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We study ultradiffusion in systems with an arbitrary distribution of energy barriers and nearest-
neighbor hopping processes. As the effective temperature R is increased, we find power-law decay
of the autocorrelation function with an anomalous R-dependent exponent for R <R.. Further-
more, we observe singular crossover at R, to normal diffusion. The value of R. depends on the
average branching ratio of the system. We have also discovered a set of trees for which the R
dependence of the exponent departs from the expected value based on universality arguments.
Analytical results and computer experiments for several systems are presented.

I. INTRODUCTION

Recently, there has been much interest in natural and
artificial systems which possess an underlying hierarchi-
cal structure. Examples are provided, among others, by
the structure of social organizations,' studies of relaxa-
tion phenomena in complex macromolecules,” and the
decay of the remanent magnetization in spin glasses.
Common to all these systems is the existence of a multi-
plicity of time scales governing the relaxation process,
leading to an overall rate of decay which in some cases
can be much slower than exponential.

To model these phenomena, a number of authors have
considered diffusive processes on simple hierarchical sys-
tems. The first model of this type, and the one which we
study in this paper, was due to Huberman and
Kerszberg (Ref. 4) (HK) and consists of a particle per-
forming nearest-neighbor hopping over an ordered array
of energy barriers in one dimension [see Fig. 1(a)]. It is
assumed that the barrier heights are selected from a set
{0 € - - }, and that €, =ne,. As a result of
this, one can see that there exists a unique tree structure
corresponding to any configuration of barriers chosen
from the above set [see Fig. 1(b) for the tree correspond-
ing to the barriers in Fig. 1(a)]. In the tree picture, the
hopping occurs at the leaves of the tree, and an ul-
trametric distance between a given pair of adjacent
nodes can be defined to be the height of the energy bar-
rier between them. It is the existence of such an under-
lying ultrametric structure that led HK to denote this
diffusion process as “‘ultradiffusion.”

Other authors have considered variants on the above
problem. If one allows for long-range hopping then it is
the transition rates themselves that form the ultrametric
space.5 Recently, Bachas and Huberman® have solved
this problem exactly for an arbitrary arrangement of
barriers and related the relaxation rate to the complexity
of the tree itself. One can also consider the problem of a
random walk on the tree itself, a model which has been
proposed to account for the observed stickiness in the
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chaotic transport of particles.’

One of the primary drawbacks of the original HK
analysis is that it considers only the ordered binary tree
of Fig. 1(b). In this work we wish to investigate other
arrangements of barriers corresponding to trees with no
or only partial ordering. Although we find that many of
the features exhibited by the binary tree carry over to
the general case, we also discover certain properties that
are not universal.

The organization of this paper is as follows. In Sec. II
we review in some detail the basic results on the HK
binary-tree model. In Sec. III we present an approxi-
mate solution for an ordered n-ary tree in one dimen-
sion. In Sec. IV we discuss the results of numerical
simulations for a number of different systems. Section V
presents a discussion of the results in higher-
dimensionality systems, and Sec. VI summarizes the
work and presents the main conclusions. The Appendix
contains the details of the numerical methods used.

II. BASIC RESULTS

We consider a one-dimensional nearest-neighbor hop-
ping problem in a thermally activated picture. In this
case, the (symmetric) transition rate o, for hopping over
barrier g, is given by

o, =exp(—e, /kpT)=[exp(—¢ey/kgT)]"=R" . (2.1)

Here, R plays the role of a renormalized temperature.
When R =0 (i.e., T=0), we have trapping; when R =1
(i.e., T— ), all the transition rates are equal and we
have normal diffusion.

If we let P,(¢) denote the probability that the particle
is in cell n at time ¢, then the master equation for the
process is

dP,
dt

:wn,n+](Pn+l_Pn)+wn,n—1(Png1_Pn) ’ (2.2)

where w, , =w, , is the transition rate between cells n
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and k.

