2(t) =g2(r1)exp —1 f dt'H22'(r')
1

g4(t) =g4(t1)exp i dt'H44 (t—')

Introducing the 2 X 2 matrices

H[](N)

H'=
1

~ — H(N)

H (N)
13

rr (N)~ 33

and the two-dimensional column vector

g&

g3

one obtains

or, with g'=(I")'/ G', and realizing that

(4.13)

(4.14)

(4.15a)

Our goal is to calculate the transition amplitudes Sf; as
defined by Eqs. (2.13) and (2.14), using the TDHF solu-
tions as approximate wave functions, i.e., N' —'=D' —'. In
order to do this, we need to solve the TDHF equations
(4.5) twice, first by integrating forward from the time t1
with given initial conditions D +'(t1), then by calculating
a solution by backward integration from t q with a
different starting condition D '(t2).

Equation (4.5) represents four coupled differential equa-
tions for the AO coefficients, which are easy to separate
into eight real equations for the real and imaginary parts
of the unknown linear combination coefficients C„'J*',
n =a, b, j=1,2. The numerical integrations have been
performed by using the algorithm DE, an Adam-Peace
predictor-corrector method. This procedure has the ad-
vantage that it automatically adjusts the stepsize of the in-
tegration in accordance with the accuracy required. The
integrals of the phases 5' —1 in Eqs. (2.14) can be generat-
ed along with the solutions D' —', and their computation
requires the same one- and two-center integrals as those
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FIG. 2. Time evolution of the 1s electronic isodensity curves
obtained from the TDHF solutions for the one-electron-transfer
process in the collision of He and He +. The initial and the final
separation of the two nuclei along the z direction is 8,0ag, and
the collision energy is 50 keV.

needed in &' —'.
Since we needed an additional time integral to calculate

the expressions in Eqs. (2.14), solving for D'+' and D'
separately proved to be unpractical. Therefore we first in-
tegrated Eq. (4.5) backward in time from t2 and obtained
D' ' at the time t ~. Using the computed coefticients

(o)

~1+ Q&j 'ri ~

I

FIG. 4. Transition probabilities vs impact parameters for the
elastic scattering of He and He'+, at E=100 keV. Solid line, ex-
act results; dashed line, results obtained from the TDHF solu-
tions by forward integration; dots, results obtained by the
variational-functional method.

C„I, '(tr ), together with the already specified C„'+'(ti )'s as
initial values, we solved for C~I+ (t) and C~ (t) simul-
taneously, and at the same time generated the required in-
tegrals over time in Eqs. (2.14). Although in this way we
solved Eq. (4.5) three times, the effective computing time
was reduced by a factor of about 5, because no interpola-
tion between separately stored solutions D'+' and D'
was needed.

In the case of the exact solutions, we solved Eqs. (4.16)
for the coefficients g~ and g3 with the algorithm DE men-
tioned previously; the integrals in Eqs. (4.13) and (4.14)
for gz and g4, respectively, were computed while generat-
ing the coe%cients g~ and g3. The initial conditions for
the g's were chosen according to Eq. (4.17).

The time development of the one-electron densities
gives a clear picture of the electronic rearrangement pro-
cesses. This is demonstrated in Figs. 2 and 3. In Fig. 2,

(b) (g)

+C~l'

(c) (h)

AJ

e.o-

(d)
CQ
M
M

o 55-CO

(e)

5.0
20 30

I I I I I I I

40 50 80 70 80 90 100 110
CO&&&~ION Ir2HXGY (keV)

FIG. 3. Time evolution of the spin densities obtained from
the TDHF wave functions for the spin-flip process
He+ ( & ) +He ( l )~He( & ) +He( & ). The initial separation be-
tween the two nuclei is 6.0a~, and the collision energy is 50 keV.

