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For purely repulsive r potentials the three-dimensional linear Boltzmann equation is solved
for two limiting cases. In the Rayleigh limit {m& ~ ao) the Boltzmann collision operator reduces
to the Fokker-Planck differential operator, which is independent of the potential index v. In the
Lorentz limit (m&~0) the eigenvalue problem of the Boltzmann collision operator is solved
analytically yielding speed-dependent eigenvalues and the Legendre polynomials as eigenfunctions.
For the particular case of a hard-sphere interaction potential (v= ao) the Lorentz collision opera-
tor reduces to the well-known projection operator, which averages the distribution function over
all directions in velocity space. Either of the above limits allows an analytical solution of the
Boltzmann equation for the dynamical self-structure factor S,(q, co) in terms of a scalar continued
fraction. Finally, for the particular case of a Maxwell interaction potential (v=4), the dependence
of S, (q, co) on the mass ratio m& /mz is studied using our previous result of the infinite matrix-
continued-fraction representation of S, (q, co). It turns out that for m„/m& ~0 and m& /m& ~ oo

the matrix-continued-fraction representation of S, (q, co) converges to the same values as do the
respective scalar-continued-fraction representations mentioned above. From a physical point of
view two interesting results should be mentioned here: First, it turns out that in the Lorentz limit
the dynamical self-structure factor does not approach the well-known Lorentz line shape in the
hydrodynamic limit (q~O), which means that the two limiting processes, m& ~0 and q~O, must
not be interchanged. Second, by scaling S, (q, co) to the customary dimensionless quantity R (q, x),
the dependence of R (q, x) on both the potential index v and the mass ratio M:=m& /(m „+m&) is

rather weak. This statement, however, is only true for mass ratios M &0.05, whereas for very
small mass ratios (M &0.05) one observes for all potential indices a strong dependence of R (q, x)
on the mass ratio.

I. INTRODUCTION

In a previous paper' we have presented a new deriva-
tion of the dynamical self-structure factor S, (q, co). The
starting point was the Boltzmann equation for a dilute
gas mixture of particles interacting via a Maxwellian
(r ") potential. It turned out that the dynamical self-
structure factor can be represented by an infinite matrix
continued fraction. The result is valid for the entire
(q, co) range and for arbitrary mass (m„/mtt) and con-
centration (n „/ntt ) ratios. Although the numerical
evaluation of the infinite matrix continued fraction does
not cause any problem, we only studied the convergence
of the truncated matrix continued fraction in the free-
gas limit (q~ oo ) and compared it with the well-known
Gaussian limit (see Table II of Ref. 1).

In this paper we pursue two objectives. First, we want
to investigate the dependence of S, (q, co) on the potential
index v for purely repulsive r potentials. Second, for
the special case of the Maxwell potential (v=4) we com-
pare our previous matrix continued fraction (see Ref. l)
with a completely different representation, namely, a
scalar-continued fraction, which —as will be outlined
below —is obtained from the Boltzmann equation in the

Lorentz limit ( n~O, m„~O) and the Rayleigh limit
(n~ ~0, m„~ oo ), respectively.

For the case of a hard-sphere gas a Gross-Jackson
modeling procedure was used by Lindenfeld in order to
calculate the dependence of S, (q, co ) on the mass ratio
m~/m~. That paper also contains a careful analytical
treatment of the Lorentz and the Rayleigh limit. How-
ever, the results are restricted to a hard-sphere interac-
tion potential only. In particular, for the interesting
case of the Lorentz gas the Boltzmann collision opera-
tor is replaced by a projection operator, which averages
the distribution function over all directions in velocity
space, and the generalization of this Lorentz collision
operator to other interaction potentials is not obvious.

This paper is organized as follows. In Sec. II we
brieAy summarize the definitions concerning the dynami-
cal self-structure factor S, (q, co) in a suitable scaling of
the variables. In Sec. III we derive the Rayleigh limit
(n z ~0, m„~ oo ) of the Boltzmann collision operator
and present the dynamical self-structure factor in terms
of an infinite scalar continued fraction. As expected, the
Rayleigh collision operator is equivalent to the linear
Fokker-Planck operator. ' It should be stressed that
for calculating S, (q, co ) this second-order differential
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operator is the exact limit of the Boltzmann collision
operator as the mass ratio of the tagged particle A and
the bath particles B tends to infinity. At a first glance
this seems surprising, since a systematic expansion of the
linear Bo1tzmann equation in powers of the mass ra-
tio yields the Fokker-Planck equation, where the fluc-
tuations (or equivalently, the second-order partial deriva-
tive with respect to the velocity) are controlled by the
mass ratio. These fluctuations tend to zero as the mass
of the tagged particle becomes larger, and an initially
sharply peaked distribution function will remain un-
changed over time. However, when calculating S, (q, co),
an average over the equilibrium Maxwell-Boltzmann ve-
locity distribution is performed, and the mass ratio
which controls the fluctuations can be scaled out. As
expected, the Rayleigh collision operator is independent
of the potential index v considered.

In Sec. IV we treat the Lorentz limit (n z ~0,
m„~O) for an arbitrary repulsive interaction potential.
It turns out that the eigenfunctions of the Lorentz col-
lision operator are given by the Legendre polynomials,
and in general one obtains distinct eigenvalues (pimp, i
for 1&l'), except for the hard-sphere gas, where the
Lorentz operator reduces to a projection operator, which
averages the distribution function over all directions in
velocity space. In the Lorentz limit the dynamical self-
structure factor can be represented by a single integral
over an infinite scalar continued fraction. This represen-
tation comprises the entire range of the potential index
v, which for the hard-sphere interaction reduces to an
elementary function. '

Both the hydrodynamic limit (q~O) and the free-gas
limit (q~ oo ) of the dynamical self-structure factor are
discussed for the Rayleigh and the Lorentz gas. It
should be stressed that the hydrodynamic limit of
S, (q, cu) for the Lorentz gas does not approach the usual
Lorentz line shape, which means that the two limits,
m~ ~0 and q —+0, must not be interchanged. For a
hard-sphere Lorentz gas this was already pointed out by
Lindenfeld. Finally, the peak height and the full width
at half maximum of S, (q, cu) are presented for different
values of the potential index v (see Figs. 1 and 2).