To investigate the diffusion process, one typically
studies the autocorrelation function Py(t) or the mean-
square displacement d*(t). P,(t) is defined to be the
probability of the particle being in cell O at time ¢ given
that it was in cell O at ¢t =0; it is averaged over all initial
starting sites. Similarly, d 2(¢) is defined to be the mean-

(a)

(b)

Binary Tree

0.6

(c)

0.5 4

0.4 1

0.2 4

0.1 4

0.0 —
0.0 0.2 0.4 0.6 0.8 1.0

R
FIG. 1. System with a binary set of barriers (a), represented

by an ordered tree, as shown in (b). (c) The exact behavior of
the decay exponent v, as a function of R, for the binary tree.
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square distance traveled from the initial site, averaged
over all initial sites. For normal diffusion (i.e., all transi-
tion rates equal), one can easily show that the long-time
behaviors are Py(t)~t /2, and d*(t)=~t*'!. In the gen-
eral case, we expect P,(t) to behave as ¢t =¥ with an ex-
ponent v which may depend on R and on the topology
of the tree in question. One can show?® for the same tree
that d*(¢) will behave as ¢t *2*. Thus to find the long-
time behavior of the autocorrelation function, one can
investigate the mean squared displacement, and vice ver-
sa.

For the binary system of Fig. 1, the solution for the
exponent v has been found by Huberman and
Kerszberg.* They gave an approximate solution valid
for small values of R and found an anomalous R (and
hence temperature) -dependent exponent

v(R)=In(2)/In(2/R) . (2.3)

Teitel and Domany® (TD), employing a combination of
analytical and numerical methods, found that the HK
result holds for R up to R, =1; at that point they found
a dynamical phase transition to normal diffusion where
the exponent v=1_ [see Fig. 1(c)]. Maritan and Stella,'
using renormalization techniques, were the first to give
an exact solution of this problem and confirmed the TD
result.

As pointed out by Teitel and Domany, the results for
the binary case are somewhat more general than may
first appear. Zwanzig!! proves quite generally that for
any barrier arrangement, the diffusion constant D is
given by

1 1 X
DN§

For the binary tree, this gives D ~'=2/(2R —1), and
hence the diffusion constant goes to 0 as R —1+. For
R <1, we are in an anomalous regime, in agreement
with the exact solution given above. Since this result
clearly does not depend on the spatial arrangement of
the barriers, one must get the phase transition from nor-
mal to anomalous diffusion at R, =1 for any rearrange-
ment of the barriers.

Furthermore, if one considers an ensemble of systems
which are spatial rearrangements of the barriers in Fig.
1(a), then one may apply the results of Alexander et al.'?
on diffusion in random systems to obtain precisely the
same results as above. Thus one expects that most rear-
rangements of the binary tree will behave precisely like

(2.4)

nn+1

FIG. 2. Portion of the ternary tree.
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the ordered case. However, we will see that there exist
particular rearrangements which do not yield the same
exponent.

III. CURRENT RESULTS

We begin by generalizing the HK method for the
binary tree to any regular n-ary tree. For simplicity, we

1 —1
-1 2 -1
-1 1+4R —R
—R 1+R -1
A= —1 2 -1
-1 I+R -—R
—R 1+R -1
—1 2
—1
This result neglects corrections of O(R?. Integrating
gives

P(1)=exp[ —w At ]P(0) . (3.3)

If we consider times ¢ such that wyt <<1, then we may
expand the exponential to get

P(t)=(1—w,At)P(0) . (3.4)

We take the initial state P(0)=1(1,1,1,0,0,...,0).
Carrying out the multiplication, we find that

P(z)=1(1,1,1—Rwyt,Rwyt,0,0, . . .,0) . (3.5)
Renormalizing the system by a factor of 3, we have
Rﬂ)ot Rwot
P(t)= |1— 3 T3 (3.6)

Thus we have a ‘“leakage” across the renormalized
second barrier corresponding to a new transition rate
®,'=w;/3. This renormalization process can be contin-
ued, and one finds that each of the transition rates is re-

normalized to a new value
w,'=w,/(3"). (3.7)

Now, following HK, we can write the autocorrelation
function in the limit N — o as

Py(t)=2 3 3~ *lexp(—w,'t) .
n=0

(3.8)

Note that P3(0)=1. Converting the sum to an integral
we get

Po(t)=12 fo“’ dn 3~ "exp[ —(R /3)"wyt] . (3.9

This integral can be evaluated using a change of vari-
ables, with the result that for long times (ot >>1),
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consider the case for n =3, but the method will easily
carry over for any n. Consider the nine cells shown in

