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Models of electron excitation and ionization at very high electric-field —to —gas-density ratios
E/n are compared under conditions appropriate to discharge experiments at low gas densities,
such as those in N2 described in the preceding paper. The models considered use the monoener-
getic beam approximation in a velocity moment technique for solution of the electron Boltzmann
equation. They differ in the treatment of the electrons produced by ionization and in the use of ei-
ther the momentum balance or the energy balance to obtain the effective frictional effect. A
simplified single-beam model is found to agree reasonably well with multiple-beam models, with
the few published Monte Carlo results, and with experimentally measured spatial ionization
coefficients.

I. INTRODUCTION

The objective of this work is to develop simple, first-
order models of electron motion applicable from
moderate to very high electric-field (E) to gas-density (n)
ratios and suitable for use in the analysis of experimental
data such as that presented in the preceding paper. ' At
moderate E/n the models to be presented describe the
transition from an initial nonequilibrium motion in
which there are few collisions with the gas molecules
and essentially free-fall acceleration of the electrons to
the hydrodynamic or equilibrium motion in which there
is a balance between the energy and momentum gained
from the electric field and lost in collisions. At very
high E /n the models describe the runaway electron
motion in which collisional equilibrium in the presence
of the electric field is never reached and yet the electron
current resulting from collisional ionization of the gas
eventually grows exponentially with distance. Since the
previous experiments and theory of electrons at very
high E/n have been reviewed in I, we will consider here
only the previous work particularly relevant to the
present models. Here and in the remainder of this paper
Ref. 1 will be referred to as I. The models described
here have also been used in preliminary analyses of
emission resulting from electron excitation of H2 and Ar
at very high E/n.

Theories of electron motion in spatially uniform elec-
tric fields at very high E/n which have yielded results
suitable for analysis of experiments can conveniently be
divided into solutions of the collisional Boltzmann equa-
tion and Monte Carlo simulations of the experiment.
Approximate solutions of the electron Boltzmann equa-
tion for very high E/n when electron energy losses can
be neglected were obtained by Stuart and Gerjuoy and,
more recently, by Briggs and Yu, by Friedland and Ka-
gan, and by Lagushenko and Maya. Energy losses

were included in the analysis of runaway in weakly ion-
ized gases by Gurevich. The moment technique was ap-
plied to the solution of the nonequilibrium Boltzmann
equation by Miiller and co-workers and has been ap-
plied more recently by Ingold and by Friedland and Ka-
gan. Riemann' has investigated electron motion in the
E/n range between moderate and very high E/n. Itera-
tive solutions of the full nonequilibrium Boltzmann
equation have recently been carried out by Pitchford,
Moratz, Segur, and Yousfi, " but results are available
only for isotropic scattering models. In view of the in-
creasing importance of anisotropic scattering with in-
creasing E/n found in Nz by Phelps and Pitchford, ' re-
sults obtained assuming isotropic scattering must be re-
garded as preliminary.

Monte Carlo techniques have been applied to the cal-
culation of electron multiplication at very high E/n by
several authors. ' ' The results of Parker et al. ' are
in a form suitable for comparison with our models. The
model of Granzow and McClure' is for E/n at the
upper limit of those considered in the present paper.
Folkhard and Haydon' and Tagashira and co-workers'
applied Monte Carlo techniques to studies of electron
motion and ionization at the lower E/n values of in-
terest here. Hayashi' considered current growth at
these E/n in He and H2. Lauer et ah. ' present time-
dependent results. The results of Moratz, Pitchford, and
Bardsley' are currently being extended to realistic an-
isotropic scattering.

In this paper we will consider in detail only models of
electron motion based on the moment method of solu-
tion of the Boltzmann equation. Thus, in Sec. II we first
derive equations describing the behavior of an electron
beam. These relations are then used to predict the spa-
tially dependent current growth and excitation
coefficients for the single-beam models in Sec. II B. In
Sec. II C the single-beam results are used to build a mul-
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tibeam model. Predictions of the various models are
compared in Sec. III.