In Sec. V we study the dependence of S, (q, cu) on the
mass ratio, confining ourselves to the Maxwell interac-
tion potential. To this end we compare our previous re-
sults for S, (q, co) in terms of an infinite matrix contin-
ued fraction with the ones obtained in this paper. We
first study the mass dependence of S,(q, cv) calculated via
a truncated matrix continued fraction. It turns out that
much of the mass dependence has been removed by scal-
ing. In Fig. 3 the variation of the scaled peak height
R (q, O) as function of the mass ratio is plotted for
different values of q. For a large range of mass ratios
[0.05 & M =m „/( m „+mii ) & 1) one gets a rather weak
dependence on I, whereas for M&0.05 a steep increase
of R (q, O) to the Lorentz limit is observed. The same
features are found in Fig. 4 for the full width at half
maximum. Comparing our results (Maxwell potential,
v=4) with those obtained by Lindenfeld (hard-sphere
potential, v= oo ) one also finds that for M&0.05 the
dependence of R (q, x) on the potential index is rather

weak, whereas, when approaching the Lorentz limit
(M ~0) the results differ considerably. In Figs.
5(a) —5(c) the dynamical self-structure factor S, (q, tv) is
plotted for the particular mass ratios m~ /m~ =0, 1, ~.

Finally, we study the accuracy of the truncated matrix
continued fraction, comparing it with the scalar contin-
ued fractions derived in Secs. III and IV. To put it
differently, we compare two completely different repre-
sentations for the same physical quantity, namely,
S, (q, co), and find an excellent numerical agreement for
the entire (q, cv) range (see Tables I and II).

II. BOLTZMANN EQUATION
FOR INVERSE-POWER-LAW INTERACTIONS

We consider a dilute binary gas mixture of particles
with masses mz and mz and assume that the number
density of the tagged particles A is low (n„=O) so that
A-A collisions can be neglected. Our starting point is
the Fourier transform of the linear Boltzmann equation
for the tagged particle A

h (q, v, t) —iq. vh (q, v, t)
at

= f [cu„s(v'~v)h(q, v', t) —tu„s(v~v')h(q, v, t)]

Qd u', (2. 1)

where ru„~i(v~v') is the probability for an A particle to
change its velocity from v to v' due to a collision with a
8 particle. This transition probability can be written in
the following form

f cu„~(v~v')&p(v')d v'

=ns f p(v')fs(u, )
~
v, —v

~

b db ded u, , (2.2)

where g is an arbitrary function, b and e denote the col-
lision variables, v and v& are the velocities of the collid-
ing particles before the collision, and the primed quanti-
ties are the postcollision velocities. Furthermore, n~ is
the number density of the bath particles B and

2/ 2

fs(u)=(&muT ) e (2.3)

h(q, v, O)=f„(u)=(&mvT ) exp( —u lur ) . (2.4)

Then by definition, the dynamical self-structure factor is
given by

S, (q, co) =—Reg (q,its),2
(2.5a)

with uT ——2kT/m~ the equilibrium Maxwell-Boltzmann
B

velocity distribution. In the right-hand side of Eq. (2.2)
one calculates the average of y with the aid of
Boltzmann's Stosszahlansatz, where v' has to be ex-
pressed in terms of v, v&, b, and e, while in the left-hand
side v is an integration variable. Since we are interested
in the dynamical self-structure factor S, (q, co), we are
looking for a solution of (2.1) subject to the initial condi-
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where we have introduced the auxiliary function, R (q*,x)= —q'ReQ*(q', ixq") . (2.11d)

Q(q, s)= f e "F,(q, t)dt
0

(2.5b)

as the Laplace transform of the intermediate scattering
function,

For typographical convenience we drop the stars from
the variables and functions for the remainder of this pa-
per. In the scaled variables Eq. (2.8a) can be written as

F, (q, t)= f h(q, v, t)d u . (2.5c) a
Bt

i—q vg= E—a, v (2.12a)

g(q, v, t):=h (q, v, t)/f „(u), (2.6)

(where a:=b represents a defined by b) and making use
of detailed balance, i.e.,

Next we want to rewrite the collision term in (2.1). To
this end we define

K „y(v):=—

—v /a

where the action of the integral operator E on an ar-
bitrary function y is given by

3( 1+~)2/v+1/2

8/nI (3—2/v)A, (v)

f~ (u i )tu.a(vi ~v) =f~ (u)~~a (v —vi » (2.7)

we can write (2.1) as

Bt
iq —vg=. f tu„a(v~v')[g(q, v', t) P(q, v,—t)]d u',

X [p(v') —y(v)]z dz ded'u, .

(2.12b)

with the initial condition

(2.8a)
In Eq. (2.12b) we have introduced the reduced potential
index p

g(q, v, 0)=1 . (2.8b)

2[Dna ]

UT
A

(2.9a)

The solution of Eq. (2.8) for a Maxwell interaction po-
tential can be found in Ref. 1. Here we are interested in
a solution for an arbitrarily repulsive interaction poten-
tial for the limiting cases of the Lorentz (m„—+0) and
the Rayleigh gas (m„~ao). To this end we introduce
the dimensionless variables t *, q', and v' by

4fl:=1—
V

and the mass ratio a

(2.13a)

a:=
mg

(2.13b)

v = 1
(g —g')+v,1+a (2.14)

Furthermore, the postcollisional velocity is now given by

UT
A

2[Dna]'
(2.9b)

where g=v& —v and g'=v& —v' denote the relative ve-
locities of the colliding particles before and after the col-
lision, respectively. The angle P(z, v) between g and g',

V=VT V
A

(2.9c)
g g'=g cosX(z, v), (2.15)

where [D„a]' is the first Chapman-Enskog approxima-
tion to the diffusion coe%cient D„& which is given by

[D~a]'=
3UT

16&m.I (3—2/v)A )(v)nao ga
2/v ' 1/2

Pl g +my
m&

kT
(2.10)

For the coefficients A&(v) see Appendix. In the scaled
variables Eqs. (2.5a) —(2.5c) take the following form:

P(q, v, t) =P'(q*, v*,t'),
F, (q*,t" )=m. f e ' g"(q,v, t )d u*,

and

Q*(q*,s)= f e " F;(q', t')dt* .
0

(2.11a)

(2.11b)

(2.11c)

The dynamical self-structure factor S,(q, co) is usually
calculated in the following dimensionless form

is uniquely defined by the interaction law (see Appendix).
In what follows we shall study the Rayleigh limit
(a~no ) and the Lorentz limit (a~O) of the integral
operator K defined by Eq. (2.12b).

