
PHYSICAL REVIEW A VOLUME 36, NUMBER 11 DECEMBER 1, 1987
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We consider three types of changes that attractors can undergo as a system parameter is varied.
The first type leads to the sudden destruction of a chaotic attractor. The second type leads to the
sudden widening of a chaotic attractor. In the third type of change, which applies for many sys-
tems with symmetries, two (or more) chaotic attractors merge to form a single chaotic attractor
and the merged attractor can be larger in phase-space extent than the union of the attractors be-
fore the change. All three of these types of changes are termed crises and are accompanied by a
characteristic temporal behavior of orbits after the crisis. For the case where the chaotic attractor
is destroyed, this characteristic behavior is the existence of chaotic transients. For the case where
the chaotic attractor suddenly widens, the characteristic behavior is an intermittent bursting out of
the phase-space region within which the attractor was confined before the crisis. For the case
where the attractors suddenly merge, the characteristic behavior is an intermittent switching be-
tween behaviors characteristic of the attractors before merging. In all cases a time scale ~ can be
defined which quantifies the observed post-crisis behavior: for attractor destruction, ~ is the aver-
age chaotic transient lifetime; for intermittent bursting, it is the mean time between bursts; for in-
termittent switching, it is the mean time between switches. The purpose of this paper is to exam-
ine the dependence of ~ on a system parameter (call it p) as this parameter passes through its crisis
value p =p, . Our main result is that for an important class of systems the dependence of ~ on p is
r-

~ p —p, ~

r for p close to p„and we develop a quantitative theory for the determination of the
critical exponent y. Illustrative numerical examples are given. In addition, applications to experi-
mental situations, as well as generalizations to higher-dimensional cases, are discussed. Since the
case of attractor destruction followed by chaotic transients has previously been illustrated with ex-
amples [C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 57, 1284 11986)], the numerical ex-
periments reported in this paper will be for crisis-induced intermittency (i.e., intermittent bursting
and switching).

I. INTRODUCTION

Crises' are a common manifestation of chaotic dy-
namics for dissipative systems and have been seen in
many experimental and numerical studies. In a crisis,
one observes a sudden discontinuous change in a chaotic
attractor as a system parameter is varied. The discon-
tinuous changes are typically of three types: in the first
a chaotic attractor is suddenly destroyed as the parame-
ter passes through its critical crisis value; in the second
the size of the chaotic attractor in phase space suddenly
increases; in the third type (which can occur in systems
with symmetries) two or more chaotic attractors merge
to form one chaotic attractor. [The inverse of these pro-

cesses (i.e., the sudden creation, shrinking, or splitting of
a chaotic attractor) occur as the parameter is varied in
the other direction. ]

For all three types of crisis there is an associated
characteristic temporal dependence of typical orbits for
parameter values near the crisis. The characteristic tem-
poral dependence can be quantified by a characteristic
time which we denote ~. The quantity ~ is here taken
to have the following meanings for the three different
types of crisis.

(I) Attractor destruction Let p denote th.e relevant
system parameter, and let p, denote the value of p at the
crisis, with the destruction of the chaotic attractor
occurring as p increases through p, . Let p be slightly
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larger than p„and consider orbits with initial conditions
in the region of the basin of attraction of the attractor
which existed for p &p, ~ Such orbits will typically
behave as a chaotic transient. That is, they are initially
attracted to the phase-space region formerly occupied by
the attractor for p &p, ; they then bounce around in this
region in a chaotic fashion, which, for most purposes, is
indistinguishable from the behavior of orbits on the
chaotic attractor for p &p„ finally, after behaving in this
way for a possibly long time, they suddenly move away
from the region of the former attractor (never to return)
and approach some other attractor. The length of time
an orbit spends on the remnant of the destroyed chaotic
attractor depends sensitively on its initial condition, but,
nevertheless, when many such orbits are considered, the
length of the chaotic transient apparently has a well-
defined average which tends to infinity as p approaches
p, ~ For example, one can choose some rectangular re-
gion in the basin and then calculate the chaotic transient
lifetimes for many randomly chosen initial conditions in
the rectangle. The average lifetime over these initial
conditions is the same for different choices of the rectan-
gle, as long as it lies in the interior of the former basin
and p is close to p, . We denote this average time ~.

(2) Attractor widening As .p increases through p, the
chaotic attractor suddenly widens. For p slightly larger
than p„ the orbit on the attractor typically spends long
stretches of time in the old region to which the attractor
was confined before the crisis (p &p, ). At the end of one
of these long stretches, the orbit suddenly bursts out of
the old region and bounces around in the new region
made available to it at the crisis. It then returns to the
old region for another long stretch, followed by another
burst into the new region, and so on ad infinitum The.
time between bursts (i.e., the length of the stretches in
the old attractor region) has a more or less random ap-
pearance when tabulated. We define the characteristic
time ~ for this case to be the average over a long orbit of
the time between bursts.

(3) A ttractor merging For p. &p, there exist two
chaotic attractors, each with its own basin of attraction.
The two basins are separated by a basin boundary. As p
is increased the two attractors enlarge and at the crisis
(p =p, ) they both simultaneously touch the basin bound-
ary separating their two basins. (At p =p, they also col-
lide with saddle unstable orbits on the basin bound-
ary. ' ) For p slightly greater than p, , an orbit will
spend a long stretch of time in the region of one of the
p &p, attractors. After such a time stretch, the orbit
rather abruptly exits this region, and then spends a long
stretch of time in the region of the other p &p, attractor,
and so on. Thus, for p ~p, there is one attractor on
which the orbit intermittently switches between behav-
iors that, for a finite time, resemble orbits on the indivi-
dual p &p, attractors. In this case the characteristic
time ~ is the average over a long orbit of the time be-
tween switches. (Two comments are in order. First, we
have discussed the case where two attractors take part in
the crisis; clearly more than two can conceivably be in-
volved. Second, the fact that at p =p, both attractors
simultaneously collide with the basin boundary is not to

be expected unless the system has some symmetry or
other special property. One way this can occur is if the
attractor of a map has m disjoint pieces, and the orbit
cycles through them sequentially. In that case we can
consider every mth iterate of the map. The resulting
process then has m distinct attractors which can merge
at p, . In this case the system has the special feature that
it is the mth iterate of a map. )

We use the term crisis-induced intermittency to de-
scribe the characteristic temporal behavior which occurs
for the attractor-widening and attractor-merging
crises. ' One may think of intermittency as meaning ep-
isodic switching between two (or more) sustained behav-
iors of different character. Thus we can schematically
contrast the type of intermittency discussed by Pomeau
and Manneville with what we discuss here, as follows.
Pomeau-Manneville:

approximately
(chaos)~

d ~(chaos)periodic

approximately

periodic
~ ~ ~

Crisis-induced intermittency:

(chaos)
&
~(chaos)2~(chaos)

&
~(chaos)2~

For the case of intermittent bursting, we may take
(chaos)z to be a burst and (chaos)& to be a chaotic orbit
segment between the bursts. For the case of intermittent
switching, (chaos), and (chaos)2 represent chaotic behav-
iors similar to those on the two attractors before the
crisis.

