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Velocity selection at large undercooling in a two-dimensional
nonlocal model of solidification
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In this paper we consider the two-dimensional symmetric model of dendritic solidification with
capillary anisotropy in the limit of large undercooling. We show that capillary anisotropy is
necessary to obtain steady-state solutions, and that it allows the system to select a particular value
of the growth velocity. The results obtained are in complete agreement with what has been de-
rived in the corresponding limit in the case of the boudary-layer model.

I. INTRODUCTION

Much progress has been made in very recent years to-
wards a satisfactory understanding of the physical mech-
anisms which control the formation of needle-crystal
dendrites of a solid from its undercooled melt. In partic-
ular, it has become clear' that surface tension can play
the role of a singular perturbation and that, mathemati-
cally, this leads to the existence of a nontrivial solvabili-
ty condition which must be satisfied for a needle-crystal
solution growing at constant velocity V to exist. It is the
analysis of such a solvability condition which gives a
way to select, out of a continuous family of steady-state
solutions, the one presumably corresponding to the actu-
ally observed needlelike dendrites. This analysis, explic-
itly carried out analytically on the geometrical model
and the boundary-layer model (BLM) in the limits of
small and large undercooling, has suggested that crys-
talline anisotropy plays an essential role in the selection
mechanism. This has been confirmed by the study ' of
the fully nonlocal model in the limit of small Peclet
number p and also, in a more indirect way, in the case
p —+ oo. 1

In this paper we apply the method developed in Ref. 1

to study the symmetric version of the two-dimensional
nonlocal model of solidification with finite anisotropy,
in the limit of large undercooling. The existence of a

singular perturbation parameter (in our case e= 1 —5
where 6 is the dimensionless undercooling) and the re-
lated solvability condition have been exploited to show
how a nonzero anisotropy is required in order for
needle-crystal solutions to exist.

The analysis shows that the solvability mechanism is
operating in the limit of p ~ ~ in much the same way as
in the opposite limit of small undercooling, and therefore
confirms the mathematical scenario for velocity selection
that has been proposed in the past two years. The re-
sults obtained and the explicit form of the dependence of
the selected velocity on both e and a (the anisotropy
strength) agree completely with what has been derived in
the corresponding limit in the case of the BLM. This is
what one should expect because it is precisely in the lim-
it of large undercooling, when the range of the diffusion
field is much smaller than the typical length scale of the
solidification front, that the BLM is supposed to give an
accurate description of the growing interface.

II. THE SYMMETRIC MODEL IN THE LIMIT
OF LARGE UNDERCOOLING

The starting point is the integro-differential equation
for the solidification front g(x) in the two-dimensional
symmetric model:

do f f dx'exp — Ix' +[/(x'+x) —g(x) —t] I2~ o t 2t
(2.1)

Crystalline anisotropy enters (2.1) via do which is as-
sumed of the form do =do 3 (0) where ti=dg/dx
=tanI9. We will consider the case of fourfold symmetry
and, to be specific, we will take

A (0)=1—a cos48=1 —a+ 8o,g
(1+rl')'

(2.2)

where a represents the strength of the anisotropy.
In (2.1) b, =(TM —T„)c/L is the dimensionless under-

cooling, do=y T~c/L is the capillary length associated

with the surface tension y, p =pV/2D is the Peclet
number, V is the constant velocity of the moving inter-
face in the laboratory frame, and, finally, p is a length
scale associated with the curvature tc(x) at the tip of the
needle crystal (x =0) whose precise definition will be
given later. Equation (2.1) is valid in the frame moving
with velocity V, where the interface g(x ) is at rest;
lengths and time units are, respectively, p and p/V.

One of the goals of the analysis presented in this paper
is to determine the values of V for which such a steady

36 5353 1987 The American Physical Society



5354 ANGELO BARBIERI 36

solution actually exists. We will see shortly that, in the
limit p ~ oo (6~1), there exists a continuous family of
solutions, analogous to the Ivantsov parabolas' in the
case do~0. However, if one starts including corrections
in the small parameter a=1 —6, the family is completely
destroyed unless a & 0. In this case only a discrete set of
solutions survives, thus allowing us to select what is
probably the physical mode of growth.