Fig. 2, part of a ternary tree with N cells. Letting
P(t)=(P,,P,, ..., P,), the master equation gives

dpP

7= —w AP, (3.1)

where the tridiagonal symmetric matrix A is given by

(3.2)
—1
1
f
Py(t)=Ct "R | (3.10)
where
v(R)=In(3)/In(3/R) , 3.11)
2 I'(v) _y
=3 mG/R) @07 (3.12)

For a general value of n, a similar analysis reproduces
Eq. (3.10), with the exponent and prefactor given by

v(R)=In(n)/In(n/R) , (3.13)
n—1| rw | _,
C= n In(n/R) |70 - (3.14)

These results were derived under the assumption that
R << 1 (we neglected terms of order R? in the master
equation). If we assume, as is the case for the binary
tree, that the analytic form (3.13) holds for all R until
v=%, the crossover point to normal diffusion, then we
expect a dynamical phase transition at

R.=1/n . (3.15)

The numerical work we will discuss momentarily
strongly supports this conjecture. Furthermore, if we
consider the point where the diffusion constant vanishes
using Zwanzig’s result, we find a transition from normal
to anomalous diffusion at precisely the R, given by
(3.13).

IV. COMPUTER EXPERIMENTS

For systems which lack the ordered structure of the
binary tree or the regular n-furcating trees, and hence
ones for which the renormalization analyses break down,
we need to employ numerical methods. We have used
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two such methods, one based on explicit diagonalization
of the transition matrix in Eq. (2.2), and another based
on averages of a large sample of random walks, to ana-
lyze several new systems. The mathematical details are
given in Appendix A. The diagonalization method
directly measures the autocorrelation function Py(t), and
hence determines the exponent v(R) from the expected
long-time power-law decay ¢~ *®). The random-walk
analysis measures the mean squared displacement, which
in the long-time limit behaves as r+?®) and hence
yields the same exponent. In the following, we present
the results for each of the systems studied, commenting
on the important features found in each case.

A. Binary tree [Fig. 3(a)]

We begin by testing the numerical methods on a tree
where we have an exact solution. In Fig. 3(b), we have
plotted the measured exponent v(R) versus R. The solid
curve represents the theoretical solution given by Eq.
(2.3), with the phase transition to normal diffusion at
R =1. The R dependence of the exponent for R <R, is
apparent; the singularity at R_ is somewhat diffuse, but
crossover to normal diffusion at large R is clear. The
agreement of the numerical data with the theoretical
predictions is typically to within about 5%.

B. Ternary tree [Fig. 4(a)]

Figure 4(b) presents the measured exponent for the
ternary tree. This is the first case where we observe the
dynamical phase transition at a point other than 1.

(a)
Binary Tree (b)
0.6
e © o
0.5 4 — d
0.4 4 .
° — THEORY
14 03 ® Diag
= Wak
0.2 4
0.14
0 0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Observed behavior of the relaxation exponent for
the binary tree shown in (a). (b) The solid line denotes the
theoretical prediction, the dots correspond to numerical matrix
diagonalization, and the squares are the results of random-walk
simulations. Statistical errors, here and in the following
graphs, are of the order of the size of the dots, or smaller.
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FIG. 4. Observed behavior of the relaxation exponent for
the ternary tree shown in (a). (b) The solid line denotes the
theoretical prediction, the dots correspond to numerical matrix
diagonalization, and the squares are the results of random-walk
simulations.

(a)

Quaternary Tree (b)

— THEORY
® Diag
= Walk
0.2

0.14

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

R

FIG. 5. Observed behavior of the relaxation exponent for
the quaternary tree shown in (a). (b) The solid line denotes the
theoretical prediction, the dots correspond to numerical matrix
diagonalization, and the squares are the results of random-walk
simulations.
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C. Quaternary tree [Fig. 5(a)]

The ordered quaternary tree allows us to check the
generalized predictions of Eq. (3.13). The solid line
represents the theoretical prediction, and again the
agreement with experiment is quite good.