Our main point in this paper is that for a large class
of dynamical systems which exhibit crises, the depen-
dence of ~ on the system parameter is

r-(p —p )

Furthermore, we shall develop a quantitative theory for
the determination of the critical exponent y for a broad
class of low-dimensional systems. A number of examples
for the case where the attractor is destroyed and re-
placed by a chaotic transient have been given by us in a
previous preliminary publication. Thus we shall limit
the examples given here to the case of crisis-induced in-

termittencyy.

As a first, and very simple, example of crisis-induced
intermittency, Fig. 1 shows time series for the quadratic
map

2x +)=p —x„

for four values of p. The time series plotted is taken for
every third iterate of the map for p values near the crisis
which terminates the period-3 window. ' The initial
condition is xo ——0. Figure 1(a) is just before the crisis,
so that the orbit cycles through three chaotic bands.
Since only the third iterate is plotted, the orbit in Fig.
1(a) is confined to one of those bands (actually the center
band). Figures l(b) —1(d) show orbits for p values above,
the successively farther from, the crisis. Here we see
that for long stretches the orbit remains in one band, but
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FICx. 1. Time series x3„ for the quadratic map near the
crisis terminating the period-3 window p &p, (a), and p &p„
(b), (c), and (d).

then occasionally bursts out of it and then returns to it
or to one of the other two bands.

One of our main points is that larger values of the
critical exponent y make these phenomena easier to ob-
serve. From the numbers in the period-3 window exam-
ple [p =1.79000, 1.79033, 1.79040, 1.79100 for Figs.
1(a)—1(d)], we see that the range of the parameter in-
volved 1.791—1.790=0.001 is small compared to the
size of the period-3 window, which covers
1.75&@51.79. Thus, for this case, the crisis-induced
intermittency phenomenon only exists over a compara-
tively small range of the parameter. As we shall see in
our subsequent numerical examples, this need not be the
case when y is larger. This can be easily seen from the
following example. Say that r=C(p —p, ) r, and con-
sider two cases, one with y = —,

' and the other with y =2,
and take C= 1 for both cases. [One-dimensional maps
with quadratic extrema always yield y = —,

' (e.g. , the
period-3 window crisis of Fig. 1).] For this hypothetical
case, we have that the range of p with ~ & 100 is
0&(p —p, ) &0. 1 for y=2 and 0&(p —p, ) &0.0001 for

1

2

In Sec. II we first summarize the results of our theory
for the determination of the critical exponent y for a
wide class of two-dimensional maps. The theory also ap-
plies to many continuous time systems whose Poincare
surface of section yields a two-dimensional map. We
then illustrate the application of the theory with three
physically interesting examples: the Ikeda map (which
represents a model of a laser cavity system); the
sinusoidally forced damped pendulum (this equation also
describes the dynamics of simple Josephson-junction cir-
cuits and charge-density waves in solids); and the
sinusoidally driven symmetric double-well system (the
crisis in this case has been previously investigated nu-
merically in Ref. 8). We then discuss the application of
these ideas to the determination of exponents for the
mer gin gs of chaotic bands which occurs in period-
doubling cascades. A finite Jacobian, universal correc-
tion to the one-dimensional result (y= —,') is obtained
near the Feigenbaum point.

Section II also provides some discussion on how to ap-
ply the theory in experimental situations. The problem
is that our formulas for y are in terms of the eigenvalues
of certain unstable orbits. While these can be deter-
mined from computer models of the system, it is clearly
preferable to do this directly from experimental data,
thus negating the need for a mathematical model.
Methods for doing this are discussed.

Section III derives the theoretical results for y quoted
in Sec. II. (Some of this material has previously ap-
peared in a preliminary form in Ref. 7.) We emphasize
that, although our examples in Sec. II are all for crisis-
induced intermittency, this theory applies equally to the
case of chaotic transients following the destruction of a
chaotic attractor by a crisis.

Section IV discusses extensions of the theory of Sec.
III to other situations. In particular, higher-dimensional
situations (Sec. IV A) and the effect of fixed points in
three-dimensional autonomous flows (Sec. IV B) are con-
sidered. Both effects lead to enhanced values of y. It is
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speculated, on the basis of this analysis, that chaotic
bursting and chaotic transient phenomena are likely to
be prominent in situations where higher-dimensional at-
tractors occur (in the sense that they will occupy a rela-
tively large volume in the parameter space).

Remark E.quation (1) does not apply to all crises. In
particular, in Ref. 9 we have investigated a type of crisis
which occurs as a result of a coalescence of two unstable
periodic orbits (the "unstable-unstable pair bifurcation ').
For this type of crisis

r-exp[~(p —p, )
' ],

where ~ is a constant. Comparing this expression for 7.

with (1), we may regard the critical exponent as being
infinite (y = oo ) for unstable-unstable pair bifurcation
crises, since ~ approaches infinity as p approaches p, fas-
ter than any power of (p —p, ) '. We emphasize, how-

ever, that, from our studies of chaotic transients, in
practice we find that instances where (1) applies seem to
be the most common situation by far. (Indeed this is
reasonable, since we expect the hypotheses adopted in
our analyses of Secs. III and IV to be satisfied in many
cases. )

II. THEORETICAL RESULTS
FOR TWO-DIMENSIONAL MAPS AND EXAMPLES

(a

FIG. 2. (a) Schematic illustration of heteroclinic tangencies
of the stable manifold of the unstable periodic orbit B and the
unstable manifold of the unstable periodic orbit A. (For sim-

plicity we take the periods of A and B to be 1.) (b) Schematic
illustration of homoclinic tangencies of the stable and unstable
manifolds of the unstable periodic orbit B.

system exhibits at the crisis. In the case of a heteroclinic
crisis, we have

y=-,'+(»
I
ai

I
)~

I
»

I
az

I I
(2)

where a& and az are the expanding ( a& &1) and con-
tracting (

I
a2

I
& 1) eigenvalues, respectively, of the

periodic orbit A in Fig. 2(a). In the case of a homoclinic
crisis, we have

A. Summary of results from Sec. III
r =(ln

I p2 I
)~(in

I
plp21'» (3)

In Sec. III we derive formulas for the critical exponent
for a broad class of two-dimensional maps. In particu-
lar, we consider two-dimensional maps for which the
crisis is due to a tangency of the stable manifold of an
unstable periodic orbit with the unstable manifold of
another or the same periodic orbit. These types of crises
appear to be the only kinds of crises which can occur for
invertible two-dimensional map systems that are strictly
dissipative (i.e. , magnitude of Jacobian determinant less
than 1 everywhere) and they are ubiquitous features in
such commonly studied nonlinear systems as the forced
damped pendulum (or Josephson junction), the forced
Duf5ng equation, the Henon map, and many others.