The first step is to reduce (2.1), in the limit p ~ oo, to
a linear, inhomogeneous differential equation of infinite
order. We only sketch the derivation which is given in
detail in Ref. 1. The right-hand side of (2.1) can be eval-
uated in the limit p ~ oo by expanding the function

g(t, x')= —lx' +[/(x+x') —g(x) —t] l2t

about its minimum at t ~0+, x'=0:

exp[ —pg(t, x')]= exp — [x' +(71x' —t) ]2t

oo (n —1)

)&exp — (7)x' t) g—
,

x'"
t

n 2 n!

(n —1)
9 tn

2t
n =2 pg I

2

where

(1) (n —1)
71 71

n=3 p
(2.3)

Here 71("'=d"71/dx"=d" +'g/dx" +'.
Now we expand the second exponential on the right-

hand side and, following Ref. 1, retain all the terms
linear in 71'" ' and 71"'71'" " (n )2) because they will
turn out to give the dominant contribution to the equa-
tion after the linearization around the solution at p ~ ao

is performed. In this way we get

(1))2 aa (n —1)
~(x)= 1+ b2+ g, a„

p 2p n =2 p

Notice that, if we write
n

(2.5)

(2.4) becomes an equation for 71("(71) and that this quan-
tity is closely related to the curvature of the interface.

Equation (2.4) can be solved in the limit p ~ oo, for it
reduces to

(1) 2p~
1 —2vt (71)

(2.6)

where we have used the result a2 ———,'. For any fixed
value of V and hence of v, we have a solution at large p
provided that pe=const. This arbitrariness in choosing
the constant simply reflects the arbitrariness of the
length scale p that we are free to choose. Our choice
will be such that 2pe= I, i.e., p=D/Ve; in other words,
given a certain velocity V, p is closely related to the tip
radius of the unperturbed solution because, in these
units, p, (tip) = —[710"'(71=0)] '=1 —2v. Notice that the
solution (2.6) only makes sense in the case v(1 —a) & —,

'

which, however, is the only one of physical interest be-
cause, usually, v=doV/2D &&1. Apart from the use of
a different length scale, (2.6) precisely corresponds to the
modified-Ivantsov parabola which is a solution of the
BLM in the limit, g —+0.

Now we linearize (2.4) around the modified-Ivantsov
solution in this way departing from the analysis of Ref. 1

where linearization was performed around the zero sur-
face tension solution obtained by setting v=O in (2.6).
In this way we will be able to investigate the limit @~0,
v fixed, which will turn out to be physically relevant for,
as we shall see, the value of v (and hence of V) selected
by the crystalline anisotropy remains finite when e~O.
It is perhaps worth stressing that this limiting procedure
is quite different from the one used in Ref. 1 where, in-
stead, the case e fixed, v~O, was investigated.

We write 71(')=710"—h, use (2.5), and keep only terms
at most linear in h. The resulting equation for h(71)
reads

+ dz „z(z +71)"
( 2+1)n+1 (L() —2eL ) vf)h = —,

' e(71(~)")— (2.7)

n

b„(71)= 2"(n + 1) (z'+1)"+'
Z

2(n +2) —11+z'

where

L() ——g A„
n=0

d—2E
dn

n

n

(2.8)

If we recall that d0/p= A (71)v/p with v=d0V/2D,
)r(x)= —71'"/(1+71 ), and write 6, =1—e, then (2.3)
can be written as

d
L) ——g B„—2e

n=0 d Jl

(2.9)

(2.10)

( (1))2 oo (n —1)
pe+ vf (71)71("= —b2+ g a„

2p n=2 p
B„(71)=—

(1)
n (n +1) (1) n

'90
+ —710 a„+

(1) (n —1)

+ $ ) bn+
n=3 p

where f (71)= A (71 ) /( 1+71 )
~ .

(2.4) + ( —71()")"+'b„+2,

and we have used the result b2 ———', .