FIG. 5. Elastic cross sections vs collision energies for collision
of He and He +. Solid line, exact results; dashed line, results
obtained from the TDHF solutions by forward integration; dots,
results obtained by the variational-functional method.
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FIG. 6. One-electron-transfer transition probabilities vs im-
pact parameters for the collision of He and He +, at E=100
keV.
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the time evolution of the one-electron densities is shown
for the one-electron transfer collision process He
+ He +~He++He+. Here we have summed over the

final spin states. We started (a) and ended (h) the col-
lision when the separation between the two nuclei along
the z direction was larger than 8.0aq, in atomic units. In
this case the relative collision energy was 50 keV, and the
impact parameter was 1.7a~. The isodensity curves corre-
spond to values between 10 and 10 . One sees that
the electronic charge density is smoothly transferred from
one nucleus to the other.

In Fig. 3 we show the spin-Rip collision process
He+( t)+He ( l)~He+(g)+He+( t). The dashed iso-
density curves correspond to negative, or spin-down,
values. The collision time increases from (a) to (j). Here
the maximum separation between the nuclei along the z
direction was 6.0a~, and the energy was 50 keV. The
spin density is seen to smoothly shrink until the nuclei
come to their closest approach, around which the spin
densities abruptly reverse sign.

Transition probabilities as functions of the impact pa-

rameter in the range of 0.2a~ —3.0a~, and cross sections
versus collision energies in the range of 30—100 keV were
calculated with the exact solutions, with the TDHF(+ )

ones, as well as with the functional method, for the fol-
lowing processes:

He+ He + ~He+He +,
He+ He + ~He ++He,
He+ He + —+He++He+,

He+(t)+He+(&) He+(t)+He+(1),

He+(t)+He+(1)~He+(t)+He+(t) .

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

The state-to-state cross section o.f; for scattering within
0(0(00 is defined as

FIG. 8. Two-electron-transfer transition probabilities vs im-
pact parameters for the collision of He and He +, at E=100
keV.
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FIG. 7. One-electron-transfer cross sections vs collision ener-
gies for the collision of He and He +.

FIG. 9. Two-electron-transfer cross sections vs collision ener-
gies for the collision of He and He +.
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In the case of the two-electron transfer [Eq. (5.2)] and
the spin-Hip [Eq. (5.5)] processes, the standard TDHF
cross sections seem to be as accurate as the ones calculat-
ed by the functional method (see Figs. 7 and 13). Howev-
er, from Figs. 6 and 12 it is obvious that this is due to a
systematic cancellation of errors, since the standard
TDHF results overestimate the probabilities at the maxi-
ma, and underestimate them in the large impact-
parameter domain, as compared to the exact ones.

We have also performed calculations by using the Dem-
kov functional' of Eq. (2.15), and have indeed found that
the denominator in the complex phase

(D( —)
~

[H t (g/gt)]D(+))/(D( —)
~

DI+))

100

Pl
O~10-~ =
C4

I
I

I I I I
I

I I I I
I

t I I s

can, in certain cases, cause serious errors. This is demon-
strated in Fig. 14, where we have also plotted the proba-
bilities obtained from Eq. (2.15) (open circles) in the case
of the spin-flip process at E=50 keV. Here one can see
that besides an obvious singularity observed between
b=0.2 and 0.3 A, expression (2.15) yields poorer results
than our functional method does.

Numerical calculations with the variational functional
of Eqs. (2.13) and (2.14) without the phases b, t —' [i.e., set-
ting b, I '=0, everyw—here in Eqs. (2.14)] gave results far
from the correct ones. Hence, in addition to the formal
advantage of having a phase-independent variational ex-
pression. %e conclude that the introduction of the real
phases b, ' —)(t) in the transition amplitude is essential to
obtain meaningful results.

Finally, it should be emphasized that our computation-
al method can be extended to cases requiring larger basis
sets of traveling atomic orbitals. Such an extension would
allow us to calculate transition probabilities for conditions
of experimental interest, and is presently being undertak-
en. In the present contribution we have chosen to work
with a small basis set, which allowed us to solve for the

104 I t I I t I t t t I I t I

0.0 0.6 1.0
QG'ACT PARAMI -sxB

\

I

1.6 2.0
(A)

FIG. 14. Transition probabilities vs impact parameters for the
spin-flip (two-electron-transfer) process He+(&)+He+(l)
~He+(l)+He+(I) at E=50 keV. The open circles show re-
sults obtained from the Demkov functional of Eq. (2.15).

exact transition probabilities, to determine by comparison
the quality of the results we obtained from our variational
functional.
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