At the crisis the tangency can occur in two possible
ways.

(i) Heteroclinic tangency. In this case, the stable man-
ifold of an unstable periodic orbit (B) is tangent to the
unstable manifold of an unstable periodic orbit (A) on
the attractor, as in Fig. 2(a).

(ii) Homoclinic tangency In this .case, the stable and
unstable manifolds of an unstable period orbit (B) are
tangent, as in Fig. 2(b).

In the derivation (given in Sec. III) of our formulas for
y, it is assumed that the tangencies occurring in Figs. 2
are of the quadratic type. In both cases, the chaotic at-
tractor is the closure of one of the branches of the unsta-
ble manifold of B (for Fig. 2, the branch leaving B going
toward the right). For the case of Fig. 2(a), the chaotic
attractor is also the closure of the unstable manifold of
A.

We show in Sec. III that the critical exponent y obeys
two distinct laws depending on the type of tangency the

where P, and P2 are the expanding and contracting ei-
genvalues of the periodic orbit B in Fig. 2(b). In the lim-
it of strong contraction (a2,P2~0), Eqs. (2) and (3) yield

y = —,', the result for a one-dimensional map with a quad-
ratic maximum.

In Figs. 2 we have schematically shown the simple
case where A and B are fixed points; for the case where

and B are periodic orbits similar diagrams can be
drawn. In this case a&, az, P, , and P2 are the eigenvalues
of the n-times iterated map, where n is the orbit period.
For Fig. 2(a) a question that may arise is whether the
periods of 3 and B are related. For the case where 8 is
on a basin boundary (as for the attractor-destroying and
attractor-merging crises), we show in the Appendix that,
in fact, the periods of A and B must be identical. [We
were originally led to suspect that this might be the case
by our numerical study of the Ikeda map (Sec. II C),
where we found a case for which both 3 and B are
period-5 orbits. ]

Several remarks are now in order.
(1) In the case of a boundary crisis' (i.e. , where the

attractor collides with its basin boundary) the closure of
the stable manifold of B is also the boundary of the basin
of attraction of the attractor. [The case of boundary
crises applies when the crisis either causes two attractors
to merge (cf. Secs. II D —IIF) or destroys the attractor. ]

(2) If the system is not strictly dissipative, then crises
need not occur only as a result of stable and unstable
manifold tangencies. In particular, there is a possibility
of the unstable-unstable pair bifurcation crisis (cf. re-
marks at the end of Sec. I). This type of bifurcation can-
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not occur, however, if the Jacobian determinant has
magnitude less than one, since this bifurcation involves
the coalescence of a saddle periodic orbit with a repel-
ling period orbit, and repellers are ruled out in the strict-
ly contracting case.

(3) For strictly dissipative maps
~
aiaz

~
& 1, and

hence y from Eq. (2) lies in the range —,
' &y & —', with

y~ —', as
~

J
~

~1. For the homoclinic case yahoo as

~

J
~

1 [cf. Eq. (3)].
(4) The assumption of a quadratic tangency is ap-

propriate (generic) for maps which are C . We note,
however, that Poincare maps resulting from Aows need
not be of this type.

(5) In general, three-dimensional fiows (e.g. , a system
of three autonomous first-order ordinary differential
equations) that are sufficiently smooth, and for which the
time between crossings of the Poincare surface of section
has an upper bound, generically result in invertible C
maps (assuming the vector field is nowhere tangent to
the chosen surface of section). For example, for periodi-
cally forced systems, one can sample. the orbit at the
forcing period, and the time between surface piercings is
clearly a constant (the forcing period). For other cases
such as the Lorenz equations (cf. Sec. IV B), however,
the orbit can pass arbitrarily close to a fixed point in the
flow, and, when it does so, it spends a long time near
this point. Thus the time between section crossings can
be arbitrarily long. This results in the well-known cusp
in the Lorenz return map.

(6) As p is varied close to the tangency (p =p, ), very
small parameter windows exist where periodic attractors
(of possibly high period) occur ("Newhouse sinks"). In
our computations of ~ from orbit data, we picked many
values of p near p„but apparently never fell in one of
these narrow windows. The result, Eq. (1), is to be un-
derstood as excluding p values in such windows.

(7) For the case of a boundary crisis, at p =p, the at-
tractor touches the basin boundary at its point of
tangency with the stable manifold of B. Thus an entire e
neighborhood of every point on the attractor (in particu-
lar, the tangency point) does not tend to the attractor.
Hence, by the definition of an attractor used by some au-
thors, what we are here calling the "attractor" is not an
attractor at p =p, .

0i -=(&3/I4 ),
~2=—(12~~i) .

(4)

If 8 is a periodic orbit of period m, rather than a fixed
point of the map (as assumed in the above), then Fig. 3
should be regarded as applying to the mth iterate of the
map, and 8 is one of the m components of the periodic
orbit.

Now we consider the case of the heteroclinic crisis,
Eq. (2). Here we need to gain a knowledge of the eigen-
values o;, and a2 of the unstable orbit 3 on the attrac-
tor. For r small, an orbit point which crosses over to
the other side of the stable manifold of B (as in Fig. 3)
does so by closely following the unstable manifold of A.

First consider the case of the homoclinic crisis, Eq.
(3). In this case we require knowledge of P, and )332.