(2. 1 1)
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III. WKB APPROXIMATION IN THE LIMIT e~O

H =exp S(g, e) 1=exp —(SQ+eS(+ )

in this way we obtain the following expressions for So
and S', (in what follows the prime superscript will always
refer to differentiation with respec to g ):

LQ(SQ g)= X A„( —2SQ) =vf (g)
n=0

(3.1)

In order to solve (2.7) we now proceed in a way which
is the direct generalization of the WKB approximation
to solve a second-order diA'erential equation of the same
structure. The method used is the same as in Ref. 1.
First we consider the homogeneous equation and, in the
limit of small e, write the homogeneous solution H (g) in
the form

1 =v(1 —a),[I+(n~
l n I

)Wl(1 —0')'"
ae( I —q'))" & 0 . (3.7)

But SQ+(q) ——,
) g( 1+/+) as g~+ oo, and p+ ——p*;

hence the condition Re(1 —f )' &0 implies

1Re 1+P+
1

Re(1+1t)+)&0 .
1+14 I'

Therefore, H+(rj) =exp[(1/e) jQ"S+(g)dg] diverges ex-
ponentially as rI~+ oo. By using (3.6) we see that the
same is true if g~ —oo', we can also check that the pres-
ence of S&+ does not change this situation, for the dom-
inant contribution as

l
rI

l

~ oo is given by SQ+.
Now that we have two independent solutions of the

homogeneous equation we can obtain the particular solu-
tion of (2.6) which is regular at g~ —oo. The result is

, aL, S," a'L,
S& + 2L&:0

BS' 2 BS'

L)(SQ g)= g B ( —2SQ )"
n=0

By using (2.11) we explicitly get

(3.2)

(3.3)

H+ (g)
hp(r))=i f drjg(rI)F(q)

(X) H+ (g)

where p(g) = ,'e(rI(Q") +—o(e) and

H (g)
H (g)

(3.8)

X (rI) =X~+ (rI*)=—X+( —ri) . (3.6)

By using the last result we can see that both the solu-
tions behave in a physically unacceptable way as

l g l

~ oo along the real g axis. Indeed, if we write
X=rj+P(l+g )'~ in (3.4), we can check that, in the
limit

l g l

~ oo, g is a constant determined by

LQ(X, rI) = 1
(3.4)

R +(1+X')R '"
where R = 1 +2Xg X X: 2Sogo and R js
defined so that Re(R '

) & 0 when ReR & 0. The expres-
sion for L, is

L (
= —'gQ R (7IQ ) [LQ(X 71) ]3 ( ) ) 5/~ 2v ( ) ) 2 df

X dg

—Xv(q,(")' 'd~ BLo
(3.5)

dg gX2

Equation (3.4) could be transformed into a quartic equa-
tion for X; however, the requirement about the deter-
mination of R ' selects only two acceptable roots,
which correspond to the two independent solutions of
the homogeneous equation.

It is easy to check that, if X+ ( g ) is a solution,
X (rI)—:X+(g*) is also a solution corresponding to the
correct determination of R '~ . [Here we are analytically
extending X+(71) into the complex rl plane. ] Further-
more, an analysis of (3.4) in a neighborhood of g=0
shows that, if v(1 —a) & —,', these two solutions are indeed
distinct. In the same way, X (rI )—:—X+ ( —ri ) is also a
solution which must therefore be identified with either
X+ or X . The possibility X+(ri)= —X+( —g), which
implies X+(0)=0, is ruled out by an explicit check of
(3.4) at g=0, and hence we conclude that

X+X
F(rI) =-

@ X —X+
So+So

So+ —So
(3.9)

The solvability condition is readily obtained by imposing
that hp(rI ) be well behaved at ri~+ oo:

I(v, e, )a= f dg ~ ~
H+(g)

+ -
d p(rI)F(rI)
dn' =0.

H (g)
(3.10)

The first equality and the fact that I(v, e, a) is real fol-
low from the symmetry properties of F(rl), SQ+, and
S,+ which are consequences of (3.1)—(3.6) and the
definition S(r))= J QS'(71)drj:

F(ri) =F ( —g),
F'(ri) =F (ri" ),
SQ, )+(1)=SQ, )+ ( —rI)

S() )+(vl)=SQ )+( —xi*) .

(3.1 1)

The analogous properties of P are II(q))=)P( —rI) and
P*(rI) =P(rI*); the possible interpretations of I(v, e, a)
are discussed in Ref. 1.