II. EI.ECTRQN-BEAM MQDEI.S

1 d(n, u )

2 dz

n, un
uk 0

k)0

n, nu Q (u),
The steady-state Boltzmann equation in one spatial di-

mension for electrons in a cold gas can be written as
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where e and m are the charge and mass of the electron,
v' and v are the electron speeds before and after the col-
lision, I (u', P) is the differential cross section for
scattering of an electron through an angle $=O —O' in
process k, f(v, O, z) is the electron velocity distribution,
and n is the gas density. In Eq. (1) the relation between
v' and v depends upon whether the collision is elastic or
inelastic. We consider an electron-velocity distribution
that can be approximated by that of a monoenergetic
beam moving in the direction of electron accelera-
tion, i.e., f (v, O, z ) =n, (z)5(u —u (z) )6(O)(2nX~ si On)

where u is velocity of the beam electrons at z. The va-
lidity of this approximation will be discussed in Sec. III.
Integration of the first three velocity moments of Eq. (1)
over velocity space yields ' the particle number balance,
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2 df/z
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k

and from the energy balance
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k

Q (u) — Qo(u) . (6)

where 0 (u) is the momentum-transfer cross section fork

collision process k defined by Ecker and Miiller and
considered in more detail by Phelps and Pitchford, '

n, (z) is the electron density, Qo(u) and Qo(u) are the
total ionization and excitation cross sections, Q (u) is
the elastic momentum-transfer cross section, M is the
mass of the gas atoms or molecules, and uk is the elec-
tron velocity at the excitation threshold (c& ——muk /2).
Here the cross-section notation is that of Ref. 12. Note
that the summation in Eq. (3) includes elastic
momentum-transfer collisions, whereas that in Eq. (4)
does not include elastic scattering. Both sums include
ionization.

The electron density is next eliminated from Eqs. (3)
and (4) using Eq. (2) so as to obtain differential equations
for u from the momentum balance

d(un, )
=uQo(u)n, n;

dz
(2)

For electrons created at z0 with negligible initial velocity
in the z direction, these equations yield for the momen-
tum balance

d(n, u )

dz

eEn, —nu'n ' u
k

and the energy balance,

the momentum balance,

(3)
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and for the energy balance

(7)
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where c. =rnu /2. As discussed by several authors
for the case of no ionization growth, the condition that
the electric field term of Eq. (5) or of Eq. (6) balances the
collision terms is the condition for a constant electron
drift velocity. Runaway is said to occur when the elec-
tron ve1ocity continuously increases with z for all z —z0,
i.e., the electric field term exceeds the collision terms.

Equations (2) and (7) or (2) and (8) model the spatially
dependent behavior of the electron density, current, and
velocity or energy as that of a monoenergetic beam of
electrons which is constrained to move in the direction
of the acceleration due to the electric field. The effects

of collisions and the production of new electrons by ion-
ization are treated as friction terms. Since at high elec-
tron energies the contribution of inelastic collisions to
2e gk Q" (e) in Eq. (7) is approximately equal' to
gk ekQt(e) in Eq. (8), the contributions of inelastic col-
lisions to the effective friction or drag is nearly the same
for both the energy- and momentum-balance equations.
Because of the 2m/M factor in Eq. (8), the contribution
of elastic collisions to the frictional effect for the energy
balance is negligible for the conditions of interest here.
On the other hand, elastic collisions are the largest con-
tribution to the frictional effect for the momentum-
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balance equation, e.g. , for Nz at 10 eV the elastic con-
tribution to Eq. (7) is twice the inelastic contribution. '

The momentum- and energy-balance equations also differ
in the contributions of ionization growth to the friction.
These friction terms represent the new electrons being
introduced into the beam at either the beam velocity
squared [Eq. (5)] or at the beam energy [Eq. (6)]. Be-
cause of the factor of two in Eq. (7), ionization results in
a greater effective friction in the momentum-balance
case. Since a monoenergetic beam is completely de-
scribed by two parameters, i.e., the density and the ve-
locity or the energy, our one-dimensional monoenergetic
beam model forces us to choose either the momentum
balance or the energy balance to describe the average U

of the electrons. The two solutions are not equivalent.
In previous work, Miiller chose the momentum balance
while Friedland chose the energy balance. We will dis-
cuss results from both choices in Secs. II A and II B.

A. Single-beam models

Equations (2) and (5)—(8) are next used to construct
"single-beam" models of electron motion. When Eq. (5)
or Eq. (7) is applied to the calculation of the electron en-

ergy as a function of position and Eq. (2) is used to cal-
culate the electron density, the model will be called the
momentum-balance, single-beam model. Similarly, Eq.
(6) or (8) and Eq. (2) are the primary equations for the
energy-balance, single-beam model. These models are a
simplification of the model of Ingold in that we assume
that the "random speed" is negligible compared to the
drift speed. In the present models the electrons origi-
nate at the cathode, i.e., zo ——0 in Eqs. (7) and (8), so that
nz(s) or s(nz) can easily be calculated using, for exam-
ple, cross-section data for N2 from Ref. 12. Note that
because of the presence of the Qo(s) term in the denomi-
nator of Eqs. (7) and (8) and the variation' of Qo(s) as
(1/s)inc at high e, the electric field term cannot exceed
this ionization-growth term and the runaway phenomena
will not occur.

