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Fractal dynamics of electron wave packets in one-dimensional quasiperiodic systems
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The dynamics of an electron described by the one-dimensional tight-binding Hamiltonian with

quasiperiodic (Fibonacci) modulation is studied numerically. The width of an initially localized
wave packet is found to increase with time t in an overall power-law form -t (0&+ & 1). The ex-

ponent e continuously decreases with increasing strength of quasiperiodic modulation. Moreover,
prominent hierarchical oscillations are found to occur in the case of strong modulation. These re-

sults are explained well by a renormalization-group argument.

with the site (diagonal) energy E„and/or the nearest-
neighbor transfer (off-diagonal) energy u„„+&

being
discretely modulated according to the Fibonacci se-
quence. A Fibonacci modulation is written, for the off-
diagonal energy, as

T

&n n+i=
u, (m —o &n r+t9&m)

ub (m &no+e&m+1 —o), (2)

where m are arbitrary integers, 0 is a constant, and
cr—:(&5—1)/2. We focus on this off-diagonal model in
the present paper, since the results for the diagonal mod-
el turn out to be qualitatively similar. A more detailed
and comparative analysis of the two models will be pub-
lished elsewhere. '

In our numerical study, we first calculate all the eigen-
values and the eigenvectors for a given system by direct
diagonalization. Then a wave packet is assumed to be

Recently, numerous efforts have been devoted to un-
derstanding the electronic properties of quasiperiodic
systems, ' stimulated by the discovery of quasicrystals
and also by the fabrication of quasiperiodic superlat-
tices. A novel class of electronic states has been
theoretically shown to exist in such systems: the "criti-
cal" (or intermediate) states, which are neither extended
nor localized in the conventional sense. '

Still unknown is the implication of this new class of
states on the dynamical properties of electrons or ele-
mentary excitations in general. In this paper, we study
numerically the quantum-mechanical time evolution of
electron wave packets in one-dimensional quasiperiodic
(Fibonacci) systems where all eigenstates are known to
be critical. ' We will show that the wave-packet dy-
namics involves fractal behavior" in the time domain, or
fractal dynamics: anomalous power-law diffusion and
hierarchical oscillations.

We consider the one-dimensional tight-binding elec-
tron model defined by the Hamiltonian

H = g c.„a„a„+g u„„+&(a„a„+&+a„+&a„),

initially localized on a single site [g„(t=0)=5„„],and

its time evolution is calculated as a linear combination of
that of the eigenvectors. ' Finiteness of the system and
boundary conditions is not very important for the
present purpose, as long as we restrict our attention to
the time region where the wave fronts do not reach the
boundaries.

In the following we will show results for
~

ut, /u,
~

& l.
Although the present model is not symmetric with
respect to the suffixes a and b, qualitatively similar re-
sults are obtained for

~
ub!u,

~

&1. Let us take, for
definiteness, the Fibonacci chain with 8= —,

' in Eq. (2)
and set the initial position of a wave packet on the origin
no ——0, which is a center of inversion symmetry of the
lattice. This renders the wave packet symmetric with
respect to the origin at all times. Although this center is
rather a special point of the Fibonacci lattice, this choice
of the initial position does not lose the generality of the
results shown below because of a reason which we will
describe later.

The quantity we examine especially is the mean square
displacement of the wave packet, ((hx) ), as a function
of time t. Throughout the present paper we define
Ax =—n —no, and we measure time in units of 1/u, where
u is the averaged transfer energy u:—ou, +(1—o. )ut, .

Figure 1 shows the results of such calculations for vari-
ous values of ub/u, . Note the logarithmic scales of the
plot. Although the curves contain many oscillatory
components, especially for large values of ub/u, , their
overall behavior is described as a power law:

[((&x) )] -t (t &0) .

The exponent a is in the range of 0 & a & 1 and decreases
with increasing the ratio ublu, ( & 1). In Fig. 1 we no-
tice also that the oscillations occur in various different
time and length scales in a self-similar fashion.