Consider the case where p is just slightly larger than p,
(i.e., r =p —p, « 1 and r & 0), and ask what happens
near the initiation of a burst or switch (for crisis-induced
intermittency), or, equivalently, what happens at the end
of a chaotic transient (for the case where the crisis des-
troys the attractor). For p &p, (r &0) the unstable mani-
fold of B in Fig. 2(b) pokes over to the other side of the
stable manifold of 8. An orbit may be pictured as
bouncing around for a long time on the unstable mani-
fold of 8 in the region of the attractor before the crisis.
After a while, it may land on the portion of the unstable
manifold of 8 which has poked over to the other side of
the stable manifold of B (point 1 in Fig. 3). Since we
consider r small, the location of the orbit at this time is
near the stable manifold of B. On further iteration, this
orbit point is attracted toward 8 along its stable mani-
fold (1~2~3~4 in Fig. 3) and then repelled from B
along the segment of its unstable manifold which points
away from the former region of the attractor. By exam-
ining the locations of the orbit points (the dots in the
figure) one can deduce an estimated location of B (denot-
ed by an X in the figure) and the orientation of the stable
and unstable manifolds of B. Determining the distances
from the estimated location of 8 to successive orbit loca-
tions (e.g. , 1„12,l3, l4 in the figure), then yields estimates
of P, and /32, e.g. ,

B. Experimental determination of eigenvalues

In an experimental situation the characteristic time ~
can, in principle, be measured as a function of a system
parameter in the neighborhood of the crisis. By analyz-
ing the results of such measurements, the critical ex-
ponent y can be determined. In order to compare this
experimental y with the theoretical prediction given in
Eqs. (2) and (3), it is necessary to know the eigenvalues,
ai and a2 for Eq. (2) or Pi and P2 for Eq. (3). Here we
briefly discuss how these eigenvalues might be deter-
mined directly from experimental data. We emphasize
that in the following discussion we assume that a
mathematical model of the experimental system is una-
vailable. (If one were known it could be used to deter-
mine the eigenvalues. )

FICx. 3. Schematic of the orbit as a burst is initiated. The x
denotes the "estimated" location of 8.
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Thus if one looks at the immediate preiterates of such a
point, they must pass close to A. By examining such
preiterates the location and period of A can be deter-
mined. If r is sufficiently small, the orbit may pass close
enough to A that the eigenvalues a& and a2 can also be
determined (the orbit near A will be like that illustrated
for B in Fig. 3). Even if this is not the case, all is not
lost. In particular, during the long time the orbit spends
before leaving the region of the attractor by crossing
over the stable manifold of B, it will come close to
many times, and some of these close approaches will be
very much closer than the one that ultimately lets the
orbit leave. By examining the data for the closest ap-
proach, a string of orbit points can be determined which
can yield a good estimate of e, and az via the construc-
tion illustrated in Fig. 3 for B.

When determining y appearing in the formula
r=C

I p —p, I
~, there are three unknown constants (C,

p„and y), and one might initially expect to be forced to
measure ~ for at least three values of p to find y. Thus it
is interesting to note that the experimental procedure for
determining the a, 2 and P, 2 eigenvalues outlined above
in conjunction with Eqs. (2) and (3) yields y and hence
the dependence of ~ on a parameter via measurements
performed at a single value of the parameter. Further-
more, since no parameter is varied in this determination,
the exponent is typically independent of which parame-
ter is varied.

In Secs. II C —II F we present examples illustrating the
utility of Eqs. (2) and (3). Example 1 illustrates a hetero-
clinic crisis where Eq. (2) applies. Examples 2 and 3 il-
lustrate homoclinic crises [Eq. (3)].

C. Example 1: The Ikeda map

The Ikeda map is given by

z„+,——2 +Bz„exp[ilr ip /(1+
I z„—

I
)],

where z=x+iy is a complex number; x =Re(z),y
=Im(z). This map models the behavior of a laser sys-
tem (cf. Fig. 4 and figure caption). For our purposes, we
regard (6) as a real two-dimensional map in the variables
(x„,y„). We investigate (6) for A =0.85, B =0.9,
a=0.4, and vary p in a range about the crisis value,
p, =7.26884894. . . . Figure 5 shows y„versus n for
several values of the parameter p (successive y„are
joined by straight lines). In Fig. 5(a) p is less than p„
while Figs. 5(b) —5(d) show results for successively larger
p values past p, . Intermittent bursting is evident past p„
and the time between bursts is seen to decrease with in-
creasing p —p, . Figure 6(a) shows the chaotic attractor
for a case with p ~p„while Fig. 6(b) shows that the at-
tractor has greatly widened for p &p, . Note that the ad-
ditional regions visited in Fig. 6(b) [as compared to Fig.
6(a)] are sparce in orbit points; this rellects the relatively
small fraction of time spent by the orbit in executing
bursts. Figure 6(a) also shows the locations of two
period-5 orbits, B,~Bz~B3—+B4~B5~B,~ . - . ,
and A, ~Aq~A3~A4~A5~A)~ . Orbit B
is the unstable orbit whose stable manifold the attractor

INPUT

NONLINEAR 15

DIELECTRIC

OUTPUT

Mp

FIG. 4. The Ikeda map can be viewed as arising from a
string of light pulses of amplitude 3 entering at the partially
transmitting mirror M&. The time interval between the pulses
is adjusted to the round-trip travel time in the system. Let

~
z„~ be the amplitude and angle (z„) be the phase of the nth

pulse just to the right of mirror M&. Then the terms in (6)
have the following meaning: (1—B) is the fraction of energy in
a pulse transmitted or absorbed in the four reflections from
M

&
Mp M3 and M4, ~ is the round-trip phase shift that

would be experienced by the pulse in the absence of the non-
linear medium; —p/(I+

~
z„~ ') is the phase shift due to the

presence of the nonlinear medium.