The spatial excitation (ionization) coefficient a"(z) for
electrons is obtained using the excitation (ionization)
cross section Qo(s) and the energy-distribution function
for the electron beam. Thus,

a"(z) U 0 U UOZ 0 U
0

v cos8f(v, O, z)d v
0

f v'Qo(v)5(v —u (z))dv
0

f v'5(v —u (z))dv
0

=Qo(u(z)) . (9)

The current growth is obtained by noting that
j,(z)=en, (z)u(z) and integrating Eq. (2) to obtain

j,(z)
=—M(z)= exp J nQo(u(z))dzj, 0 o

and M(z) is the electron current multiplication. The
change of variables in the integrals of Eq. (10) is possible
because in this single-beam approximation the electron
energy is a unique function of the distance from the
cathode as given by Eq. (7) or (8). From Eq. (6) of I and
the accompanying discussion in I, it will be recalled that
the experiment yields an "apparent excitation
coefficient" defined by p (z)/n =[a (z)/n][j, (z)/j, (d)]
when electron excitation is dominant. The experimental
quantities can thus be determined very simply from Eqs.
(9) and (10) with either Eq. (7) or Eq. (8) to determine
the beam energy. The very simple forms of Eqs. (7)—(10)
allow one to calculate a"(z) In and j,(z) Ij,(0) for a wide
variety of E/n, nd, and cross sections. Comparisons
with other models will be made in Sec. III.

These single-beam models, when suitably modified to
take into account the near equality of the ion and neu-
tral masses, also offer a basis for estimating the role of
ions in the production of excited species, e.g. , the pro-
duction of excited N2 by fast N+ in I. These considera-
tions will not be presented in this paper.

B. Multiple-beam models

As a next level of approximation we consider here
multiple-beam models introduced by Miiller and co-
workers and extended by Friedland and Kagan in
which the secondary electrons are treated more rigorous-
ly. Thus, each secondary is treated as a new and distinct
beam which individually obeys particle-conserving mo-
ment equations; i.e. , Qo(s)=0 in the ionization growth
terms in Eqs. (2) and (5)—(8). Ionization is retained in
the summations appearing in these equations. In this
model, each individual beam is monoenergetic, but the
ensemble average is a sum over the many individual
beams. In contrast to the single monoenergetic beam
model, a spread in energy is introduced by each ioniza-
tion event in the multiple-beam formulation. This model
is close in spirit to particle simulations where many indi-
vidual particle trajectories are calculated and sums over
the individual particle yield the macroscopic averages.
In the multiple-beam model, however, the detailed track-
ing of the individual beams and the summations is han-
dled analytically. At high E/N where the production of
secondary electrons is the primary reason for spread in
the beam energy, this model is expected to be quite
good.

The multiple-beam model introduced by Miiller and
co-workers assumes that each electron leaving the
cathode or produced by ionization of the gas is produced
with zero initial energy and obeys the momentum bal-
ance given by Eq. (3). Thus,

—2s+ 0 (s)

and

c=eEz, gZ= exp nQo(c) dc.
0 8E,

(10) o '(eEIn) —2s'g 6" (c,')
' (12

k

Here j,(0) is the electron current leaving the cathode where the summation includes elastic scattering (k =0),
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excitation, and ionization (k =i) .The application of an
E/n greater than the maximum value of 2c gk 6" (c)
results in electron runaway. At sufficiently large
E/(n gk Cg' ) the runaway motion approaches that of
free fall in the accelerating electric field as discussed in
Sec. II C.

Muiler assumed that the electric field is spatially uni-
form and obtained the spatial dependence of the current
density in the form of the integral equation

j,(z) =—M(z) = 1+ f nQO(zo)M(z —zo)dzo .
j,(0) '0= (13)

Laplace transform ' and iteration ' techniques have
been applied to the solution of this equation.

When the multiplication M(z) is large compared to
unity, as at large z, the solution ' ' to Eq. (13) is
M(z) = exp(a, z), where a; is the spatial ionization
coefIicient. ' ' * Here and elsewhere a, is distinguished
from a, (z), since a, is independent of z. In this limit Eq.
(13) can be written as

1= f Qo(c) exp[ —(a;/n)nz(c)] dc,0 d (nz)
dc,

(14)

lnM(z)= f Qo(c)dc, ,eE o
(16)

where e V is the energy of the electrons in the absence of
collisions. This limit was considered by Dempster and
mill be used in Sec. III.