Examples of actual shapes of calculated wave packets
during their time evolution are shown in Fig. 2. The
wave packet is rather continuously extended in the case
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FICr. 1. Log-log plot of the length [(hx) ]'~ vs time t for
wave packets in Fibonacci chains with ub/u, =1.2, 2, 4, 7, and
10. The initial position of the wave packets is chosen at a
center of symmetry of the Fibonacci chain. The unit length is
the atomic spacing, and the unit time is the inverse of the aver-
age transfer energy u.

of weak modulation
~

(u& /u, ) —1
~

&& 1 [Fig. 2(a)],
whereas it is rather fragmented, i.e., composed of many
separate peaks, in the case of strong modulation

~
u„/u, )) 1 [Fig. 2(b)].
In Fig. 3, we plot the exponent a of Eq. (3), obtained

from the results of the numerical experiments, as a func-
tion of the ratio ub fu, . The limit of vanishing modula-
tion (ub/u, =1) corresponds to a= l. This is because a
wave packet in a periodic crystal expands continuously
at a constant rate without scattering. (An initially local-
ized wave packet is composed of all the k states in the
Brillouin zone, with their group velocities spanning a
limited range. ) In increasing the ratio ub lu, , the ex-
ponent o. continuously decreases, passing through the
value a = —,', which corresponds to ordinary diffusion. In
other words, an electron on the Fibonacci chain moves
"faster" or "slower" than ordinary diffusion, depending
on whether ub /u, 54 or ~ 4.

Let us describe dynamical behavior of wave packets in
greater detail. For weak modulation, a wave packet
rather continuously expands, so that its width increases
smoothly, as we have seen in Fig. 1. In contrast, a wave
packet in the strong modulation case is composed of
separate peaks, as shown in Fig. 2(b) and, in the course
of time evolution, the positions of the peaks do not vary;
only their heights do. (It is found, however, that their
positions depend on the initial position of the wave
packet, implying that there is no a priori preferred posi-
tion for wave packets to stay in the system. ) The oscilla-
tions observed in Fig. 1 indicate that the wave-function
magnitude transfers back and forth between the peaks.
In fact, the peaks appear on spatial regions (clusters)
whose local geometries (bond configurations) are similar
to the initial region. Therefore, the oscillations are in-
terpreted as resonance oscillations between neighboring
clusters with similar local energy-level structures.

An important point is that there is a hierarchy of reso-
nance oscillations with different time scales, each of
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FIG. 2. Typical real-space shapes of wave-function magni-
tudes during their time evolutions shown in Fig. 1 for Fibonac-
ci chains with (a) ub/u, =1.2 and (b) ub/u, =7. The spatial
region shown here is only a portion of the whole system (2000
sites) used in the numerical experiments.

FIG. 3. Plot of the exponent a vs the ratio ub/u, for wave-
packet dynamics in Fibonacci chains. The circles are the re-
sults of the numerical experiments. The curves are the results
of the k-space and the real-space renormalization-group
theories.
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3 lnv
21n

~
ub lu,

(4)

which corresponds to some length scale (see Fig. 1).
This may be understood from the following property of
the Fibonacci sequence If one takes a cluster of
length l in the sequence, then one can find an exact copy
of this within a distance of the same order of I. There-
fore, the resonance oscillations can occur in principle in
every length scale.

This interpretation of the hierarchical oscillations is
further solidified by a renormalization-group (RG) ap-
proach, which in turn allows us to interpret the result of
Eq. (3). In the following we give a brief description of
the RG approach, a fuller discussion of which will be re-
ported elsewhere. ' Let us confine ourselves for the time
being to the case of strong modulation,

~
u„/u,

~

&&1,
where an approximate real-space RG scheme is con-
structed as follows. The original Fibonacci lattice is
decomposed into two sublattices: one which consists of
"atoms, " or single sites between two contiguous weak
bonds (u, ); the other which consists of "molecules, " or
double sites connected by a strong bond (ub). Then a
RG transformation is defined by elimination of either of
the two sublattices, which results in an effective Hamil-
tonian isomorphous to the original one with reduced
effective transfer energies.

The main idea in applying the RG scheme to our
dynamical problem is that the dynamical processes of an
electron are regarded as realization of the RG pro-
cedure. That is, the complementarity relationship be-
tween time and energy implies that electron motion in a
time scale t is governed by the effective Hamiltonian
with the energy scale t ', which corresponds to a cer-
tain stage of the RG procedure. Let us consider the
"atomic" RG procedure where one always eliminates
molecular sublattices. In this case, the renormalization
transformation involves energy scaling by the factor
(u, lub) and length scaling by the factor r, wherer:o'=(v'—5+1)/2. Then we obtain

showing the numerical results. (Actually we have tested
various initial positions in numerical experiments and
observed the tendency of approach to the fixed point. )

It should be noted that the index o, depends on the
fixed point. There are an infinite number of fixed points,
which are infinitely remote from one another, and at
each of which the index a can be defined. [One can ex-
amine the properties of such fixed points by choosing
diFerent values of 8 in Eq. (2).] In short, the index a
has a spectrum, at least in the case of strong modulation,
as a function of the global location of the initial position
in the infinite Fibonacci chain. We will return to this
point later.

