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Density dependence of the stopping mean excitation energy
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The local-plasma model for the stopping mean excitation energy I(0) of Lindhard and ScharA' is
used to investigate the e6'ects of target density. The use of the Thomas-Fermi electron density
produces a universal curve for I(0)/Z, where Z is the nuclear charge number, as a function of the
target density. Experimental data for I(0) are shown to be in good agreement with this predicted
curve. A simple formula is derived for I{0}in the limit of high target density. This approach is
known to predict a similar curve for the charge dependence of I(0)/Z for atomic ion targets. Nu-
merical comparisons and an asymptotic formula for the large-charge limit are presented for this
case.

where
1'O

X(ro)= I dr 4mr p(r) .
0

(2)

H is the Hartree unit of energy, a0 is the Bohr unit of
length, and y is an empirical constant. The usual
infinite range for r and normalization condition have
been replaced by conditions that anticipate the following
developments. Equation (1) has proved very useful in
correlating experimental data. For example, Chu and
Powers obtained excellent agreement with experiment
by using the Herman-Skillman free-atom orbitals and
ro~ oo to determine p(r). The choice of y~1 has
caused some discussion, and it was noted that the use of
p(r) from a cell model for solid targets, which implies a
finite ro, increases the predicted I(0) over the free-atom
prediction. This allowed a choice for y nearer to unity
than the original suggested value' of &2 but did not re-
move its presence. Many detailed discussions of the na-

The local-plasma model of Lindhard and Schar6'
defines the stopping mean excitation energy I (0) in
terms of the target radial electron density p(r) as

in[I(0)/H]=[21'(ro)] ' I dr 4nv p(r)
0

)&ln[y 4vrp(r)ao],

4np(r)=(Z .lb )[y(x)/x] (3)

where

b =(9' /128)'~ ao,

x =Z'"r/b,

d y(x) [y(x)]
8x x

(4)

determines y(x) subject to the conditions g(0)=1 and
the derivative of y(x) at x =0, y'(0) = —S, be specified.
Substituting Eq. (3) into Eqs. (1) and (2) gives

ture of this theory and the choices for y are available.
Equation (1) is used here with the Thomas-Fermi6 for-

mula for p(r) and a cell model for the target to amplify
the observations made in Ref. 4. This approach results
in a curve for I(0)/Z, where Z is the nuclear charge
number that applies to all neutral targets and depends
only on the density of the target. This is very similar to
and is a generalization of the result found by Bloch that
predicted I(0)/Z to be a constant for all targets.

The Thomas-Fermi equation for the electron radial
density is

XO

I(0)/(ZH)=y exp [2f (xo)] ' I dx &x [y(x)] lnI(b/ao) [y(x)/x] ~
]

0
(5)

with'
Xof (xo)=—X(xo)/Z = I dx &x [y(x)] i . (6)

The function g(x ) for S & 1.588 07 (Ref. 8) implies the
density for a neutral atom confined to a sphere of radius
ro (Ref. 6) or, equivalently, xo. Z =N (xo ), or
f (xo) = 1.0, defines the radius of the neutral sphere.

Equations (5) and (6) show that I(0)/Z is a universal
function of x0 for the Thomas-Fermi approximation to

I

p(r). A value for xo is obtained from the target's density
by requiring the volume of a sphere of radius x0 be
equal to the apparent volume that is occupied by an
atom in the target being considered.

The resulting universal curve for single-component
neutral materials is shown in Figs. 1 and 2. The high-
density or small-x0 limit

I (0)/(ZH) =ye '
I 2[(b /ao )xo]
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FIG. 1. Value of I(0)/Z as defined by Eq. (5) is shown by
the solid line as a function of xo '. Experimental values from
Ref. 10 for the elements are shown by the squares and interpo-
lated values by +.

is derived in the Appendix and is shown in Fig. 2.
Experimental data' for the elements are also shown in

Fig. 1. It seems clear that the trend with density or,
equivalently, xo ' predicted by Eq. (5) is in agreement
with experiment. The largest differences occur for gase-
ous targets, xo '-0. These calculations used y=1.41,
in accord with the value that reasonably reproduces ex-
perimental values, ' where it should be noted that com-
parisons of Eq. (1) with other theoretical data indicate a
smaller value. ' '"

The cell model is relatively successful in describing the
bonding nature of solids under a variety of conditions.
Hence, the curve in Figs. 1 and 2 gives a prediction for
the behavior of this stopping parameter under extreme
conditions such as those encountered in astrophysical
environments or, potentially, in laboratory inertially
confined fusion experiments. '

This model does not make a distinction between phase
and chemical-bonding effects. However, it is clear that