1
X exp —S,+ ( g ) ——SQ+ ( rI )

by using a saddle-point approximation. Therefore, we

IV. SADDLE-POINT EVALUATION OF I
Because we are interested in the limit a~0, we can

evaluate

I( e, av)= f dye(rj)F(g)
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X+(z)=—V z+o(z),
9$

(4. 1)

"S v df
So+ ( i) ) = f SD+ ( il )d ri +

0 9$9 rls

2

z +o(z ).

(4.2)

Notice that we find only one solution of (3.4) corre-
sponding to ri=il, and X =0 because X (rj, )&0; this
last result can be used to compute

1

3 dP(rI)F(i))= i vi—), — z
8 'dg +O(z') . (4.3)

Finally, by considering (3.2) and (3.5), we obtain a simi-
lar contribution from exp[ —S&(i))]. Indeed, S', + —I/z
and hence, in a neighborhood of g„

exp[ —S,(ri)]= ' +O(z ),C(v, a) p

Z
(4.4)

where C is a constant whose exact dependence on v and
a is not important for our purposes.

The final result for I ( e, v)inathe limit e~o is

need to find the stationary points of So+(ri) in the com-
plex il plane, i.e., the points where SIi+ (il ) vanishes.

If we look back at (3.4) we immediately see that X =0
implies vf (i))=—,'. As one could have guessed by the

analysis of the BLM, the saddle points are precisely the
points il, in the complex plane where rIIi"(i)) diverges.
Note that we only need the behavior of the relevant
functions in a neighborhood of these points.

It is worth noticing that S0=0 does not necessarily
imply X =0 if t)D' (i))~ oo in the limit ilail, . As we
shall see explicitly by expanding X in a neighborhood of
il =rj„we are simply defining SIi+ (il ) to be the solution
of (3.4) such that lim„„ i)~ '(rI)S~+ (i)) =0 for a partic-

S

ular g, . Once this g, has been chosen, then

lim„„ i)D"(il)SIi (ri)&0 and the behavior of So+ at
S

the other saddle points of interest will be determined by
(3.6).

At this point it should be clear that the mechanism
for selecting the value v' when e &0 is the same one as
in the e~O limit of the BLM. Indeed, the functions
which determine the position of the saddle points are the
same in the two cases.

It is easy to obtain the leading behavior of S0+ in a
neighborhood of g„ if z =g —g„we get

3
P = ~'9$

8 'dg C(v, a),
2

1I(e, v, a=O) =g(v)e-'/'exp So+—(~—„v,a=o) .

(4.6)

It is easy to show, because iS'o+ (il) is real on the imagi-
nary axis and its only possible zeros are at +g„ that
S~+ (rI, ) &0. The explicit form of g (v) is not particular-
ly important except it shows that g (v)&0 if 0 & v & —,'; as
a consequence, I(e, v, a=o)&0 so that the continuous
family of modified-Ivantsov solutions is completely des-
troyed by the presence of the singular perturbation pa-
rameter e.

Before going to the a & 0 case, it is worth mentioning
how the result derived here can be reconciled with the
apparently different result obtained in Ref. 1. The point
is that g, moves towards i as v~O, and it can be
checked that X(ri) has a branch point at r)=i In a.
neighborhood of this point

S()(il)—So(i) cc —(ii —i) ~ as v~o
V'v

and therefore, in this limit, the integral (3.9) is actually
dominated by the behavior of S0+ close to g=i; by tak-
ing this into account the results of Ref. 1 can be
recovered.

If a & 0 the analysis of Ref. 8 can be applied. The sad-
dle points are determined by the equation

y(i), , v, a) = v df
3n . dn '.

I „ is the path of steepest descent across g„running
S

from g= —op to g=+ oo. The reason for the sum will
be clear in a second after discussing the position of the
saddle points in the n=O and cx &0 cases.

Notice the similarity with the BLM in the limit e~O
where the term y, (i), , v, a )z is exactly the same—
except for a numerical factor —as the one obtained
here. We are now in the position to discuss the two
cases, a=0 and a & 0, in more detail.