Now let us turn to the case of weak modulation
~
(ub/u, ) —1

~
&&1, where a RG procedure in k space

may be constructed as follows. ' ' If a small quasi-
periodic modulation is treated as a perturbation to the
periodic lattice, its effect is to produce energy gaps in
the dispersion of the unperturbed band. Although the
gaps appear at an infinite number of points densely dis-
tributed in k space, one can take into account their
effects successively from the larger ones, renormalizing
the band structure each time. This k-space RG scheme
is applied to the wave-packet dynamics in a manner
similar to the real-space RG: The dynamics of a wave
packet at a time scale t is governed by the band-
structure renormalized up to the order of t ' in energy.

An initially localized wave packet is composed of all
the k states with various group velocities, so that the
rate of its expansion is determined by the mean square
group velocity (v ). In each of the RG steps, this
quantity is slightly reduced due to the Aattening of the
dispersion near the gaps introduced in the step. The
lowest-order perturbational calculation for the RG pro-
cedure shows' that the time scaling by the factor ~ cor-
responds approximately to the scaling of ( v ) by the
factor 1 —(2/m. )5 In', where 5=

~
(ub —u, )/u

~

. This
yields the relationship (v ) —t, which, combined
with ((b.x) ) = ( v )t, leads to the power law of Eq. (3)
with

which corresponds to the curve indicated as "real-space
RG" in Fig. 3. This should be compared with the nu-
merical results shown in the same figure, because the ini-
tial position used in these particular numerical experi-
ments corresponds to the site which belongs to the
"atomic" sublattice at every stage of the RG procedure.
Accordance between the numerical results and the real-
space RG theory is satisfactory for large values of
Qg /Qg.

The scaling factor for the "molecular" sites is some-
what different, so that a RG procedure for a general ini-
tial position is a combination of the two RG transforma-
tions. However, it can be shown that the center of in-
version symmetry (no ——0) is a stable fixed point of the
RG procedure. This implies that, even if one starts from
a site at a finite distance from the center, one will even-
tually be at the center after finite RG steps. Thus the
dynamical behavior of the wave packet in the limit
t ~ op is determined by the fixed point. This is the
reason why we have chosen the specific initial position in

a= 1 ——(5«1) .5
7T

As shown in Fig. 3, this k-space RG theory is in good
accordance with the numerical results in the region

i
(u„/u, ) —1

i
«1.

We have mentioned above that the dynamical index a
has a spectrum in the case of strong modulation. It
turns out that the spectrum of o. in this limit corre-
sponds exactly to that of the index aE of the energy
spectrum obtained by Kohmoto, Sutherland, and Tang.
(Note that the former is a spectrum with respect to spa-
tial position and the latter, with respect to energy. )

However, this correspondence does not hold in the case
of weak modulation. This is obvious from the fact that
in the case of vanishing modulation the dynamical index
a should be simply 1 (i.e., coherent motion), whereas the
spectrum index o,'z is 1 at the band center and —,

' at the
band edges. For small 6, the index a is approximately
given by Eq. (5) within the order of 5 and may have a
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spectrum with a small width of a higher order in 6. The
reason why the spectrum of our dynamical index a
shrinks in the weak modulation limit is that it originates
from the site dependence of Green's function, which be-
comes less significant for smaller modulations. The ex-
act dependence of the dynamical index a (and its spec-
trum) on the modulation strength in the whole region
and its relation to static indexes, such as aE, are open
questions at present.

Fractal dynamics shown in the present paper is likely
to be a universal feature of the critical states in many
quasiperiodic systems, including quasicrystals in higher
dimensions. ' Note that it is not a property of a single
eigenstate, but rather that of a collection of eigenstates
over a certain energy range. Therefore, it may have
some connection to the electrical conductance at finite

temperatures or at finite frequencies. Direct experimen-
tal observation of the wave-packet dynamics will be pos-
sible in semiconductor Fibonacci superlattices by
detecting propagation of various elementary excitations.
Also promising is optical transition from some impurity
state to band states, which provides a localized initial
wave packet just after photon absorption.

In conclusion, we have shown by the numerical exper-
iments that electron motion in the Fibonacci chain is
characterized by fractal dynamics, i.e., anomalous
diffusion and hierarchial oscillations. The renormaliza-
tion-group argument gives a natural explanation of the
results.

We thank Dr. J. Kondo for stimulating discussions.
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