Miiller also solves for the electron velocity distribu-
tion and obtains

f (u, z) 5[u —u (z)]
j,(0) u (z)

eE+
mn

—1

k (3M[nz —Y(u)]
B(nz)

(17)
I

where Y(u) is the right-hand side of Eq. (7) expressed in
terms of the electron velocity. Here the first term
represents electrons which were produced at the cathode
while the second term represents electrons produced by

where dc/d(nz) and nz(c) are as given by Eqs. (5) and
(7) with Qo and zo set to zero and u replaced by
u =2m/m. Here co is the smaller of infinity or the ener-

gy at which the right-hand side of Eq. (5) goes to zero.
If, in addition, the E/n is large enough so that momen-
tum and energy losses are small so that the electrons un-
dergo free-fall motion (c=eEz), then Eq. (14) becomes

eE/n = f Qo(c) exp(7)c/e)dc, (15)

where q=a, /E is the number of ionization events per
volt. As pointed out by several authors, this spatial
ionization growth coefficient is independent of position
even though the electron is in free-fall motion, i.e., a re-
peated time history for each new electron leads to ex-
ponential growth. Various authors have considered the
corresponding growth in time. ' In the limit of M~1
and small energy loss, Eq. (13) can be written as

impact ionization, i.e., the secondary and subsequent
electrons. The zeroth and first velocity moments of Eq.
(17) yield the electron density and the convective veloci-
ty for the electrons.

The excitation coefficients for this model are obtained
by substituting Eq. (17) into the first form of Eq. (9).
The first term in Eq. (17) leads to an excitation
coefficient equal to j,(0)QO(u)/jr. The contribution of
the second term in Eq. (17) is very complicated and must
be evaluated numerically.

A useful limit to the excitation coefficient applies at
very high E/n where the electron motion can be approx-
imated by free fall and where the distribution in energy
of the secondary electrons is broad compared to the en-
ergy range over which the excitation cross section is
significant, e.g. , for excitation of a triplet state of N2. In
this limit the excitation coefficient due to secondary elec-
trons a,"„is obtained by substituting Eq. (17) into Eq. (9)
and is given by

f Q "(c)dc . (18)

C. Range of application of limiting solution

In this section we consider the range of E/n and nz
values in which the various approximations used in Secs.
IIA and IIB are expected to be valid. The results are
summarized in Fig. 1 where we have plotted curves of nz
versus E/n for the various transitions. The diagonal
lines give the energy an electron would acquire in the
distance nz under the action of the electric field in free
fall, i.e., the energy available from the field in going from
the cathode to z. Also shown are points representing the
E/n and nd values for which measurements of N2 emis-

As an example of the application of this result, we note
that using the cross sections of Ref. 12 the integral in
Eq. (18) is 70 eVm for the C II„state and 170 eVm
for the B H group of states. These results lead to very
small excitation coefficients compared to ionization
coefficients at high E /n. See Fig. 12 of I. This effect re-
sults from the rapid acceleration of the low-energy
secondary electrons produced by ionization through the
energy range in which the excitation is significant.
Thus, in this hig h(E n/) limit, secondary electrons are
much less effective in the excitation of optically forbid-
den transitions than when a high-energy electron beam
passes through a gas, e.g., nitrogen, in the presence of
a low or zero E/n.

Friedland and Kagan have solved for the current
growth using the second velocity or energy moment
equation, Eq. (4), to determine the motion of the elec-
tron beams. They treated the electrons produced by ion-
ization by an integral-equation method similar to that of
Muller and co-workers. Their work was directed to-
ward the derivation of analytic relations for the ioniza-
tion coefficients in nonuniform as well as uniform elec-
tric fields. A comparison with some of their results will
be made in Sec. III C. They also considered the ex-
ponential growth and free-fall limits which were dis-
cussed in connection with Eqs. (14) and (15).
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eE
(19)

where s, =(nz)(E/n) is the energy available from the
electric field at z under free-fall conditions. Using the
N2 cross sections of Ref. 12, we obtain the solid curve of
Fig. 1. This calculation shows that electrons injected
with an energy of a few eV into a region where E/n is
between 100 and 800 Td will gain energy as though in
free fall until they have traversed a column density of
about 5)&10' m . (1 Td=—10 ' Vm .) At nz several
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sion were reported in I. In modeling these constant E/n
discharges one must consider all nz less than the experi-
mental nd.

