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Time evolution of squeezing and antibunching in an optically bistable two-photon medium
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We use a numerical technique to study the time development of squeezing and antibunching re-
sulting from the interaction of coherent light with a two-photon medium. While we find that
enhanced squeezing occurs for short time, the squeezing is eventually revoked. We also find that
antibunching develops but also is eventually revoked.

In light of the recent observations of squeezed elec-
tromagnetic radiation' there is much interest in finding
systems which exhibit a significant amount of squeezing.
Some time ago Tombesi and Yuen considered the tem-
poral development of squeezing resulting from the in-
teraction of single-mode coherent light with an optically
bistable two-photon medium. As the long-time (t~ oo )

behavior of the system is not experimentally relevant,
they developed an approximate solution to the equations
of motion in order to study the short-time, transient be-
havior. The solutions they found displayed enhanced
squeezing over the short time. Of course, for much
longer times damping effects would be expected to
reduce the squeezing. Nevertheless, for a more complete
assessment of the potential of the system to produce
enhanced squeezing one ought to go beyond the short-
time limit. In this paper we do just that by studying the
time development directly using a numerical technique.
We also study the time development of the other non-
classical effect —photon antibunching. We find that for
longer times both squeezing and antibunching appear to
be revoked.

The Hamiltonian for our system of interest may be
written as

iHot /A —
iHot lee ' (HT+H„)e

=HTI +HEI (4)

where, as can be easily shown,

ir,a
Hri= (a —a ),

2

H„=H, = —Ka a
2

(5b)

UT(t, O) =exp
I ot

2
(a —a )

so that

a (t) = UT(r, O)a (0)UT(r, O),

In order to check our numerical computations to see the
effect of the combined Hamiltonians of Eq. (4), we con-
sider each part of Eq. (5) separately, as in both cases the
dynamics is solvable. The evolution operator when
K =0 is

H =Ho+HT+Hq, =a cosh(1 Ot) asti hn(I ot)—, (7)

where Ho ——A'cuba a is the free-field Hamiltonian,

HT = —[I *(t)a'+ 1(r)a ']
2

is the usual two-photon Hamiltonian, and

H~ ———Ka a
g2

2

is an anharmonic term known to give rise to optical bi-
stability. The two-photon Hamiltonian HT is, in fact,
with a proper choice of I (t), a prototype for the genera-
tion of squeezed states. ' As in Ref. 3 we take
I'(t)= —iI oe

' ', where I o is real. On the other hand,
the anharmonic term Hz has been shown by Tanas also
to produce squeezed light. Thus the combination as in
Eq. (1) is expected to give enhanced squeezing, at least
for some time intervals.

We work in the interaction picture so that

[x],X2]=21,

we obtain the uncertainty relations

(~, ) (~~) ) 1 .

Squeezing exists if (~& ) & 1 or (~z) & l. Assuming
an initial coherent state

oo n

) —iv/2 y ~

), &n!
(10)

where N =
~

a
~

is the average photon number, we ob-
tain from Eq. (7)

where a (0)=a. Defining the quadrature operators
X, =a +a and Xz ———i (a —a ) which satisfy
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(~, ) =e quadrature. Also for later purposes we evaluate the time
zero correlation function

)2 0

This is the standard result ' showing squeezing in the
X, quadrature. Henceforth we shall consider only this

I

g
(a a aa)
(a'a )'

For a chosen as real we obtain

(12)

(a a aa ) =a [ cosh (I ot) —4cosh'(I ot)+6cosh (I Ot)sinh (I ot) 4—cosh(I Ot)sinh (I Ot)

+sinh (I ot)]+a [ 8 cosh (I Ot)sinh(1 ot) —10 cosh(1 ot)sinh (I ot)

—2 cosh (I ot)sinh(1 ot)+4sinh (I ot)]

+cosh (I ot)sinh (I Ot)+2 sinh (I ot),

(ata )~=a [cosh (I ot) —2cosh(I Ot)sinh(1 Ot)+sinh (I Ot)]+sinh (I ot) .

(13a)

(13b)

Photon antibunching occurs if g' '(0) & 1 which is the
case here for some t ~ 0 (see below).

For the anharmonic term alone (I 0=0) the evolution
operator is

(~& ) & 1 for various values of X and t . However, the
statistics of the light are not altered by the anharmonic
interaction so that g ~ '(0) = 1 for all times.

For the combined Hamiltonians the evolution opera-
tor is

U„(t,O) =exp — a a
IKt y& z

2

from which one obtains

(14)

U(t, O)=exp — a a + (a —a )
IKt g& q o

2 2
(17)

a (t) = U„(t,O)a (0)U„(t,O),

=exp( —iKta a)a .