III. THE RAYLEIGH LIMIT (m & ~ eo )

In the Introduction we already anticipated that the
Fokker-Planck differential operator as an approximation
to the Boltzmann collision operator for large a is well es-
tablished. ' Regardless of the special structure of the
collision kernel one can formally transform the
Boltzmann equation to a differential equation of infinite
order. In the terminology of master equations this is
called the Kramers-Moyal expansion. ' Taking into ac-
count only the first and second derivative one obtains
the Fokker-Planck equation. However, the conditions
allowing the passage from the Boltzmann equation to its
approximate Fokker-Planck equation are not obvious,
and some of the assumptions concerning the initial con-
ditions were investigated by Ferrari. Another way of
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deriving the Fokker-Planck equation from a master
equation was given by van Kampen, who expanded the
distribution function around the solution of the macro-
scopic equation. In the linear noise approximation, one
obtains a Fokker-Planck equation with time-dependent
coefficients. In the limit of large mass ratios (a~oo)
the fluctuations tend to zero, and the Green's function of
the Fokker-Planck equation is a 6 function, shifted by
the mean velocity. Under these circumstances one can
say that the motion of the heavy particle is described by
a macroscopic equation with a velocity-dependent fric-
tion coefficient.

In what follows we will sketch a derivation of the
Fokker-Planck equation as the exact large-a limit of the
Boltzmann equation for the particular initial condition
(2.8b). The arguments above should demonstrate that
such a derivation is not superAuous, since commonly the
Fokker-Planck equation is an approximation to the
Boltzmann equation only and is not obtained as the
large-a limit.

Let us first perform the following variable transforma-
tion in (2.12b):

I,:= lim u "e "+'' '"l (u —u')z dz ded u
&a 2

3/2a~co ~

u=QC3

u' = u [e&sing(z, v)cose+ e2sinX(z, v)sine

+e3cosX(z, v) ],
which yields

(u —u')z dz de=2vru f dz z[1—cosX(z, v)]
0

=2vrA, (v)u .

(3.5a)

(3.5b)

(3.6)

This leaves us with the three-dimensional integration
over u. Again using spherical coordinates with v in the
e3 axis one obtains the following integral for I1.

(3.4)

In order to perform the integration over z and e we in-
troduce an orthogonal reference frame [e„e2,e3] with u
parallel to the e3 axis; we then have

v, =v'au+ v,
which implies

&av'= (u —u')+ v,1++
with

u u'=u cosX(z, v) .

(3.1a)

(3.1b)

(3.lc)

I& 4&rrA t——(v)e3 lim &a f "
du u +"e

a~ oo 0

dg g e
—(2/v a)uue1

—1

(3.7)

Carrying out the integration over g by expanding the ex-
ponential function in a power series in g and performing
the limit a —+ ~ yields

In these new variables the collision operator X reads

K y(v) =-
8&vI (3—2/v)A, (v)

I, = ——3'&mA, (v)v f du u +"e
0

,'&YrI (3——2/v)A, (v)v . (3.8)

p —f u+(1/+a)v]

&a
X (u —u')+ v —p(v)1+a

Next, inserting the second term of (3.3) into (3.2), the
limit a~oo can be readily performed, leaving us with
the tensor integral

1 —QIz. —— u "e " (u —u*)(u —u')z dz ded u . (3.9)

Xzdz dad u, (3.2)

where, in order to obtain the Rayleigh limit, we have to
consider Eq. (3.2) for large a. Therefore we expand the
difference in the square brackets into a Taylor series
yielding&a, a(u —u') y(v)1+o. Bv

1 n ~ . a a+—
2

(u —u')(u —u'): p(v)+02 (1+a) Bv Bv 3/2

(3.3)

where the colon denotes the scalar product of two ten-
sors. This shows immediately, that the higher than
second derivatives vanish in the limit n —+ Op. It remains
to consider the above terms in connection with Eq. (3.2).

First we evaluate the integral

(3.10)
where I =(5; ) denotes the unit tensor. While the in-
tegral over the symmetric traceless tensor uu —

—,'Iu van-
ishes, the first one yields

S, =~4&~r(3 —2/v) W, (v)S . (3.1 1)

Inserting (3.8) and (3.11) into (3.2) yields the Rayleigh
limit of the Boltzmann collision operator

a 1 a alim K y=v.
Bv 2 Bv Bv

and in connection with Eq (2.12a), .

(3.12a)

Using (3.5a) and (3.5b) the integration over z and e can
be easily carried out, yielding

1 —0I2 —— — u "e " [4A, (v)uu2&~

+322(v)(uu —
—,'Iu ))d u,
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a la a
()t ()v 2 (I Bv

vq= —v. (3.12b)

P(q, v, t) =q)(q, t)g((q, v, t) (3.13)

This Fokker-Planck equation is independent of the in-
teraction law and emerged as the exact large-cz limit of
the Boltzmann equation for the initial condition (2.8b).
In order to solve Eq. (3.12b) subject to the initial condi-
tion f(q, v, O)=1 the ansatz lim qQ (q, qs) =—1 k

rk
2$ 2

tion for 1/, F, (l, c;z) (see, e.g. , Ref. 16), we failed in
deriving the simple continued fraction (3.21) from that
more involved expression.

Finally let us study the free-gas limit (q ~ ao ) and the
hydrodynamic limit (q~O) of Eq. (3.21). For large q
Eq. (3.21) simplifies to

turns out to be useful, where g, denotes the solution of
(3.12b) when dropping the second derivative. After
some straightforward manipulations one obtains'

r21+ + ~ ~ ~

(3.22}

(()(q, vt) =exp[iq v(1 —e ')

,'q (t+—2e ' ——,'e ' ——', )] . (3.14)

The average of 1t over the Maxwell-Boltzmann equilibri-
um distribution function is readily performed, yielding
for Q(q, s) [see (2.1lc)]

2 2
lim qQ (q, qs) =v'ire' 1 — —erf(s) (3.23)

Now, putting s =ix we obtain with the aid of Eq. (2.11d)

This continued fraction can be expressed in terms of ele-
mentary functions' yielding

Q ( ) J ~ —st —(1/2)q (t —1+e )dt
0

(3.15) 2 -2
lim R (q, x)= eq- ' v'n. (3.24)

This integral can be expressed in terms of a confluent
hypergeometric function, F, (a, c;z). Substituting e
=~ yields an integral which is proportional to the in-
complete I function, which in turn can be expressed as a
confluent hypergeometric function. ' The final result is

which is the well-known free-gas limit of the dynamical
self-structure factor S, (q, co ), expressed in terms of
R (q, x).