For the purposes of this discussion we will define the
transition from free-fall motion of an electron to a drift
motion to occur when the energy which an electron
starting at a low energy would gain in the absence of
collisions equals the steady-state or equilibrium energy,
i.e., the energy at which the acceleration by the electric
field balances the frictional effect of collisions or when
the denominator of Eq. (7), (8), or (12) equals zero. In
the case of one of the beams of the multibeam, energy-
balance solution, this "energy-relaxation limit" occurs
when

times this value the electrons begin a drift motion in
which the gain in energy from the field is balanced by
the loss of energy in collisions, i.e., an equilibrium or hy-
drodynamic motion. The vertical portion of the curve
indicates that for E/n greater than about 950 Td the
electrons will undergo runaway ' and so never relax to
energy equilibrium with the electric field. For simplici-
ty, we have omitted the portion of the curve given by
Eq. (19) for nz greater than 2)&10 m for which nz in-
creases with decreasing E/n. This curve applies to elec-
trons which somehow reach high energies and shows '
that electrons with sufficient initial energy can undergo
energy runaway at E/n below 950 Td in N2.

The single-link chain curve of Fig. 1 shows the E/n
versus nz curve for the transition from free fall to drift
motion when the momentum balance is used to describe
the motion of one of the beams of the multibeam solu-
tion, i.e., when the denominator of Eq. (12) is set equal
to zero in order to evaluate c, . This transition will be
referred to as the "momentum-relaxation" transition or
limit. The structure in the curve near c, =2 eV is
caused by the well-known resonance in electron scatter-
ing by N2 at that energy. ' This curve shows that for
E /n & 3000 Td free-fall motion with respect to
momentum-transfer collisions occurs only for nz less
than about 5)&10' m or an order of magnitude less
than for the energy-limited case. We note that momen-
tum runaway occurs at an E/n of about 3700 Td or
about four times that for energy runaway. Note also
that the different nz values for the momentum-relaxation
and energy-relaxation limits are evident in the calcula-
tions of the overshoot of the convective velocity of elec-
trons in a spatially varying electric field. '

The double chain curve marks the transition between
free fall and drift motion as determined from the single-
beam, energy-balance model. The curve never becomes
truly vertical with the result that although the electron
energy becomes very large at very high E/n there is
never runaway in the conventional sense.

The triple link chain curve marks the transition from
the condition of small ionization, M —1 «1, to the c',on-
dition of large ionization growth where M (z)
= exp(a, z) && I, as required for the validity of Eqs. (14)
and (15). The curve is calculated using (a, /n)(nd)=1,
where the u; /n values are from experiment for
E!n &800 Td and from the multibeam, energy-balance
model for higher E/n For nz si. gnificantly below this
ionization growth transition and below or to the right of
the energy-based free-fall transition, Eq. (16) is valid.

IO
18

IO io' IO IO D. Backscattered electrons

E/n (Td)

FIG. 1. Curves marking the transition from regions of ap-
plicability of various approximations developed in Sec. II. The
solid curve and single link chain curves mark the energy relax-
ation and momentum relaxation transition, while the double
link curve is calculated using the single-beam, energy-loss mod-
el with ionization growth. The triple link chain curve is calcu-
lated from the condition a;z =1. The points are values of nd
vs E/n from the experiments with N& discussed in I.

In this section we consider the modifications to the
single-beam formulas which we have used in a first-order
investigation of the excitation and ionization caused by
electrons which are backscattered from the anode. Even
though the models of backscattering presented here are
very elementary, they provide a means for semiquantita-
tive comparison of theory and this very important pro-
cess in very high E/n discharge experiments. A detailed
treatment of the almost identical problem for 120-keV
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electrons injected into a gas in the presence of an oppos-
ing electric field has been carried out by Smith using
Monte Carlo techniques. We will limit the present dis-
cussion to relationships based on the energy balance as
given in Eq. (6). An electron of energy E„ leaving the
anode will be subject to the effects of the opposing elec-
tric field as expressed by reversing the sign of the first

I

term on the right-hand side of Eq. (6), i.e., the field term
in Eq. (4) is really the scalar product of u and E. It is
convenient to measure the electron position by its dis-
tance, x =d —z, from the anode. In this initial investi-
gation the electrons are assumed to be emitted normal to
the anode plane. This distance is obtained by integrating
the modified Eq. (6) to obtain

+(eE/n)+ g EkQO(E')+(2m IM)e'Q (e')+e'Qo(e')
(20)

where c. is the electron energy at x. Here the + sign ap-
plies when the electron is leaving the anode and the-
sign applies when the electron is returning to the anode.
We are concerned with the excitation and ionization
produced as the electron slows down and as it ac-
celerates again and so use c(nx) . calculated from Eq. (20)
to calculate a"(x)/n from Eq. (9).