collides with as the crisis is initiated (Fig. 2). We deter-
rnined B by examining time series for p slightly greater
than p, (as discussed in Sec. II 8 and Fig. 3). We then
calculated the eigenvalues of the fifth iterate of the map
at Bi (the same eigenvalues apply at B2 to B,). Using
these in the formula for homoclinic crises, Eq. (3), we
obtained a value for the exponent which was in clear
disagreement with our data for r versus (p —p, ). Hence
we are led to consider the possibility of a heterochnic
crisis. We thus searched for an orbit A on the attractor
whose unstable manifold can become tangent to the
stable manifold of B at p =p, . Such an orbit is expected
to lie on the outer envelope of the attractor. To find A
we utilized the interactive capabilities of a personal com-
puter with successive (x,y) orbit points plotted on the
screen. ' Starting with an initial condition on the outer
edge of the attractor, we iterated the map five times and
observed the location of the fifth iterate in relation to the
starting point. If there exists a fixed point for the fifth
iterate of the map in that neighborhood, the starting
point and its fifth iterate should lie roughly along the
same branch of the unstable manifold of this orbit.
Thus, by moving the starting point away from its fifth
iterate and along the outer edge of the attractor, we
were able to find one of the components of the unstable
periodic orbit A. Given approximate positions for A
and B, Newton's method provides more precise values.
Having determined 3 we then used Eq. (2) to obtain y.
The results from the numerical experiments shown in
Fig. 7 (dots) are in excellent agreement with the theoreti-
cal prediction (straight line). The calculations of the
average lifetimes (the dots on the figure) from the data of
the numerical experiments were done as follows. We
know that, at the beginning of a burst, the orbit leaves
the vicinity of the p &p, attractor by shooting out along
the unstable manifold of B. Say we look at the orbit
near B2 at the beginning of a burst. We see that every
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fifth orbit point approaches Bz moving upward (along
the stable manifold of B) and then shoots out toward the
right. Thus our numerical criterion for the initiation of
a burst is that an orbit point falls in some suitably
chosen region to the right of Bz [such a region is the
dashed rectangle shown in Fig. 6(a)]. By this means we
can automate the accurate computer determination of ~
for an arbitrarily long orbit.

D. Example 2: The forced damped pendulum

We consider the forced damped pendulum equation,

dP
dt

(a) p = 2.6465 + pc

d+ v +0 sing =p cos(cot ),dt
(7)

0

for parameter values A=co=1.0, v=0. 22, and p in the
vicinity of the crisis value, p, =2.6465274 . (cf. also
Ref. 4 for discussion of this case). In addition to
describing pendula, Eq. (7) also models the dynamics of
Josephson-junction circuits and of sliding charge-density
waves in solids. For p slightly less than p, there are two
attractors: one with dgidt &0 on average and one with
dgldt &0 on average. Given the existence of the clock-
wise rotating (dgldt &0) attractor, the existence of a
counterclockwise-rotating (dg ldt & 0) attractor immedi-
ately follows from the symmetry of Eq. (7). [Equation
(7) is invariant under P~ —P, cot ~cot+sr. ] Figures 8(a)
and 8(b) show plots of these two attractors in the surface
of section t =2nm (n is an integer) for p =2.6465 &p, .
[The previously mentioned symmetry is not evident in
Figs. 8(a) and 8(b). To see the symmetry one should ex-
amine one attractor at times 2n~ and the other at time
2(n + —,

' )n. ] Note that each of these attractors consists of
two disjoint pieces. At p =p, the two attractors simul-
taneously touch the stable manifolds of two unstable
period-6 orbits. Following this symmetry-restoring
crisis, the two chaotic attractors merge to form one sin-
gle larger attractor, as illustrated in Fig. 8(c) for
p=2. 6476&p, . The location of three elements of the
period-6 orbit that mediate the crisis of the Fig. 8(a) at-
tractor are shown in relation to one of the two pieces of
this attractor in Fig. 8(d) (crosses denote the period-6 or-
bit components).

Figures 9 show time series of dpldt versus t for
p =2.7&p, [Fig. 9(b) is a portion of the Fig. 9(a) orbit
on a larger scale]. The intermittent switching between
average clockwise and counterclockwise rotations is
clearly evident. Figure 10 shows a comparison of the
prediction of Eq. (3) (homoclinic case) with the data for
~ from numerical experiments. Good agreement is ob-
tained. Here ~ for each value of p was computed from
the surface of section time series using the technique de-
scribed at the end of Sec. III C. To compute the eigen-
values /3& and I3z for insertion in Eq. (3) we used the tech-
nique illustrated in Fig. 3.

(b)

d$ l-
dt

d$
dT

(d)
1.5

d (f&

dt

p = 2.6465 & p

p = 2.6476 & pc

0 7T

E. Example 3: Forced double-well dufting equation

We consider the motion of a point particle in a poten-
tial well V(x) subjected to friction and an external
sinusoidal force. This situation is described by the equa-
tion

0.9-2.5 —1.5 -0.5

FICz. 8. Surface of section plots for the forced damped pen-
dulum, Eq. (7).
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FIG. 9. Time series for the forced damped pendulum for
p =2.7)pc

Examination of this case shows that at p =p, the two
p &p, attractors simultaneously experience a tangency
with the stable manifolds of two period-3 saddle orbits.
Application of Eq. (3) then yields y =0.703, which, as in
our previous examples, is in very good agreement with
the numerical experiments.

Finally, we note that the intermittent switching in this
example and in that of Sec. IID leads to distinctive
characteristic features in frequency power spectra of the
time series (cf. Refs. 4 and 8). This aspect will be dis-
cussed in the next example.

F. Example 4: Pairwise merging of chaotic bands
in period-doubling cascades

d x/dt +vdx/dt+BV/Bx =p sin(cot) . (8)

We take V=ax /4 —px /2, v=1, &=&00, p=&0,
co=3.5, and examine Eq. (8) for p in a range about its
crisis value p, =0.849. The potential well V(x) has two
minima at x=+(p/a)'~ . Just below p, there are two
symmetrically disposed chaotic attractors, one confined
to the well in x & 0 and one confined to the well in x ~ 0.
Just past p =p, there is one chaotic attractor subsuming
these two p &p, attractors. The orbits for the case
p ~p, correspondingly represent intermittent switching
between the x ~0 and x &0 wells. Figures 11 and 12
taken from Ref. 8 by Ishii et al. display this behavior.

First consider the quadratic map

2&n+i=p &n . (9)

As shown in Fig. 13, past the point of accumulation of
period-doubling bifurcations there is a successive merg-
ing of chaotic bands. Thus, for p slightly less than p in
the figure, there are 2 chaotic bands, while for p slight-
ly greater than p there are 2 ' bands. This transition
is accomplished by the pairwise merging of bands at un-
stable orbits of period 2 ' [the period 2 (m =2) and
period 1 (m = 1) unstable orbits are shown in the figure
as the dashed and dot-dashed lines].

If we take a point in one of the 2 chaotic bands for p
slightly less than p, the orbit point will always return
to that band after 2 iterates. Thus that band may be

i.O

X

oglO T

-05 rr, i

4/x

I

-7
I

—6
I I

—5 —4
loglo (P-P )

FIG. 10. Data and theoretical prediction for ~ vs (p —p, )

for the forced damped pendulum.