D. Fibonacci tree [Fig. 6(a)]

The “Fibonacci” tree of Fig. 6(a) is an example of a
“random” tree—i.e., one in which the branching ratio is
nonconstant, even on a local scale. The tree is generated
by the following algorithm. At the root there is one
parent node. The next generation includes the parent,
and a single offspring. From then on, any offspring must
wait one generation before it becomes a parent; parents,
meanwhile, reproduce at every generation. There are no
deaths. Thus if tree produced has a population f, at the
nth generation, then

Fo=Ffn_1+fn_s for n>2 with fo=f,=1.

Clearly, the series {f,} is just the famous Fibonacci se-
quence (hence the name of the tree).

If one now treats this tree as random, then the results
of Alexander et al. can be applied. They find that for a
system of barriers with a density of transition rates

(4.1)

plo)=w~% as w—0, that the autocorrelation function
(a)
Fibonacci Tree (b)
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FIG. 6. Observed behavior of the relaxation exponent for
the Fibonacci tree shown in (a). (b) The solid line denotes the
theoretical prediction, the dots correspond to numerical matrix
diagonalization, and the squares are the results of random-walk
simulations.

behaves, in the limit t — oo, as

t —(1—-a)/2—a)

o~ b
Py(t)= Ry

2

In our case, we have a=1+In(g)/In(R), where
g=(V'54+1)/2 is the golden mean. Inserting this ex-
pression into Eq. (4.2) gives

a>0

a@<0. (4.2)

t—ln(g)/ln(g/R), R <1/g

=12 Rs1/g . (4.3)

Py(t)= [
Thus we predict a dynamical phase transition between
normal and anomalous diffusion at R, =1/g ~0.618.

In Fig. 6(b), we have plotted the results of the numeri-
cal measurements of the exponent. We see that the
agreement with the prediction of Eq. (4.3) is excellent.
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FIG. 7. (a) Most diverse tree (“3 1) representing the com-
plex barrier arrangement shown in (b). (c) The measured ex-
ponent as a function of R. The dots correspond to numerical
matrix diagonalization and the squares are the results of
random-walk simulations.
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E. “3X1” tree [Fig. 7(a)]

The next system we study corresponds to a tree inter-
mediate between ordered and random—i.e., a “com-
plex” tree in the terminology of Huberman and Hogg'?
[Fig. 7(a)]. It was introduced in the study of long-range
hopping processes by Bachas and Huberman,® who
proved that it produces the slowest rate of decay possi-
ble. At any generation, the left one-half members trifur-
cate and the right one-half members have a single
offspring. The significance of this tree to the nearest-
neighbor hopping problem comes from the fact that the
barriers are precisely the same as those in the binary-tree
system (Sec. IV A), just arranged in a different spatial or-
der [Fig. 7(b)]. Considering the fact that random rear-
rangements of the binary tree yield the same exponent as
the ordered case led TD to conjecture®® that any partic-
ular rearrangement will lead to the same results, as well.

However, as Fig. 7(c) shows, this particular rearrange-
ment appears to have a different form for the exponent
for R < 4. The dynamical phase transition still occurs at
R.=1, as required by the general results of Zwanzig.
Furthermore, for small values of R, the exponent agrees
quite closely with that of the ordered ternary tree (Sec.
IVB). As R approaches ;, however, the exponent slow-
ly crosses over to the ordered binary case. Thus in some
sense, this tree is intermediate between the binary and
ternary tree. Unfortunately, no analytical explanation of
these results for the 3X 1 tree exists at present.

(a)
"5x1" Tree (b)
0.6
0.5 agl®"® *
. b
]
1 4 al m Wak
0.4 1 L
[ ]
“anomalous" “normal”
0.3 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
R

FIG. 8. (a) “5X1” tree and (b) the measured exponent as a

function of R. The dots correspond to numerical matrix diago-
nalization and the squares are the results of random-walk
simulations.
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F. “5X1” tree [Fig. 8(a)]

The “5X1” tree is another rearrangement of the bar-
riers found in the ordered binary case. To construct this
tree, let the leftmost one-quarter nodes pentafurcate and
the rightmost three-quarters have single offspring at
each generation [see Fig. 8(a)]. From the plot in Fig.
8(b), we see that again we have the required transition at
R, =1, but that the exponent for R <R, differs from the
binary case. In fact, for R very small, it agrees quite
closely with the result for an ordered quinary tree. As R
increases towards one-half, the exponent continuously
crosses over to the binary case, just as in the 3X 1 tree
above.