Parker and co-workers' included the effects of repeat-
ed reflections of an electron at the anode. In the free-fall
limit, the effect of backscattering is to increase the ion-
ization by twice that for the first crossing times the
probability of the reflection. When summed, repeated
reflection at the anode increases the total ionization by
(1+r)I(1—r), where r is the backscattering or reflection
coefficient. Again it is assumed the electrons are emitted
normal to the anode plane and that the angular
deflection of the electrons by collisions is omitted. We
expect, that in the more accurate solutions of this prob-
lem, the angular deflection on scattering will be of
significantly reduced importance because of the spread in
angle of electrons leaving the anode.

III. COMPARISONS OF MODELS

In this section we will compare ionization coefficients,
multiplication factors, and slowing-down behavior calcu-
lated for electrons using various models discussed in Sec.
II. Experiments will be compared with the models
where available. These comparisons and the compar-
isons of calculated and measured excitation coefficients
made in I will be used to draw tentative conclusions as
to the utility of our single-beam model. Final con-
clusions will have to await the availability of more de-
tailed models and experiments for a wide range of pa-
rameters.

A. Apparent ionization coefticient

The first comparison is of the apparent ionization
coefficients for Hz calculated by Muller using his multi-
beam, momentum-balance model and as calculated using
our single-beam, momentum-balance model. The ap-
parent ionization coefficient used by Miiller is the num-
ber of ionization events per unit distance in the field
direction per electron leaving the cathode. The present
analysis is basically a comparison between two approxi-
mate methods of accounting for the effects of ionization
growth on the behavior of the electrons. Thus, the

I

smooth curves of Fig. 2 show the apparent ionization
coefficients from Fig. 8(a) of Miiller plotted as a func-
tion of the energy available to the electron as it moves
from the cathode to a point z, i.e., c., =e (E In )nz
=eV(z). The points show our calculations using the
momentum-balance version of the single-beam model.
The beam energy versus z was calculated using Eq. (7)
with zo ——0 and gk 6" (e)=Q&(e) from Miiller, and
Eqs. (9) and (10) were used to calculate a;(z) and j, (z).
Note that in Fig. 1 the apparent ionization coefficients
P,'(z)/n are normalized to the cathode current density
rather than to the total current density as in I, i.e.,

p,'(z) a'(z) j,(z)
(21)

n n j(0)
From Fig. 2 we see that the agreement between the
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FIG. 2. Comparison of calculated apparent ionization

coeScients vs the available energy using the multiple-beam
model (smooth curve) and using the single-beam model
(points). Both calculations used the momentum-balance ap-
proximation and the effective momentum-transfer cross section
from Muller (Ref. 8).
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two models is excellent at E/n =28.2 kTd. This agree-
ment is expected since collisions are so infrequent that
the electron energy is very nearly equal to the available
energy (free fall) and since at these relatively small nz
electron avalanching is negligble. Thus P,'(z)=QD(eEz).
At the lower E/n the agreement between the two mod-
els is quite satisfactory considering the simplicity of the
single-beam model. At these E/n collisional effects are
large enough so that with momentum-balance models
the electrons reach an equilibrium drift at sufficiently
large nz. From this comparison we conclude that for the
range of E/n and nz considered, the effects of ionization
on the momentum balance can be treated approximately
equally well by including a friction term or by consider-
ing beams of secondary electrons.

B. Electron multiplication

In Fig. 3 we compare values of the electron multipli-
cation M calculated using our single-beam model with
the Monte Carlo calculations of Parker and co-
workers. ' We have chosen to plot values of lnM as a
function of the available electron energy because this al-
lows us to show a wide range of M values and because

an exponential growth becomes a straight line on this
log-log plot. The Monte Carlo results shown by the
solid points were calculated' using a model in which
only ionizing collisions were considered. The open
points were obtained from the Monte Carlo results (solid
points) by dividing by the correction for backscattering
discussed in Sec. IID. The reflection coefficients used
are those of Parker and co-workers, i.e., 0.1 for 2.8 kTd
and 0.3 for 90 kTd. We see that the open points are in
good agreement with the results of our single-beam mod-
els for the range of E/n and available energy shown.
For E/n & 90 kTd the values of M calculated using Eq.
(10) and dz/de values from either the energy-balance or
momentum-balance approximations are only slightly
larger than for the free-fall model, i.e., the free-fall mod-
el is a good approximation.