-iO -)0

FIG. 12. Typical phase-space portraits of (8) for (a)
p=0.8492&p, and (b) p=0. 865~p, . For p=0. 8492, there is
another chaotic attractor in x &0 statistically the same as in
(a), which is realized for different initial conditions.
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mately Lorentzian shape. The width of these Lorentzian
components increases from zero as p is raised from p
As (p —p ) increases further the broadened peaks over-
lap and lose their individual identity. This is illustrated
in Figs. 14 for m =2 (this figure is taken from Ref. 11).

As shown in Refs. 11 and 12, the width of these
Lorentzians scales as Ato- I/r, or, from Eq. (1),

(For large m, Brown et al. " show that b cu/co

=g[(p —p )/(p, —p )]', where g is a universal
number, f=42. )—

How is the y= —,
' result for band mergings modified

when we consider a two-dimensional map rather than a
one-dimensional map? Figures 15 shows the attractor
for the Henon map,

FIG. 13. Bifurcation diagram for the map x„+,——p —x„' in

the range 1.35&p &1.56. Within this range of p values there

is an infinity of band mergings. The mergings undergo an in-

verse cascade and accumulate at p„=1.4011. . . . We have

labeled the first three consecutive band mergings by, respec-

tively, p &, p2, and p3. The dashed-dotted lines indicate an un-

stable period-1 orbit, while the dashed lines indicate an unsta-

ble period-2 orbit.

regarded as an attractor of the 2 -times-iterated map.
Similarly, the band with which it merges at p =p may
also be regarded as an attractor of the 2 -times-iterated
map. Thus at p =p we have what may be thought of
as a simultaneous crisis of these two attractors in which
they collide with the unstable period-2 ' orbit between
these bands. Corresponding to this, for p slightly greater
than p, one sees that the orbit generated by the 2
times-iterated map displays an occasional intermittent
switching between long orbit stretches where x stays on
one side (left or right) of the unstable orbit. Due to the
quadratic maximum in Eq. (9), the average time between
these intermittent switches scales as Eq. (1) with y= —,'.
This situation also has important implications for the
discrete-time Fourier transform of such an orbit. "' As
already mentioned, if p +& &p &p and we take a point
in one of these 2 bands and iterate the map 2 times,
the point will come back to that band. However, if we
examine the orbit every 2 th successive iterate, we see a
chaotic-looking trajectory within the band. A discrete-
time Fourier transform of the orbit reAects this situa-
tion; it consists of 5-function peaks at frequencies
co=neo [with co =—2n(2™)and n =1,2, . . . , 2 ] plus
a continuum spectrum. (Recall that for the discrete-time
Fourier transform, co lies between 0 and 2n. ) The 5
functions correspond to the fact that we know with ab-
solute certainty that an orbit in a given band will return
precisely to that band 2 iterates later, while the broad-
band continuum component of the spectrum reAects the
chaotic motion within the bands. As p increases from
below p to above p, the number of bands halves.
Correspondingly, the number of 6 functions must also
halve. This occurs by broadening each of the com-
ponents at co,3', . . . , (2 —1)co into an approxi-

~n+ &
=p ~n —Jyn ~

2 (loa)

y„+,——x„, (lob)

P, =1.718 .
pm —1

Furthermore, noting that p,pz ——J,we have

+ 9
ln( 1/J)

where the universal number r) is q=l P, n=0. 541, and J
is the Jacobian of the map (assumed constant). Note
that the one-dimensional result (y= —,') is recovered in

the limit J~O.

III. ANALYSIS FOR TWO-DIMENSIONAL MAPS

In this section we derive Eqs. (2) and (3), which give
the critical exponent y in terms of eigenvalues of unsta-
ble orbits.

for J =0.3 and p slightly below [Fig. 15(a)], at [Fig.
15(b)], and slightly above [Fig. 15(c)]p =p, . Also shown
in Fig. 15 is part of the stable manifold (dashed lines) of
the unstable fixed point with the two attractor pieces on
either side in Fig. 15(a) [the fixed point is the large dot
in Fig. 15(a)]. At p =p, [Fig. 15(b)] the attractor pieces
becomes tangent to the stable manifold of the unstable
period-1 fixed point orbit. We have also examined the
unstable manifold of the period-1 orbit, and we find that
it constitutes the outer edge of the attractor, as in Fig.
2(b). Thus the "crisis" (for the 2-times-iterated map) is
of the homoclinic type, and Eq. (3) determines y. As we
look at higher and higher order band mergings, we ob-
tain a universal correction to the one-dimensional result.
In particular, we rewrite Eq. (3) for the band merging
near p=p as y=y =( —,')+( —,')ln/3, /ln(p, p2) '. For
m greater than 2 or 3 we expect that p& is close to its
value for the one-dimensional map. In fact, as m ~ ~,
P& rapidly approaches a universal value for one-
dimensional maps with a quadratic maximum,
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FIG. 15. Chaotic attractor of the Henon map for (a)

p =2.00&p„(b) p =2.02=p„and (c) p =2.10&p, .

0 025 0.50 0.75 I.OO A. Derivation of Eq. (2)
4)/2TT

FICr. 14. (a) Smoothed Fourier transform of an orbit x„ for

p=p2 ——1.430. . . . Notice the 5 function peaks at co/2~= 4,
and 4. (b) p has been increased to (p —p & ) /(p &

—p 2 )

=0.0080. . . . Two of the peaks have broadened to a finite

width, while the peak at
2

is still a 5 function. (c) p has in-

creased to (p —p, )/(p, —p, ) =0.078. . .

For the heteroclinic crisis, as p is increased past p„
the unstable manifold of A crosses the stable manifold of
8 (cf. Fig. &6). Before the crisis the attractor was
confined to the region to the right of the upper stable
manifold segment of 8. After the crisis an orbit initially
in the region in which the chaotic attractor was confined
for p &p, can eventually land in the cross-hatched re-
gion ab of Fig. 16. Such an orbit will then be attracted
along the stable manifold of B and then rapidly leave the
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With the assumption that p(r) —rr, Eq. (2) then fol-
lows.