In the case of zero anisotropy the saddle points are
determined by the equation 1 =2vf ( i), a =0)=2v( 1

+ri ) ~; this gives us, if v& —,', two purely imaginary,
complex-conjugate stationary points. If we take the path
of steepest descent to lie in the upper half plane, the
relevant ri, is il, =i [1—(2v) ]' so that we get

I(v, e, a)= —i

where

relevant g,

1
exp ——So+ ( ii, , v, a )

E

c(n, )
dz

2
exp — Qzz' E

(4.5)

8a(k —1)=1—a+, Rek & 0
2v X4

(4.7)

where A, =(1+ii )' . The condition on Rek. comes from
our being interested in the solutions of (3.7) on the
Riemann sheet defined by (1+rI )' & 0 for Rer). If
v(1 —a) & —,

' and 0&a & —,', , the only real solutions occur
when 0&A, & 1 and hence, as promised, both (2.6) and
(3.8) are well defined in the whole range —oo & i) & + oo.

Let us consider stationary points in the upper half-
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plane only; we see that, as v decreases from [2(1—a)]
toward zero, two distinct saddle points, originally on the
imaginary axis, merge together and acquire a real part
when v & v (a)&0. (v will be computed shortly. )

We can therefore distinguish two cases.
(a) v (a) &v&[2(1—a)] '. Here we have two purely

imaginary saddle points g, and g2 with —ig, & —ig2 & 1.
Again $0+(7), ) and $0+(r)z) are real and, by an argu-
ment similar to the one used to show that
So+ (g„a=0) & 0, So+ (r), )&So+ (r)p). Because
gz~7), (a=O) in the limit a~O, by continuity in a we
conclude that the only relevant point in the @~0 limit is

The situation is analogous to the +=0 case and
I(v, e, a)&0.

(b) 0&v&v (a). In this case the two distinct points

q, and g2 satisfy the relation g, = —g2 and

So~(g, )=SO+ ( r—)z )=So+ (r)2) . (4.8)

Hence the contribution from both the saddle points must
be taken into account. If g &

and g2 are separated
enough we can perform separated steepest-descent in-
tegrations at each point; the result will then be qualita-
tively very different from the case (a).

Because of (3.10)—(3.12) we see that I „and I „are
l 'I2

obtained one from the other by simple translation.
Furthermore,

p(q, )

I( ve, a) = i 7—exp ——So+(g, , v, a) dz exp ——y(r), )z

1
i ex—p ——So+(q&, v, a) dz exp ——y(q, )z +c.c.r z

1 1= —2e '~ r( va)e xp ——a(v, a) cos b( va) —+6( va) (4.9)

Since b (v, a)&0, we see explicitly that, in the limit
e~O, I(v, e,a) is a rapidly oscillating function of v and
therefore the solvability condition can indeed be
satisfied. The naturally selected value of v should then
be given by that v=v*(e, a) at which the first oscillation
occurs. (Smaller values are likely to correspond to un-
stable solutions. "

)

The algebraic analysis is the same as in the BLM and
we merely need to report the result; v (a) is obtained
by solving (4.7) in the case when the two saddle points
merge. The value of X at this point is

20a
3(1—a)

1/2

—1+ 1+ 21(1—a)
50m

so that

3A'.
v (a)=

32a(2 —k )

We can then write v*(a, e)=v (a) —6v, and find that 6v
is determined by the relation

—1 /2
2f

dA' k=k.
(4.10)

(1 —A, )[v (a)]
In the limit a « 1 we have finally

where we have written So+ ——a —Ib and

p(n»
dz exp —y q&, v, cx zr Z2

7I

=r( v, a)e xp[i8( va)] .

3/4
7 56o,v*(a, e) =—
8 3

1/5
2

1 —po a (4. 1 1)
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where po is a constant of order unity.
Let us summarize the results obtained in this paper.

We have considered the two-dimensional symmetric
model of solidification in the limit of large undercooling.
One of the motivations for this analysis is that although,
at present, the limit 6~ 1 does not seem to be within
reach of experiments (not to mention the problems in ob-
taining effectively two-dimensional dendrites), neverthe-
less it represents a physically meaningful limit in which
to check the validity of the solvability mechanism.
Furthermore, in this way we can compare the results ob-
tained from this fully nonlocal and, in certain cases, fair-
ly realistic model of solidification, with those derived in
the context of models of the boundary-layer type'
which, being completely local, are much more tractable
both analytically and numerically. The analysis present-
ed shows that the agreement with the original version of
the BLM (Ref. 4) is indeed very good.
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