At intermediate E /n we have compared the three
single-beam approximations at 20 kTd. In this case only
the momentum-balance model approaches an exponen-
tial growth in the range of e, shown. At this E/n the
multiple beam model with free fall shown by short
dashed line, Eq. (15), gives an ionization coefficient of
about —', of that for the single-beam momentum balance
model. This comparison shows that the single-beam,
energy-loss, and the free-fall models seriously underesti-
mate the ionization at larger nz. The single-beam,
momentum-loss and multibeam, free-fall models appear
more realistic.

As predicted from the type of plot shown in Fig. 1,
the free-fall and energy-balance models at 2.8 kTd agree
surprisingly well up to about 400 eV of available energy,
but the momentum balance gives M =0 because the elec-
tron energy never reaches the ionization potential. On
the other hand, the energy balance calculations yield a
straight line (exponential growth) for energies above
about 300 eV and differ from experiment (short dashed
line) by only 20%%uo.

C. Steady-state ionization coef5cients

IO

10
10 1Q IO

AYAI LAB LE ELECTRON ENERGY (eV)

FIG. 3. Comparison of multiplication factors vs available
energy as calculated using various models for electrons in Ar.
The solid points are from Ref. 13 and include repeated back-
scattering. The open points are the single pass values calculat-
ed from the data shown by the solid points as discussed in the
text. The solid, chain, and dashed curves are for single-beam
models using the momentum-balance, energy-balance, and
free-fall approximations, respectively. The short dashed lines
are exponential growth curves calculated using the energy-
balance approximation.

Steady-state ionization coeScients characterizing the
spatial growth of electron density in N2 calculated using
some of the models of Sec. II are shown in Fig. 4 along
with experimental data. The single link chain curve is
calculated using the multiple-beam, energy-balance mod-
el, i.e., Eq. (14) and Eq. (6) without the ionization-
growth term. This model is equivalent to that first used
by Friedland and Kagan. Their results are shown by
the open points. The double and triple link chain curves
were calculated using either Eq. (5) or Eq. (6) in Eq. (10),
i.e., the single-beam, energy- and momentum-balance
models, respectively. The short dashed curve shows the
results of recent two-term spherical harmonic calcula-
tions.

The curves and data of Fig. 4 show that our multiple-
beam, energy-balance model gives excellent agreement
with the experiments of I for E/n from 800 to 7000 Td.
Note that for E/n ~ 1500 Td the results of the multiple-
beam, energy-balance and multiple-beam, free-fall mod-
els are the same. From Fig. 1 we see that this E/n is
just above that at which energy runaway can occur. We
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FIG. 4. Comparison of steady-state spatial ionization
coefficients vs E/n from experiment and calculations using
various models for electrons in N&. The solid curve is an aver-

age of published experiments, while the solid points are from
paper I. The short dashed curves are from theory using the
two-term spherical harmonic expansion. The single short link
chain curve is from the multiple-beam model using the energy
balance. The double and triple short link curves are from the
single-beam models using the energy- and momentum-balance
approximations.

culate the maximum range of low-energy electrons for
comparison with the experimental data. The electron
energy versus distance was calculated using Eq. (20).
The apparent ionization or excitation was then calculat-
ed using Eqs. (9) and (10). The upper curves of Fig. 5

show the calculated apparent ionization coefficients for
reflected electrons with energies c, of 1 keV and 100 eV
in Ar at E/n =42. 6 kTd plotted as a function of density
times distance from the anode. This distance is mea-
sured from the right-hand side of the graph so as to
simulate the experimental plots in which the anode is at
the right. For the 1-keV case the ionization by electrons
leaving the anode is indicated by the dashed curve, while
that by electrons returning to the anode are indicated by
the chain curve. The solid curve is the sum of these
contributions. We again note that the behavior of the
ionization curve is similar to that expected for allowed
excitation processes, e.g. , the ion lines of Ar (Ref. 28) or
dissociative excitation of N2 (Ref. 29). The lower curves
are for electron excitation of the 811.5-nm line of Ar,
which is the strongest emission line observed in recent
experiments in our laboratory.

The left-hand portion of Fig. 5 shows the calculated
apparent ionization and excitation coefficients for 100-eV
electrons in Ar. Note the different normalized distance
scales for the 100-eV and 1-keV electrons. In the case of
ionization by 100-eV backscattered electrons, the
ionization-coefficient curves for leaving and returning

I
I

I

propose that the large calculated ionization coefficients
of Friedland and Kagan for N2 are the result of their
choice of parameters which result in too large an ioniza-
tion cross section for N2.