B. Derivation of Eq. (3)

Consider the situation at p =p, represented schemati-

cally in Fig. 17. We denote the measure of the attractor
in the shaded region defined by the unstable manifoM

segment aoc and the vertical line abc by p(e), where we

take the vertical line abc to be a distance e from the

stable manifold of B. We assume that p(e)-er, for

small e, and, as in Sec. IIIA, we identify the exponent
for p(e) with that governing the scaling of the charac-
teristic time r(r —

~ p —p, ~

r). The basis for this as-

sumption is that, for r =p —p, positive and small, we ex-

region to which the chaotic attractor was confined for
p &p„moving to the left along the outward (left-going)
branch of the unstable manifold of 8. For p near p„ the
dimensions of region ab are of the order r and r'
where r =p —p, (cf. Fig. 16). We now iterate the region
ab backwards in time for n steps. For large-enough n,
except for the first few backwards iterates, the change in
the region ab is governed by the linearization of the map
about A. Thus the preiterated region a'b' has dimen-
sions of the order of r/uz and r' /a&, as shown in Fig.
16. Since after falling in region a'b' the orbit soon (i.e. ,
n steps after) falls in region ab, we estimate r as the
average time it takes an orbit to land in region a'b'.
Now consider the probability measure of the attractor at
p =p, ~ ~ ' is then estimated as the probability that an
orbit on the p =p, attractor falls on a given iterate in the
region a 'b ', and we denote this probability by p( r ).
Now reduce r by the factor az(razr) and consider the
resulting region ab. After we iterate backwards n + 1

steps (instead of n), the long dimension of the preiterated
region is again r /az but the width is changed to
(azr )' /a", +'. Assuming that, for our purposes, the at-
tractor measure can be treated as if it were smooth in
the direction of the unstable manifold of 3, we have

(o'b') =(o"e"),
(c'0'a') =(f"o"d")(p, /+pz),

(12)

(13)

where we have used a superscribed bar to denote the
length of a line segment.

We now wish to obtain an estimate of the ratio of the
measure of the attractor contained in the region
d"o"f"e"d" to the measure of the attractor contained
in the region a 'o 'c 'b 'a '. To do this, imagine iterating

pect the unstable manifold of 8 shown to poke over to
the other side of the stable manifold by a distance of or-
der r (as in Fig. 16). Thus taking e-r we have
r p(E).

Also shown in Fig. 17 is a second vertical line segment
def which has been chosen a distance epz from the stable
manifold of B. The measure of the attractor in the re-
gion defod is P(ePz). Our goal in what follows will be to
estimate the ratio p(e pz) p/(E) By d. oing this we shall
be able to determine the exponent y.

Imagine that we iterate the cross-hatched region back-
wards in time many iterates so that the points
(a, b, c,d, e,f, o) map to (a', b', c', d', e', f', 0') which are
close to 8 (for e small). Now iterate the region
d'e'f'0'd' backward one further iterate to d "e"f"o"d".
Since the primed letters are close to 8, this one further
backward iterate is governed by the linearized map at 8
(i.e., by the eigenvalues P& and Pz evaluated at B). Thus
the distance from 0' to e' is stretched by pz

' to 0 "e",
while the segment f'o'd' is compressed by P&

' to be-
come the shorter segment f"0"d". Note, however,
that, since the original distance from o to e (namely, epz)
was chosen to be shorter by precisely the factor Pz than
the distance from o to b (namely, e), we now have that
the distance from e" to o" is the same as that from b' to
o'. Also, since the tangency of the stable and unstable
manifolds at o is quadratic, we have that the curve
segment fod is shorter than the curve segment coa
by QPz. Since e is small, this also implies that the seg-
ment f'o'd' is shorter than c'o'a' by Qpz. Putting
these facts together we summarize the relevant informa-
tion as follows:
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the cross-hatched region at the tangency 0 forward many
iterates in time so that 0 maps to the point o+ in Fig.
17. The cross-hatched region has now been greatly
stretched out along the direction of the unstable mani-
fold of 8. Since d p(e) Id e- er ', we conclude that the
amount of attractor measure per unit horizontal length
contained in the cross-hatched region emanating from
o+ is larger in d "o"f"e"d" than in a'o'c'b'a' by the
factor p', r. The same result applies for other iterates of
the cross-hatched region. Thus using Eq. (13) we obtain

(measure in d "o"f"e"d")
(measure in a'o'c'b'a')

P&
(14)

Since the region d"o "f"e"d" maps to dofed, the
measure of the attractor inside d"o"f"e"d" is just
p(ep2). Similarly, the measure of the attractor inside
a'o'c'b'a' is p(e). Thus, since p(e) —er, we also have

B

(measure in d "o"f"e"d")
(measure in a'o'c'b'a')

Combining Eqs. (14) and (15) we have

pl"={p,p, )',
which yields the desired result, Eq. {3)for y .

(15) FIG. 18. Schematic for the derivation of Eq. (16).

(D +1)I2)y ) (D —1)/2 .

IV. OTHER SITUATIONS

A. Higher-dimensional cases

The formulas Eqs. (2) and (3) apply only to situations
described by two-dimensional maps. In higher-
dimensional situations there is probably a much greater
variety of ways in which crises can occur. In order to
obtain some insight into the higher-dimensional situa-
tion, in this section we shall consider a particular situa-
tion and derive an expression for the exponent y. The
particular situation we consider leads to a generalization
of Eq. (2). In particular, we consider a smooth D
dimensional map, and we assume that there is an attrac-
tor containing an unstable periodic orbit 3 which has
D —1 unstable directions with eigen values
e&,a2, . . . , aD, and one stable direction with eigenval-
ue aD(

~
a;

~
) 1 for i &D and

~
aD

~
&1). We assume

that the outer edge of the attractor takes the form of a
smooth D —1 dimensional surface through 3, and that
the crisis occurs when this surface pokes through the
basin boundary as r =p —p, increases through zero.
The situation is illustrated in Fig. 18 for the case of a
three-dimensional map (D =3). The downward icicle-
shaped object near A is an nth preiterate of the shaded
volume poking through the basin boundary. (Note the
similarity with Fig. 16.) Proceeding as in Sec. IIIA we
obtain the following formula for y:

y =(D —1)/2+(ln
~
a&az . aD i )I (

ln
~
aD

(16)

In particular, for strictly dissipative systems {magnitude
of the Jacobian determinant &1 everywhere) we note
that

We believe that this may indicate a general tendency for
y to be larger when higher-dimensional attractors suffer
crises. As discussed in Sec. I, larger values of y corre-
spond to long chaotic transients which tend to persist
over larger parameter ranges. Thus we believe that
chaotic transients may be a pervasive feature when
higher-dimensional dynamical behavior is involved.
Indeed this is observed to be so in experiments. '