I (0)/Z is predicted to be less for tenuous materials than
it is for solids. This is consistent with the qualitative ob-
servation that stopping for a gas or vapor tends to
exceed that for the corresponding solid. ' The cell mod-
el as used here is not well suited for application to
molecular targets but estimates can be constructed. For
example, consider water as a sphere with the density-
radius dependence defined above. This is not accurate
for predicting absolute values since a Z value is not
clearly defined. However, if Z =10 and the normal den-
sities' are used to estimate values for xo, the liquid-
vapor and ice-vapor ratios for I(0) are predicted, from
the curve in Fig. 1, to be 1.20 and 1.19. The ice-vapor
ratio is not known experimentally but a theoretical cal-
culation' predicts 1.20. The liquid-vapor ratio is
recommended to be 1.13 (Ref. 13) while other values,
1.05, are in use. ' '' Typically, this method will overesti-
mate the condensed-tenuous ratios because the values for
tenuous targets tend to be too small (see Fig. 1). Exam-
ples for composite materials will not be considered and,
unfortunately, there are no data for compressed targets.

The case of ions with positive charge corresponds to
solutions of Eq. (4) with S ~ 1.58808. In this case,
y(xo)=0 defines xo and, through Eq. (6), f (xo) & 1.0.
Equation (5) again shows that, with these approxima-
tions, I (0)/Z is a function of a single variable, either xo
or f (xo). It is more natural to use f (xo) as the in-
dependent variable for ionized atomic targets. The re-
sults for Eq. (5) are shown in Fig. 3 along with the small
f (xo) or large ion-charge limit,

I(0)/(ZH)=ye' Im. [16(b/a ) f (x )] 'I', (8)

which is derived in the Appendix.
The prediction of a universal curve by Eq. (5) for posi-

tive ions is known and Ref. 12 provides a convenient and
accurate expression for Eq. (5) in this case. There are no
experimental data for ionic targets but, since such data
are required in the modeling of high-temperature plas-
mas, some theoretical data are available. The data
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FIG. 2. Behavior of I(0)/Z vs xo ', as defined by Eq. (5) is
shown as the solid line and the dashed line represents the
high-density limiting behavior given by Eq. (7).

FIG. 3. Prediction of Eq. (5) for ions is shown as a function
of f(xo) by the solid line. The dashed line represents the
high-ionization limiting behavior given by Eq. (8). Theoretical
data calculated by the techniques of Ref. 15 are shown by
squares for Al, by circles for Ni, and by triangles for Au.
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shown in Fig. 3 are either presented in Refs. 15 and 16
or are from unpublished calculations. ' The agreement
between the two types of calculations is reasonably good
for f (xp)) 0.5, noting that the logarithmic scales used
in Fig. 3 tend to diminish differences. Also, the average
error could be reduced by an increase in the value of y.

The marked increase in error for Eq. (5) and
f (xp)=1/Z is anticipated because of the failure of Eq.
(1) to scale correctly in this limit. " The correct
I(0) ccZ scaling as f(xp) approaches 1/Z is replaced
by I(0) ccZ i when quantum orbitals are used to evalu-
ate Eq. (1). The Thomas-Fermi approximation to p(r)
can be seen from Eqs. (6) and (8) to reproduce the same
error.

The important point displayed in Fig. 3 is the tenden-
cy of available data to follow a universal curve in these
variables even if it is not the one predicted by Eq. (5). In
fact, a crude adaptation of Eq. (8) suggested by Fig. 3,

I (0)/(Z eV) =(33/f '
) —23,

is a reasonable fit for all f (x).

APPENDIX

Xp Xp1= f dx &x [y(x)] = f dx x
0 0

d y(x)
dX

2cx p

The direct evaluation of Eq. (5), using the following or-
der of approximation,

The derivation of the high-density limit, Eq. (7), is
presented first. For 0 & x & xp the assumption

y(x) =1—Sx +cx

is used. Equation (6) requires

I(0)/(ZH)= y exp ( —,') f dx x [d p(x)/dx ]lnI [x '(b/ap) ][d y( x)/d x]I
Xp

=y exp ( —,') f dx(2x/xp)ln[2x 'xp (b/ap) ])
0

to give Eq. (7), is an easy calculation.
The highly ionized limit to Eq. (5) is obtained by as-

suming

and
Xpf dx &x [y(x)] I [n(b/ a)p[tp(x)/x] i

I

p(x) = 1 —Sx

and, since

Xp= f dx&x
0 Xp

3/2

y(xp) =0
determines xp for this case,

S=xp—1

is required. Substituting this into Eqs. (6) and (5) pro-
duces

—3 3/2
b 1 —x/xp

ap

=(tr/16)xpi [1—ln[(b/ap) xp ]I,

f (x p ) —=N (x p ) /Z = ( tr /16 )x p which, when substituted into Eq. (5), gives Eq. (8).
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