In the hydrodynamic limit (q~0) Eq. (3.21) reduces
to

Q(q,s)=,F((1,1+s+—,'q; —,'q ) .
1

s+ ~g
(3.16)

Q(q, ~)= 1

s+q /2
(3.25a)

For computing S, (q, co) via (2.5a) for the entire (q, co)

range, the representation of Q(q, s) in terms of a contin-
ued fraction is more advantageous. To this end we con-
sider the integrals

which implies for R (q, x)

R (q, x)=—2 0/2
ir x + ( q /2 )

(3.25b)

q)„(z,s) = f e s(l —e ) e ' '+' 'dt .
0

Integration by parts yields

s P0=1 —z

(s+n)q)„=nq)„, —zg„+, , n ) 1 .

(3.17)

(3.18a)

(3.18b)

From (3.18b) we get the following one-step recursion re-
lation for c„:=y„ /y„

n
cn n)1s+n +zc„+,

and from (3.18a) we find

1

$ +zci

(3.19}

(3.20)

which yields the following continued fraction for
Q (q, s) =q»(q'/2, s):

It should be noted that in Eq. (3.25b) the variable q is
scaled to the first Chapman-Enskog approximation of
the diffusion coefficient [D&Ii]' according to Eq. (2.9b).
When deriving the hydrodynamic limit of R (q, x) from
the diffusion equation one arrives at the same expres-
sion as given by (3.25b), the only difference being that
the variable q is replaced by q =fD (a )q. The function
fD(a) is defined as the ratio of the exact diffusion
coefficient to its first Chapman-Enskog approximation
and varies also with the potential index v. For a
Maxwell interaction potential one has fD(a)=1, since
the first Chapman-Enskog approximation agrees with
the exact diffusion coefficient. In the case of a hard-
sphere interaction an approximation formula to fL, (a),
reflecting the weak dependence on a [1 &fD(a) & 32/9m.
for ao )a) 0] can be found in Ref. 17, and numerical
values for some mass ratios can be found in Table I of
Ref. 3. In order to avoid confusion we will refer to Eq.
(3.25b) as the hydrodynamic limit of R (q, x).

Q(q, s)= kCX

2
' (3.21)

s+
CX 2g

s +1+
$ +2+

Although there exists a continued fraction representa-

IV. THE LORENTZ LIMIT (m & ~0)
We have seen in Sec. III that in the limit of large mass

ratios the Boltzmann collision operator reduces to a
second-order differential operator, which is equivalent to
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the Fokker-Planck operator. For the Lorentz limit,
however, the reduction of the Boltzmann collision opera-
tor to a di8'erential operator has only been shown for
isotropic energy relaxation of a hard-sphere gas. ' How-
ever, when studying the Lorentz limit of S, (q, co) one has
to deal with an anisotropic relaxation process, since the
action of the collision operator I(: [see (2.12b)] on an
arbitrary function y, which depends on q, v, and the an-
gle between q and v, has to be considered. In this sec-
tion we will study the properties of the collision operator
E in the Lorentz limit (a~0), yielding for the partic-
ular case of the hard-sphere gas (v= oo ) the well-known
projection operator, which averages a function over all
directions in velocity space. Furthermore, an explicit
expression for S,(q, co) in terms of an integral over an

V) =Q+V,

which implies for v'

(4. 1 a)

v'= (u —u')+ v,1++ (4.1b)

where u and u' are related by (3.lc). Observing that the
exponential function in (2.12b) approaches a 5 function
as a~0, this limit can be performed easily, yielding

infinite scalar continued fraction, valid for all v, is
presented.

In order to get the limit e~O of the Boltzmann col-
lision operator E „, we make the following variable
transformation:

3limK p(v) =:L (p(v) = — — f ~

u
~
"5(u+v)[y(u —u'+v) —y(v}]z dz dad u,a-0 ' 8&m. l"(3—2/v) 3, (v) (4.2)

where we have introduced the Lorentz operator I. . For
evaluating the integral in (4.2) it is advantageous to use
spherical coordinates with v parallel to the e3 axis of the
reference frame

Next we use the fact that according to (2.12a) and due to
the special initial condition (2.8b), the function P(q, v, t)
depends on q =

~ q ~, U =
~

v ~, and cosrI=q. v/qU only.
Therefore we expand P into Legendre polynomials

V= VC3

u =u (e,sinO costp+ ezsinO sin(p+ e3COSO)

u' = u (e,sinO'cos(p'+ e2sinO'sing'+ e3cosO ) .

Note that 8' and p' are related by [see Eq. (3.1c)]

cosO cosO'+sinO sinO'cos(tp —p') =cosX(z, v) .

(4.3a)

(4.3b)

(4.3c)

(4.4)

Evaluating the 5 function in Eq. (4.2) means that
u= —v, which in turn implies that u =v and O=vr [see
(4.3a) and (4.3b)]. Then, using (4.4), one obtains
O'=X(z, v}+~ and, without loss of generality, p'=e. In-
serting these values for 0 and y and I9' and y', respec-
tively, into Eq. (4.3) yields

v: =u —u'+ v = U [e,sinX(z, v)cosa+ e2sinX(z, v)sine

g(q, v, t)= g ij(((q, v, t)P((cosi)) .
1=0

(4.8)

QP((cosp):= f [P((cosy) —P((cosy)]z dz dE,

with

(4.9a)

'V
cos'g: =

qv

Next we expand P((cosi)) into spherical harmonics

(4.9b)

4m.
P((cosil)= g Y, (q, g}Y(' (X(z, v), e),2l+&, ™

We study the action of L on the Legendre polynomial
P((cosset). To this end it suffices to consider the follow-
ing operator:

+e3cosX(z, v ) ] (4.5a)
(4.10)

and

V=UC3 (4.5b)

With the aid of (4.5a) and (4.5b) the Lorentz operator L,
can be written as

where we have used the fact that according to (4.5b) v
lies in the e3 axis and therefore the angle between q and
the e3 axis is 0 and the angle between v and the e3 axis is
X(z, v). Integrating (4.10) over e and taking into account

L y(v)= — U"3

8&vrI (3—2/v) A, (v)
with

f 2'

Y(~(X,e)de=2ir ( Y( OX')5 o, (4.11a)

~ f [y(v) —p(v)]z dz de . (4.6)

It should be noted, that according to (4.5a) and (4.5b)
one has

~

v
~

=
~

v
~

and therefore the Lorentz operator
I leaves the speed unaltered. That is to say, for an ar-
bitrary function, which depends on

~

v
~

only, one has

(4.7)

'i 1/2
2l+2

Y(0(X e)= P((cosX),4~ (4.11b)

one obtains instead of (4.9a)

QP((cosy) = 2mP((cosy) f d—z z [1—P((cosX(z, v) )] .
0

(4.12)
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Inserting (4.12) into (4.6) we see that the Legendre poly-
nomials are eigenfunctions of the Lorentz collision
operator

sgo —iqu , P—,= 1,
[~ +ut'B, (v)]q(

r

(4.18a)

L,P, (cosrl) =v ' Bi(v)P, (cosrl), (4.13a)

are tabulated in the Appendix up to i=30 for some
values of v; it should be noted that Bo(v) =0 for all v.