B. The eHect of Axed points in three-dimensional flows

Poincare surfaces of section derived from systems of
three coupled autonomous first-order ordinary
differential equations generally yield crises described by
Eqs. (2) and (3), if the equations are sufficientl smooth
and the time intervals between successive piercings of
the surface of section have a finite upper bound. Equa-
tions (2) and (3) may not apply, however, in many cases
for which there is an unstable time-independent equilib-
num solution 0 of the equations. Assume that the orbit
through some point Po in the surface of section Ao (cf.
Fig. 19) goes exactly to 0. Thus, for Po, the return time
to the Poincare surface is infinite, and, for points in the
surface of section close to Po, the return time can be ar-
bitrarily large. A prominent example where this occurs
is the Lorenz system. In particular, in a certain parame-
ter range there are three attractors: one is a chaotic at-
tractor, while the other two are fixed point attractors
(which are symmetrically placed in accord with the un-
derlying symmetry of the Lorenz system). As the pa-
rameter is changed, the chaotic attractor collides with
the basic boundary of the fixed-point attractors and re-
sults in a chaotic transient. Figure 19 schematically
shows the situation for the case where the parameter
value p is close to the crisis value p, and there is a
chaotic transient. In Fig. 19 the two fixed-point attrae-
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y=alf3, . (18)

This result for the exponent y was stated without deriva-
tion by Yorke and Yorke, ' who also carry out numeri-
cal experiments on the Lorenz equations which are con-
sistent with (18). We reiterate that Eqs. (2) and (3) do
not apply here because of the fixed equilibrium point in
the flow.
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FIG. 19. Schematic for the situation for the Lorenz system
for p slightly beyond p, .

dx Idt =ax, dy Idt = —P&y, dz Idt = —P2z, (17)

with a, P& &~0. Because points passing near 0 spend a
long time there, the equation dzldt = —P2z has a long
time to act, and the z coordinate thus becomes very
small. Now say r =p —p, is increased slightly from zero
so that the chaotic attractor is destroyed. The unstable
manifold of 0 will now intersect the stable manifolds of
H, and H2. Thus, as shown in the figure, a region of
width 5 from the knife edge is "skimmed off" by the
fixed-point attractors. Generically 5 will vary linearly
with p —p„

tors are encircled by unstable limit cycles H, and Hz.
The basins of attraction for these fixed points before the
crisis (i.e., when the chaotic attractor exists) are the
stable manifolds of 0, and Hz (not drawn), which are
tubularlike regions. At p=p, the "edge of the chaotic
attractor" touches these tubular regions. The edge of
the attractor is defined by the unstable manifold of the
fixed point 0 in the figure. Near this edge the attractor
is very thin and knifelike; that is, the edge is very sharp.
In order to see that this is so, consider an orbit passing
through the plane Ao close to the vertical-going stable
manifold of 0. Near 0 the Aow is approximated by

APPENDIX: EQUAI. ITY OF THE PERIODS
OF THE PERIODIC ORBITS, A AND B,

IN FIG. 2(a)

Figure 20 shows the orbits 3 and B at p =p, . We
limit consideration here to the case where the closure of
the stable manifold of B is also the boundary of the basin
of attraction for the attractor for p &p, . In addition, we
assume that the basin boundary and the basin itself are
connected sets (thus the basin has no holes). A tangency
of the stable manifold of B with the unstable manifold of
3 is labeled 0 in Fig. 20. We assume that the map is in-
vertible and orientation preserving (i.e., its Jacobian is
positive). Successive inverse images of 0 are labeled,
—1, —2, —3, . . . , —n, . . . . These images limit on
as n~oo. Since these image points are on the basin
boundary and since any boundary is a closed set, the
periodic orbit A is thus on the boundary (as well as be-
ing on the attractor).

We now wish to show that any two accessible periodic
orbits on the basin boundary must have the same period.
Here by accessible we mean that one can construct a
finite-length curve from a point in the interior of the
basin to an accessible point without the curve ever cross-
ing the basin boundary. ' The elements of the periodic

In addition, if we consider the plane B& in Fig. 19, the
width of the intersection with B

&
of the skimmed-off re-

gion will vary linearly with 5,5'-5. Taking the planes
B& and Ao to be close to 0, the map from B, to 3 is
governed by the linear equations, Eqs. (17). Consequent-
ly we have

a/P) a /pl'- ls —s I

Assuming that the probability of an orbit point crossing
A o falls in the strip 5" is proportional to 5", we have
that ~ '-5" or

LL
LLL,
LLL

LLL

with the exponent y given by FIG. 20. The tangency points 0, —1, —2, . . . , limit on A.
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orbits A and B are clearly accessible. Denote the ele-
ments of 3 by a;(i =1,2, . . . ;a, =a +, ) and the ele-
ments of 8 by b;(f =1,2, . . . ;bt b—„—+,), where q and r
are the periods of A and B. Let Z be an interior point
of the basin and construct curves in the basin which do
not cross each other and connect Z to the points a, and
b; (cf. Fig. 21). By means of these curves the points a,
and b; can be rotationally ordered. For example, for the
case in the figure, using a clockwise reference about Z,
we have the ordering. . .b„,a &, b &, a z, . . . . Now apply
the map to the points Z, a,- and b, and to the curves con-
nected with Z. Under the map Z~Z', where Z' is in
the interior of the basin, and the original curves from Z
map to new curves connecting Z' to the a, and b, . Since
the map is invertible, the new curves do not cross each
other. Since the map is presumed to have positive Jaco-
bian, it preserves orientation. Thus the rotational order-
ing of points on the boundary is invariant under applica-
tion of the map. Now consider two elements (consecu-
tive in terms of the clockwise ordering) of 3 denoted a
and a +&. Say that in the rotational ordering a and
a + &

have p elements of 8 between them. That is, the
ordering is a,b, b +, , . . . , b +,, a +t. (We choose
j so that there is at least one element of 8 between a,
and a +&, i.e. , p&0. ) Now apply the map q times to
these points. Since q is the period of 3, a and a +, are
mapped back to each other. Since, however, ordering is
preserved, each of the b, b +„.~ . , b + must also be
mapped back to itself. Hence the periods q and r must
be equal. [It follows that between each pair of consecu-

FIG. 21. Schematic of basin and accessible periodic points
on the boundary. The region outside the basin is shown cross
hatched.

tive elements of 3 there must be exactly one element of
B (i.e., p is one). ]

While the above arguments have been for the case
where the closure of the stable manifold of B is the basin
boundary, we believe that these arguments can be ex-
tended to the case where the stable manifold of B lies in
the basin of the attractor (an "interior crisis, " cf. Refs.
1 and 2). Finally, for the negative Jacobian case, con-
sideration of the second iterate of the map (which has
positive Jacobian) shows that either q = r, or, if not, then
q or r is one and the other is two.
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