V. HIGHER-DIMENSIONAL RESULTS

One can generalize the argument of Sec. III to include
systems of higher dimensions.'* We only consider d-
dimensional cases that are ‘“direct products” of d or-
dered one-dimensional systems. Figure 9(a) shows a
two-dimensional case that is the direct product of two
1D binary systems [Fig. 1(a)]. Let us examine this case,
as the generalization to an arbitrary d-dimensional sys-
tem that is the cross product of d 1D ordered n-ary sys-
tems is straightforward.

The analysis in Sec. III up to Eq. (3.4) holds, except
that the matrix A changes. The initial state, which we

(a)
2D Binary (b)
1.2
1.0
0.8 4
v — 2D THEORY
0.6 - ® 2D Diag
0.4 4
0.2 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
R
FIG. 9. (a) Square grid representing a two-dimensional

hierarchical system. (b) The measured exponent as a function
of R. The dots correspond to numerical matrix diagonalization
and the squares are the results of random-walk simulations.
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write in a matrix form similar to the layout of the cells
themselves in Fig. 9(a), is given by

00

0
0
0

SO =
o O O

The state of the system at a short time ¢ later (wyt <<1)
is

1 1—Rwyt Rwyt O
1—Rwgt 1—2Rwyt Rwygt O
P(t)=1 Rayt Ragt 0 0 (5.2)
0 0 0 0
Thus in a renormalized picture it is as if P(¢)—P'(z)
were given by
1—Rwg Rwyt
P(z)= 1R gt 0 (5.3)

Hence, we can identify a renormalized transition rate
®;'=w,/2=Rwy/2. This renormalization procedure
can be repeated and we find that w, will be renormalized
to w; =wy /(2%), just as in the one-dimensional case.
The autocorrelation function is now given by

Po(t)=3 S (22)kexp(—w,'1)
k=0

3 fo” dk 4 *exp[ — (R /2)*wyt] . (5.4)

Evaluation of this integral in the long-time limit
(wot >>1), as in Sec. III, leads to Py(t)=t~", where

vp(R)=21In(2)/In(2/R)=2v,p (2D binary case) . (5.5)

In d dimensions, the above result changes only in that
the renormalization procedure involves 29 cells, instead
of 2 (for 1D) or 4 (for 2D). If one considers an ordered
n-ary tree instead of the binary tree described above,
then the only difference is that w,'=w, /(n*), and that
one renormalizes over n¢ cells. Thus the autocorrelation
function is given by

Pot)=(n?—1) 3 (n?)*exp(—w;'t),
k=0

(5.6)

and the long-time behavior is governed by the exponent
vyp(n,R)=dIn(n)/In(n /R)=dvp

(general case) . (5.7)

Although these results were all derived in the limit of
small R, one might guess that they may hold until
v=d /2, which is the exponent for normal diffusion in d
dimensions. If so, this would imply a dynamical phase
transition at R.=1/n, just as in the one-dimensional
case.

We have numerically investigated the 2D binary case
using the eigenvalue method. Numerical considerations

limited us to systems of about 16>=256 cells. The re-
sults, given in Fig. 9(b), are consistent with the predic-
tion of Eq. (5.5), along with the conjectured phase transi-
tion at RC:%. However, because of the small system
size and the lack of precision in the experiment, we can
claim no definite proof of the above.

VI. SUMMARY

In this paper, we have studied the phenomenon of
ultradiffusion in arbitrary trees with nearest-neighbor
hoppings. We have found universality in the qualitative
features of ultradiffusion: an anomalous R-dependent
exponent for R <R, and a singular crossover at R, to
normal diffusion. Moreover, the value of R, depends on
the average branching ratio of the system. Furthermore,
we discovered a set of trees, for which the R dependence
of the exponent departs from the expected value based
on universality arguments.