For the particular case of a hard-sphere interaction
one has BI( oo )=3&ir/8 for l & 1, and L „reduces to a
projection operator

with, in general velocity-dependent, eigenvalues
v

' r BI(v). The coefficients

4I 3 —2/vA, v o

(4.13b)

l - l+1—iqu P, , + Pi+i ——0, I ) 1 (4.18b)
21 —1 21+3

Q(q, s)= f e '
v Po(q, u, s)du .v'~ o

(4.19)

In order to extract fo from (4.18) we use the same
method as applied in Sec. III for deriving Eq. (3.21). In
doing so we arrive at the following representation of Po
in terms of an infinite scalar continued fraction:

where we used again the abbreviation p = 1 —4/v. When
calculating Q(q, s) via (4.16) and (2.11) one observes that
only the term with l=O contributes in the Legendre ex-
pansion of P, yielding

L„y(v)= ', &vr
~

v —
~
(1 P)y(—v),

with

(4.14a)
itto(q, u, s) = 1

p, (qu)'

Py(v)= f dQy(v) .
1

4m
(4.14b) s + v "B,(v)+

p2(qu)

s +u "B2(v)+
Next, we make use of (4.13a) and calculate the dynami-
cal self-structure factor S, (q, ro) in the Lorentz limit
n~O. To this end we take the Laplace transform of Eq.
(2.12a) yielding

sg —1 iq vga=— L. ,f . — (4.15)

fr(q, v, s)= g P&(q, v, s)PI(g) .
1=0

(4.16)

Since the action of the operator I. is known explicitly
(see above), we expand P into Legendre polynomials
PI(g) with g=q. v/qu

where

(4.20a)

k
(2k —1)(2k + 1)

The above representation of go and Q (q, s), respectively,
is valid for all purely repulsive interaction potentials
r . In the case of a hard-sphere interaction, however,
a further simplification of (4.20a) is possible, since B&( oo )

are independent of l. Recalling the representation of the
arc-tangent in terms of a continued fraction'

Making use of the well-known relation for the Legendre
polynomials'

(4.17)

we finally get the following recursion relation for the ex-
pansion coefficients Pi ..

are ian(z) =

one finds for Q (q, s)

Z

p, z

p z2
1+ + 0 ~ ~

(4.21)

qvarctan
s + 3&vru /8

Q(qs)= — e '
u

&m
q ——', &ir arctan qv

s +3&~v /8

8v (4.22)

The above expression for the hard-sphere interaction
serves as a check for our general expressions (4.19),
(4.20a), and (4.20b), since it can be derived in a difFerent
way, making directly use of the projection operator
property of I „.

Finally, we want to study both the hydrodynamic lim-
it (q~0) and the free-gas limit (q~ oo) of R (q, x). In
the free-gas limit we have to calculate go for large q.
Using (4.20a) and (4.21) one readily finds

1 vlim q Po(q, u, qs ) = —arctan —,
q~ co U $

which implies for Q (q, s) [see (4.19)]

4 vlim qQ (q, qs) = — e '
u arctan —du

q~ oo V'ir o S

(4.23)

(4.24)
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Putting s =ix in (4.24) and taking the real part, one ob-
tains

9--

lim R (q, x)= e
2 -2

q-- '
&rr

(4.25)

which is the free-gas limit of R (q, x) for a Lorentz gas.
As expected, it coincides with the free-gas limit of the
Rayleigh as [see (3.24)].

When calculating the hydrodynamic limit of R (q, x),
however, it will turn out that, first, it does not coincide
with the hydrodynamic limit derived from the diffusion
equation [see (3.25b)] and, second, it depends on the po-
tential index v. It is convenient to study the deviation of
R (q, x) (for small q) from the hydrodynamic limit
(3.25b) with the aid of two quantities: the peak height
R (q, O) and the full width at half maximum (FWHM)
2'&&z. For sufficiently small q the continued fraction
representation (4.20a) of $0 can be truncated after the
first term, yielding for the peak height,

C&

o 5--

V=4
v= 6
v=12
V=OO

R (q, O)= c, q~O,
~q

and for the FWHM,

2'&&2=qd, q ~0,
where

(4.26a)

(4.26b)

FIG. 1. Peak height R (q, O) in the Lorentz limit (a~O) for
di6'erent values of the potential matrix v (v=4, 6, 12, oo ). The
dashed line shows the peak height of the Rayleigh gas
(a~oo), which is independent of the potential index. The
straight line indicates the free-gas limit [lim, „R (q, 0)
=2/v'm. ].

9v
C~=

8(v —1)(v—2)
(4.26c)

and d denotes the deviation from the hydrodynamic
limit (3.25b). It should be mentioned that the maximum
deviation occurs for the Maxwell potential (c = 3,4 r

d4 ——0. 1396. . . ), whereas for the hard-sphere potential
the deviation from the hydrodynamic limit is rather
small (c„=—', , d „=0.7835. . . ).

In Fig. 1 we have plotted the peak height R (q, O) for
some values of v, using Eqs. (4.19) and (4.20). In addi-
tion, we display the peak height of the Rayleigh gas
which is independent of the potential index v [see Eq.
(3.21)]. Comparing the two extreme mass ratios, namely,
the Lorentz gas (a~O) and the Rayleigh gas (a~ oo ),
one observes an increasing difference in the peak height
with decreasing potential index. For the same values of
v we have compared in Fig. 2 the FWHM for the
Lorentz gas with that of the Rayleigh gas. Again, an in-
creasing difference for co, &z is observed for a decreasing
potential index. Comparing the Lorentz limit (a~O)
and the Rayleigh limit (a~ ao ) we can also see that the
mass dependence of R (q, x) for a hard-sphere gas is
rather weak, since the maximum height R (q, O) and the
half width co»2 differ only by about 10%%uo for a~O and
a~ oo, respectively. This has been already pointed out
by Lindenfeld. For a Maxwell interaction potential,3

however, this statement is not true, and in Sec. V we will
study the mass dependence of R (q, x), using its infinite
matrix-continued-fraction representation. '

V. S, (q, co) FOR THE MAXWELL POTENTIAL

In this section we limit ourselves to a detailed study of
S,(q, ai) for the Maxwell interaction potential (v=4).