The variance of X, for an initial coherent state is

(15)

It is not possible to obtain a closed-form expression for
a(t). We proceed instead with a direct numerical tech-
nique. The expectation value of any function of a and
a, F(a,a), is

(F)=(a
~

U (t, O)F(a, a )U(t, O)
~

a),
(~~) = 1+2ÃI 1 —exp[2X(cos(Kt) —1)]j

+2N Re[ e ' 'exp[%(e ' ' —1)]

—exp[2X(e ' ' —1)]), (16)

n. n"
J

(a
~

U (t, O)
~

n')(n'
~

F(a, a )
~

n" )

(18)
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FIG. 1. Time development of the variance (~, )' for a=3,
I 0 ——2, and K =0, 0.1, and 0.25.

FIG. 2. Time development of the variance (~&) for the
separate case I o ——0, K =0.1, I 0

——2, K =0; and I 0=2, I( =0. 1

and with a=3.
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FIG. 3. Same as Fig. 2 but with I O=5 and E =0.25.
FICs. 4. Time development of the zero time correlation

function g' '(0) for I o=2,E =0, 0.1, and 0.25 with a=3.

which has been expanded in terms of the number states.
The evolution operator U(t, O)=exp( —iHtt/A') is writ-
ten via the Trotter product formula as

U(t, O) = [ U(e)] (19)

where e=t/M. The short-time evolution operator is ap-
proximated as 8

U ( e ) =exp( i eHt /A)—,

E1+ eHJ
2A

l
eHJ

2A

which has the advantage of being unitary.
In our calculations we retained 45 states in our expan-

sions and set @=0.01 with the number of time steps
M =45. As a check of the reliability of the method we
considered first the separate cases of anharmonic oscilla-
tor and parametric amplifiers and compared with the ex-
act results. We find good agreement for a up to about
a=3 with K (0.25 and I p&5. 0. For higher values of a
and K, and longer time, more states are required,
exceeding the memory capacity on the PRIME 750 on
which our calculations were performed.

In Fig. 1 we show the time development of (~, ) for
a=3.0 for I p

——2 and K =0, 0.1, and 0.25. As can
plainly be seen, enhanced squeezing over the E =0 case
does occur as in Ref. 3. However, we find that the be-
havior of the squeezing is very sensitive to the anhar-
monic parameter E. For low values of E a very small
amount of enhancement is produced. For larger E
greater squeezing is produced but for a shorter time, the
squeezing being more rapidly revoked than before. In
Fig. 2 we consider the case of the individual interactions
I p ——0 and E =0 separately and the combination with
F'p =2 E' =0. 1 with a =3. We note that even while(~, ) is descending for the separate cases, the com-
bined interaction produces an ascending variance over
the same time interval. This indicates that the overall
behavior of the time development of the variance is not

completely dominated by the anharmonic term but is the
result of the interference of it and the two-photon non-
conserving interaction term.

In the work of Ref. 3 the numerical results are charac-
terized by a parameter 5 = (Ka /I o ) and it is shown
that enhanced squeezing can occur for 0 & 5 & 1.2, where
5=0 is just the case of E =0. In our calculations we
take 6 up to 1.13. Ho~ever, our choices of I p, EC, and a
are such that the enhanced squeezing we obtain occurs
for shorter time intervals than in Ref. 3, allowing us to
see the effect of the anharmonic term at longer time.
Thus even though our maximum time is such that
F pf =0.90 whereas I pt = 1 .0 in Ref. 3, we still see the
long-time effects as our choices of I p, E, and a
effectively speed up the system. Presumably this would
not be possible in the perturbative approach in Ref. 3.
To go beyond the I pt = 1.0 limit we take I p = 5 so that
we get I pt =2.25. With E =0.25 and a=3 as before,
we see in Fig. 3 the evolution of the variance. Enhanced
squeezing is again obtained but is rapidly revoked. (We
have checked the exact results with the numerical results
for I p=5 and E =0 and found agreement to two de-
cimal places. )

In Fig. 4 we give the results for the zero time correla-
tion function g ' '(0) again for I o

——2, E =0, 0. 1, and
& =0.25. We find that for E =0, g' '(0) &1 over most
of the time interval considered, in agreement with the
exact result determined from Eq. (13). For K&0, we no-
tice that as time goes on the antibunching effect appears
to be revoked; the higher the K value the more rapidly it
is revoked.

In conclusion, then, we have shown that for a general
two-photon medium modeled by the Hamiltonian of Eq.
(1) enhanced squeezing can occur but that squeezing in
general is eventually revoked. The antibunching effect
also occurs but it, too, is eventually revoked. It is possi-
ble, of course, that these effects may recur at much
longer times but we are unable to study this because of
the limitations of the available computing facilities.

We are grateful to Jerry Kiefer for assistance with the
numerical calculations.
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