Since nearest-neighbor hopping processes sample a
fairly local region of ultrametric space, it is not clear at
present to what extent these newly found anomalies de-
pend on the overall complexity of a given tree. As the
simulations are constrained to operate between a time
scale containing no transients and an upper bound deter-
mined by computer limitations, the extent to which the
entire tree is sampled during a given experiment is small.
Thus, unlike the case of arbitrary range hopping solved
by Bachas and Huberman, these processes do not convey
much information on the complexity of the barrier dis-
tributions. They nevertheless apply to very general
hierarchical situations and exhibit dynamical singulari-
ties which should be observable in experiments measur-
ing the decay of the autocorrelation function in physical
systems.
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APPENDIX

In this appendix, we give the details of the two numer-
ical procedures used in Secs. IV and V. First, let us de-
scribe the diagonalization method. One begins with the
master equation (2.2). We can rewrite this as

dP
—=-QP, Al
it (A1)
where the matrix (2 is given by
wi—l‘,i+wi;i+1’ l=.]
—w;_1., I=j4+1
A e (A2)
-4 P=j—1

0, otherwise .
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BINARY TREE: R = 0.2,N = 1024, Ng,gey = 100.
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FIG. 10. Typical plot of the log,o[Py(2)] vs logo(¢), for the
diagonalization method. The best-fit slope gives the exponent.

We assume here that we have a system of N cells labeled
from 1 to N, and that the basic unit of time is deter-
mined by requiring wy=1. Then, w,=R". Further-
more, we take the boundary conditions to be
wp 1=y 5 1=0. Clearly, Q is a symmetric matrix, and
hence can be diagonalized. Letting A be the diagonal
matrix containing the eigenvalues {A;] of Q and S be
the corresponding matrix of eigenvectors {x;} which di-
agonalizes (2, then we have

P(1)=[Sexp(—At)ST]P(0) . (A3)
If we assume P,(0)=35, o, then Py(t) is given by
Py(t)= 3 exp(—A;t)(x; )5 (A4)
j

The sum is over all the cells j in the system. We now
average over all initial states in the system. Then, be-
cause each of the eigenvectors X; is normalized, we find
that the average autocorrelation function is

N
(Po(1)) = 3 exp—A;0)
=

(AS)

Because the matrix ) is tridiagonal, there exist
efficient routines to find the eigenvalues. Since we are
interested in the long-time limit of P(¢), only the small-
est eigenvalues of ) are needed. Typically, we examined
systems of size N = 1000, and found the smallest 100 ei-
genvalues. The sum in (AS5) was evaluated and plotted
on a log-log plot. The exponent v was determined from
the slope of the best-fit line to the data. Increasing the
number of eigenvalues found did not appreciably im-
prove the results. Increasing the system size by an order
of magnitude did improve the precision, but at a cost of
considerable computer time.

One should note that as t — o, the limit of (A5) gives
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BINARY TREE: R = 0.2,N = 32768, Ny,; = 5000.
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0.9

log1o[<d2(t)>]

0.8
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FIG. 11. Typical plot of log,,{d(¢)) vs log,(t) for a
random-walk simulation. The slope gives the exponent for the
mean-square displacement.

an exponential decay of the autocorrelation function.
However, for large N, enough eigenvalues cluster near
zero to give an algebraic decay for long, but not too
long, times. An example of the typical long-time behav-
ior of logo[Py(2)] versus log,,(¢) is given in Fig. 10.
Notice that the slope is somewhat steeper at large values
of t.

Next, let us describe the random-walk method for
measuring the mean-square displacement (MSD). Again
one considers a system of N cells, with the master equa-
tion and boundary conditions being the same as above.
This time we simulate actual particle motion according
to the following rules.

At t =0, we randomly place the particle in one of the
cells, call it n. At time ¢t =7, a random number r be-
tween O and 1 is generated. If o, , _;7 <7, then the par-
ticle hops to the left; if (1—r)<w, ,, 7<1, then the
particle hops to the right; otherwise, the particle remains
in cell n at the next time step. Clearly, we must have
@y _1+@,,41)7<1; since o;; <1, we see that the
largest time step we may pick in general is 7=1. To
make the simulation as fast as possible, we used this
maximum value for 7.

The above process is repeated at every time step
t, =k7. At each step, we keep track of the squared dis-
tance from the starting cell n. The process was carried
out for some large number of steps, typically 1000 or
10000. To obtain the mean-square displacement (MSD),
we repeated the experiment numerous times, starting
each case at a new randomly selected position. We typi-
cally averaged over 5000 initial points for a system of
size N =30000. The MSD was then plotted vs. time on
a log-log plot, and the slope was measured. A typical
example of such a plot is given in Fig. 11.
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