5-- V = OO
v= 12

C]. 5-

FIG. 2. Full width at half maximum (FWHM) 2', &2 in the
Lorentz limit (a~O) for different values of the potential index
v (v=4, 6, 12, oo). The dashed line shows the FWHM of the
Rayleigh gas (a~ oo ), which is independent of the potential
index. The line 2'&&2 ——q indicates the hydrodynamic limit,
and the constant line 2'&&2 ——2&ln2 shows the free-gas limit.
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1 TQ(q s)= ei —Aoei
S

(5.1)

where the matrix Ao is defined by the recursion relation

At ——(1+q Xl Ai+, Ml) ', 1 =0, 1,2, . . . (5.2)

and e&
——(1,0, 0, . . . ) denotes the transpose of the unit

vector. The infinite matrices Nl and M&, respectively,
are given by

The starting point for our considerations is the matrix-
continued-fraction representation of S, (q, co), the deriva-
tion of which can be found in Ref. 1. In what follows
we pursue two objectives. First, we want to study the
mass dependence of S, (q, co) for a Maxwell gas compar-
ing it with the rather weak mass dependence of the
hard-sphere gas. Second, for the Lorentz and the Ray-
leigh gas, we shall compare two completely diff'erent rep-
resentations for S, (q, co), namely the matrix-continued-
fraction representation, which is valid for the entire u
range (including a=0 and a= oo ), and the two expres-
sions already derived in Secs. III and IV [see Eqs. (3.21)
and (4.19)]. Let us briefly recall the main results of Ref.
1. We have shown that the dynamical self-structure fac-
tor R (q, x), which is related to Q (q, s) via (2.11b), can be
expressed in terms of the following infinite matrix con-
tinued fraction [we drop the asterisk appearing in Eq.
(4.3b) of Ref. 1]:

&O, I+] —+o,I+i

iv, =—'
2

(5.3b)

with

and

k, l

1

S +Pk, l

k +I + —,
'

S +Pk, 1

(5.4a)

(5.4b)

An explicit expression for the eigenvalues pk I can be
found in the Appendix. Note that in order to get the
infinite matrix Ao explicitly, one has to "solve" Eq. (5.2)
successively, yielding just an infinite matrix-continued
fraction. According to Eq. (5.1), Q(q, s) is then deter-
mined by the first element of Ao. Let us first consider
the Lorentz and the Rayleigh limit of Q(q, s). In the
Appendix it is shown that for the Lorentz gas the eigen-
values pk i become independent of the index k (which
implies an extra conservation law)

2(l + 1)'
(2l +1)(21+3)

&O, i

—2&2 (

—3+3, l

limpk (
——81(4),a~o

and for the Rayleigh limit one gets

lim pk &

——2k +i .a~ oo

(5.5a)

(5.5b)

and

(5.3a)

For these values of pkr we have computed Q(q, s) via
the matrix-continued fraction (5.2). In Table I(a) one
finds the values for R (q, x) for the Lorentz gas (a=0).
Throughout the computations we truncated the infinite

TABLE I. The Lorentz limit (0.~0) of the dynamical self-structure factor R (q, x) for v=4
(Maxwell gas) and different values of q =1/y and x (a) computed via the matrix continued fraction
(5.1), (b) computed via the integral (4.19). Note that the same values for y =1/q were selected in Figs.
3 and 4.

0.5
1.0
1.5
2.0
3.0
4.0

0.0

2.2301
3.7493
5.3808
7.0527

10.4432
13.8588

0.5

0.7647
0.6347
0.5328
0.4553
0.3483
0.2797

(a)

1.0

0.2903
0.2170
0.1699
0.1380
0.0988
0.0763

1.5

0.0928
0.0765
0.0642
0.0546
0.0412
0.0326

2.0

0.0275
0.0282
0.0268
0.0247
0.0204
0.0169

0.5
1.0
1.5
2.0
3.0
4.0

2.4037
4.1164
5.9378
7.7989

11.5671
15.3603

0.7631
0.6347
0.5329
0.4553
0.3483
0.2797

(b)
0.2902
0.2170
0.1699
0.1380
0.0988
0.0763

0.0928
0.0765
0.0642
0.0546
0.0412
0.0326

0.0275
0.0282
0.0268
0.0247
0.0204
0.0169
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TABLE II. The Rayleigh limit (u~ ~ ) of the dynamical self-structure factor R (q, x) for different
values of q = 1/y and x computed via the matrix continued fraction (5.1). The respective computation
via the scalar continued fraction (3.21) yields identical results. Note that the same values for y =1/q
were selected in Figs. 3 and 4.

0.5
1.0
1.5
2.0
3.0
4.0

0.0

1.3971
1.7961
2.2944
2.8468
4,0263
5.2497

0.5

0.8808
0.7796
0.6497
0.5402
0.3924
0.3042

1.0

0.2976
0.2176
0.1694
0.1375
0.0986
0.0762

1.5

0.0830
0.0688
0.0592
0.0514
0.0398
0.0319

2.0

0.0243
0,0253
0.0245
0.0231
0.0196
0.0165

matrix-continued fraction after at most ten terms and
the size of the matrices N& and MI was always less than
10&&10 except for the peak values R (q, O), where the
convergence is rather poor. In the first column of Table
I(a) (x=0) we used 80 X 80 matrices and it tuned out
that the results are not yet converged. In Table I(b) we
have also evaluated the scalar continued fraction of Sec.
IV [see Eq. (4.19)] and found a very good agreement
with the corresponding matrix continued fraction [see
Table I(a)], except for x=0. It should be mentioned that
the values of Table I(b) are numerically converged and
can therefore be used as a check for the convergence of
the matrix continued fraction [Table I(a)]. In Table II
the dynamical self-structure factor R (q, x) for the Ray-
leigh gas is shown, again calculated via the matrix con-
tinued fraction (5.2). We also compared these values
with a numerical evaluation of the scalar continued frac-
tion (3.12), and found an agreement up to the last digit
displayed. This excellent agreement between the two in-
dependent calculations for the Lorentz and the Payleigh
gas, respectively, proves —in a numerical sense —the
convergence of our infinite matrix continued fraction.

In Fig. 3 the dependence of the peak height R (q, O) on
the mass ratio M:=a/(a+1) is shown for different
values of q. In order to evaluate the matrix continued
fraction (5.2) for different values of M the dependence of
the eigenvalues pkI on the mass ratio has to be con-
sidered. Since the computation of the pk &'s via their
definition [Eq. (A10a) in the Appendix] is too time con-
suming, we used the relation (A13), where the eigenval-
ues for different mass ratios are expressed as linear com-
binations of the AI(4). The coeKcients Al(4) do not de-
pend on the mass ratio and are tabulated in Table III up
to I=30. It can be seen from Fig. 3 that the peak height
is a monotonous function of M and does not show a

3minimum as observed for the hard-sphere gas. We
want to stress that in contrast to the calculations by Lin-
denfeld, we did not encounter any convergence prob-
lems for small a with the exception a=0. The limiting
values for a=0 were computed via the scalar continued
fraction (4.19). Comparing the Maxwell and the hard-
sphere gas quantitatively one observes that for M&0.05
the peak values do not differ by more than 10%%uo, whereas
for the Lorentz limit (M~O) the peak values differ con-
siderably depending on y =1/q (e.g. , for y=4 the peak

Ill= I/q R(q,0)
4 15.360
3 11.567
2 7.799

5.938
1 4.116

y
—4

y=3

2-,
y= 1.5

y=1

y =0.5

I I
G I I I l I I

Q. 0. 1 0.2 0." O. & 0. 5 O. E 07 C)8 QB 10

FIG. 3. Dependence of the peak height R (q, O) on the mass
ratio M =m& /(m„+m&) for different values of y =1/q. The
limiting values for the Lorentz gas (M=O) are given in the
table indicating the steep increase of R (q, O) for M~0.

height of the Maxwell gas is approximately three times
the peak height of the hard-sphere gas ).3

In Fig. 4 we have plotted the full width at half max-
imum versus M for different values of q. It can be seen,
that for M~0.05 the dependence of the FWHM on the
mass ratio is rather weak, whereas for M &0.05 a rather
steep descent to the Lorentz limit is observed. The rath-
er weak dependence of the FWHM on the mass ratio for
M&0.05 was also observed for the hard-sphere poten-
tial.

In Figs. 5(a) —5(c) the dynamical self-structure factor
R (q, x) is displayed for three extreme mass ratios. In
particular, in Fig. 5(a) we have plotted R (q, x) in the
Lorentz limit (a=O) using Eq. (4.19). In Fig. 5(b) the
matrix continued fraction (5.1) has been used to evaluate
R (q, x) for equal masses (a= 1). In Fig. 5(c) we comput-
ed R (q, x) in the Rayleigh limit (a= co ) with the aid of
the scalar continued fraction (3.21). It can be seen from
Figs. 5(b) and 5(c) that for q =0.5 the Lorentz line shape
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TABLE III. TThe coeScients A (4 a
d fi di Eq (A17) f ~ ~ ~ 7 ~

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

At(4

0.298 36
0.308 44
0.413 80
0.422 21
0.487 91
0.495 27
0.543 61
0.550 21
0.588 72
0.594 76
0.626 93
0.632 51
0.660 22
0.665 43
0.689 84
0.694 74
0.716 58
0.721 22
0.741 02
0.745 43
0.763 57
0.767 77
0.784 52
0.788 54
0.804 11
0.807 98
0.822 53
0.826 26
0.839 94
0.843 53

1.
1 ~ 551
1.967
2.314
2.618
2.890
3.139
3.371
3.587
3.791
3.985
4.170
4.348
4.518
4.682
4.840
4.994
5.143
5.288
5.429
5.566
5.700
5.831
5.959
6.085
6.207
6.328
6.446
6.562
6.676

0.884
1.227
1.458
1.637
1.785
1.913
2.026
2.128
2.221
2.307
2.387
2.462
2.533
2.600
2.664
2.725
2.784
2.840
2.893
2.945
2.996
3.044
3.091
3.137
3.181
3.225
3.267
3 ~ 308
3.348
3.387

v= 12

0.771
0.932
1.028
1.097
1.150
1.194
1.232
1.264
1.293
1.320
1.344
1.366
1.386
1.405
1.423
1.440
1.455
1.470
1.485
1.498
1.511
1.524
1.536
1.548
1.559
1.570
1.580
1.590
1.600
1.609

Q.O 0.5

2.0 0.5

.0

5.0

1.5--

&. 0--

V=1/q

0.5
1

1.5
2
3
4

2~& ~~

0.472
0.170
0.102
0.074
0.048
0.035

y =0.5

2.0 0.5

FIG. 5. '
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of R (q, x) differs considerably from the hydrodynamic
limit derived from the diffusion equation [see (4.26a) and
(4.26b)]. This discrepancy can be resolved easily, when
looking at the assumptions made in Ref. 1 for deriving
the hydrodynamic limit from the matrix continued frac-
tion. There we assumed [see Eq (.4.20) of Ref. 1] that
pk &

&0 for (k, l)&(0,0) and only po O=O. In the Lorentz
limit (a~O), however, one has pk 0——0 for all k [see Eq.
(5.5a)], and therefore the assumptions made in Ref. 1 are
violated. In other words, the memory matrix Dh d [see
Eq. (4.21) of Ref. 1], which has only two nonzero ele-
ments for a&0, has to be replaced by a regular infinite
band matrix, if the limit a~0 is performed first. This
means that the limits +~0 and q ~0 must not be inter-
changed.

VI. CONCLUSION

In this paper we pursued two objectives. First, we
studied the dynamical self-structure factor S, (q, co)—
expressed in terms of 8 (q, x)—for diff'erent values of
the potential index v, restricting ourselves to the Lorentz
limit (a~O) and the Rayleigh limit (a~ oo ). Second,
for the Maxwell potential ( v =4) we investigated the
mass dependence of R (q, x), using the previously derived
matrix-continued-fraction representation of the dynami-
cal self-structure factor. Furthermore, both in the
Lorentz limit and the Rayleigh limit we compared the
matrix continued fraction with the respective scalar-
continued-fraction representation derived in Secs. III
and IV, and found an excellent numerical agreement
confirming once more the convergence of the infinite
matrix-continued-fraction representation of S, (q, co).

With the exception of very small mass ratios we can
summarize that both the mass dependence and the
dependence of R (q, x) on the potential index v
(4&v& Oo) are rather weak. For the Maxwell potential
(v=4) the mass dependence of the peak height R (q, O)
and the full width-at-half maximum 2coi/2 is almost in-
dependent of the mass ratio [for M =m „/(m „
+ms) &0.05]. This weak dependence was also found by
Lindenfeld, who investigated the Inass dependence of
S, (q, co) for a hard-sphere gas (v= oo ). Comparing
R (q, x) for the two extreme potential indices, namely
v= ao (hard-sphere gas) and v=4 (Maxwell gas) one
finds for the FWHM both a qualitative and quantitative
agreement for M~0.05, whereas for the peak height
A (q, O) a quantitative agreement, but a diff'erent qualita-
tive behavior (see the occurrence of a minimum in Fig. 7
of Ref. 3) for 0& M & 1 and small values of q is observed.

Therefore, when calculating the dynamical self-
structure factor for purely repulsive interaction poten-
tials (4 & v & oo ) and not too small mass ratios (M
& 0.05), the Boltzmann collision operator can be re-
placed by the Fokker-Planck collision operator to obtain
acceptable results (see also Ref. 19).

One of us (M.P.) would like to acknowledge a grant by
the Austrian Research Fund.

APPENDIX

In this appendix we show how the eigenvalues of the
Boltzmann collision operator for a mixture of Maxwelli-
an particles can be calculated from a recursion relation
involving only polynomials in the mass ratio and the
numbers

A I (4). For completeness we also briefiy repeat
some well-established formulas concerning the eva1ua-
tion of the collision integrals.

For inverse-power-law interactions, i.e., for potentials
of the form

~ABV(r)= (A 1)

where a AB is the force constant for an A-8 interaction,
the deflection angle 7 between the precollisional and
postcollisiona1 velocity is given by'

b 2

fp r2 2m ABg

—]/2
b

dr
r2

(A2)

where 1/mAB ——1/mA+1/mB is the reduced mass, g is
the relative speed, b the impact parameter, and r0 is the
only positive root of the expression in the square brack-
ets. Introducing new variables

Z =
~AB

1/v
m ABg

(A3)

the deflection angle can be written as

v —1/2

P=~ —2 1 —y ——y
dg )

0 V Z
(A4)

with yo=blro, and X=X(z,v) does not depend on the
mass ratio. The expression gbdb, which enters the
Boltzmann collision operator, is now given by

2v
gbdb =o.AB

mAB

2/v

g '-4'z dz, (A5)

4
sin YdX=

2
bdb =z dz .

1

~AB
(A6)

indicating the simplification obtained for M axwellian
particles (v=4). For hard spheres (v~ oo ) we have in-
stead of (A4) and (A5)
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In studies of the Boltzmann equation for inverse-power-
law interactions the following quantities are frequently
encountered:
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A&(v):= f dz z[1—cos'X(z, v)] .
0

(A7)

To get an estimate of the convergence of these integrals
we consider the asymptotic behavior of X(z, v) for
z~~,' one gets 20

AI(v) = f dz z[ 1 —eos'X(z, v))
0

2
1 I [(v+ 1)/2]
2 vl (v/2)

1
V—3 2

1

(2v —2)B

(A9)

X(z, v) =&m.

v+1
2

v
vt

2

1 1+0, z —+oo
z z"

which allows the following representation of A&(v):

showing that the A&(v) exists for v~ 1. Numerical
values for 2, to 230 for the Maxwell interaction poten-
tial (v=4) are tabulated in Table III.

Next we want to show that the eigenvalues of the col-
lision operator for a binary mixture of Maxwellian parti-
cles, which are given by ' (a =m „/ms )

p, „,=2i«nba»+8/m» f dz z 1—,, (1+2a cosX+a')"+' 'P, (g), «, 1=0,1,2, . . .
0 (1+a)'"+' (A10a)

g = (a +cosX )( 1+2a eosX+ a )

can be written in ihe form

(A10b)

where it is understood that

b„',)=0 for k ~0 or k )r+l . (A 16)

(1+2a eosX+a )"+

&&P, [(a+c soX)(1+2 casXo+ a)
' ']

r+1
= g b„'&'e oXs

k=0
because for X=0 we get from (Al 1)

r+l
b(k) (1+ )2r+I

k=0
which allows for p, l the representation

(A 1 I)

(A12)

r+I
(1+a) " ' g b'"'3 (4)

k=1
where the Ak(4) are the numbers given in Eq. (A7) and
the coefticients b,' l' are polynomials in cx. To prove this,
it suftices to show that

Equation (A15) allows the successive calculation of the
eigenvalues p„ l and also proves —together with
(A14)—the representation (A13). From the explicit
form of the Legendre polynomials it is also possible to
derive an explicit expression for the coe%cients b,'l'.
However, since this rather involved explicit form is of
little use for practical computations, it is not presented
here.

Of interest in this paper are also the following
coefficients (see Sec. IV):

3&~ ooBI(v)= dz z[1—PI(cosX(z, v))),4I 3 —2/vA, v 0

(A17)r+1
p„I 2mnao——»V 8/m» i„+i X bi, l ~k((I+a)'"" k=i

"

(A13)

which can, of course, be expressed in terms of the &i(v).
For hard-spheres the integral in (A17) can be trans-
formed with the aid of (A6), yielding

To prove (Al 1) we start with 1=0. Binomial expansion
leads to

b„'o' ——
k (2a)"(1+a )" ", k =0, . . . , r . (A14)

For l ) 1 we make use of the recursion relation for the
Legendre polynomials and get after some straightfor-
ward manipulations

b., I =
( lab, , ( i+b, ,l:i ]

(k) 21 —1 (k) (k i )

[(1+a )b„'", ' ~+2ab„'", ~"],
k =0, . . . , r +l (A15)

BI( oo ) = ', &n =0.664 67. .—. , (A18)

which are independent of the index I. For other interac-
tion laws the BI(v) have to be computed numerically
and in Table III we present B, to B3Q for v=4, 6, 12.

Finally, for Maxwellian particles (v=4), we want to
relate the coefficients B&(v) to the limiting values of the
eigenvalues of the collision operator. To be consistent
we scale the eigenvalues to the first nonzero eigenvalue
Ur /2[D»] =pa &

[compare Eq. (2.9a)]. The scaled ei-

genvalues p„'i ..——p„& /po i are then given by (see above)
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1+@ 1
Pr, l = dzz 1—

A, (4) o ( 1 + )21+I'

X(1+2acosX+a )"+'~

with g given by Eq. (A10b).
In the Lorentz hmit one immediately obtains

limp„*& B——t(4) .
a~O (A20)

In the Rayleigh limit (a~ac ), one has to use de
1'Hospital's rule and gets, after some calculations,

x&t(g) (A19)
llm p,'I ——2r +Ia~ oo

(A21)
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