As pointed out in I, an understanding of the
discrepancy between the two experimentally determined
ionization coefficients awaits better experiment and
theory. Electron reflection from the anode as discussed
in I and spatially dependent secondary emission from the
cathode' may be important here. The single-beam,
energy-balance model yields ionization coefficients which
are within about 50%%uo of experiment for E/n from 250
to 10000 Td, and so at least serves as a very simple and
useful first approximation. The single-beam,
momentum-balance model is useful for calculation of
steady-state ionization coefficients only in a limited
range of E/n. From these comparisons we conclude
that the single-beam, energy-balance model is a good
compromise between simplicity and accuracy, but that
the multiple-beam, energy-balance model gives a better
fit to the experimental data of I. A further example of
the greater utility of the models based on the energy bal-
ance rather than the momentum balance is shown by the
better agreement with experimental measurements of
391.4-nm emission from N2 in Fig. 11 of I.

D. Electron backscattering and maximum range

In this section we illustrate the calculation of electron
backscattering and then use the same procedure to cal-
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Ar with initial energies of 100 and 1000 eV. Here E/n =42.6
kTd and opposes the motion of the electrons. The dashed and
chain curves show the ionization and excitation produced by
electrons leaving and returning to the anode, while the solid
curves show their sums.
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the extrapolated range of low-energy electrons in various gases.
The labeled smooth curves are our calculated values. The
short dashed curve is from Ciriin (Ref. 34). The gases, symbols
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electrons are not distinguishable. It is recognized that
the spatial distributions of ionization and excitation cal-
culated using this beam model in which the electron tra-
jectories are undeflected by collisions will greatly overes-
timate the fraction of the electrons reaching the larger
distances from their point of origin. It is expected,
however, that when the large spread of initial energy and
angle of backscattered electrons from the anode is incor-
porated, the result will be realistic spatial distribution.
In any case, these calculations give a good indication of
the maximum distance from the anode at which one can
expect to observe the effects of backscattered electrons
of various energies.

A closely related calculation and measurement is that
of maximum electron range. It is also the only test of
the slowing-down calculations for low initial energy elec-
trons which we have found. We therefore compare the
range of low-energy electrons with measurements of the
maximum or extrapolated range of such electrons. '

This comparison is shown in Fig. 6 where the solid
points show measured values and the smooth curves are
the distances at which the electron energy drops below
the ionization or excitation energy appropriate to the
particular gas and experiment. The calculations were
made using Eq. (20) with Eln =0 and omitting the
ionization-growth term ego(c). In this case e„ is the en-

ergy with which the electrons are injected into the gas.
The short dashed curve is the theory-based correlation
of Grun for relatively high-energy electrons. The cal-

culated values are within about 30% of the experimental
data. We note that one reason for discussing these re-
sults in this paper is the previously discussed correla-
tion between the slowing down of moderate-energy elec-
trons in regions of low electric field known as the nega-
tive glow.

IV. SUMMARY

We have shown that very simple beam models of elec-
tron motion in a gas give useful predictions of spatially
dependent ionization and excitation coefficients at very
high E/n. We find that use of the single-beam treat-
ment of ionization rather than the multiple-beam treat-
ment changes calculated spatially dependent ionization
coefficients for H2 by less than a factor of 2. The use of
the free-fall approximation for electron motion is found
to be valid over most of the E/n range considered in
previous Monte Carlo calculations for Ar. We find that
beam models based on the electron-energy balance agree
better with more detailed models and with experiment
than do beam models based on the momentum balance,
particularly at lower E/n. The multiple-beam treatment
of ionization and the use of the energy balance give ion-
ization coefficients for N2 at E!n ) 800 Td in good
agreement with the experimental results of I, but below
previously published values at E /n =3000 Td. The
single-beam, energy-balance model is used to describe
the slowing down and reacceleration of electrons back-
scattered from the anode. When it is used to calculate
the maximum range of electrons slowing down in vari-
ous gases in the absence of an electric field, the results
agree with experiment to within 30%%uo for electron ener-
gies for which data are available.

Although the comparisons presented in this paper are
limited to a uniform electric field, it is worth noting that
with the exception of Eqs. (13)—(19), all equations apply
equally well to nonuniform fields. The simple analytical
forms in Eqs. (13)—(19) are based on Miiller's summa-
tions over individual beams who follow their parent s
histories. The multiple-beam formulation derived by
Friedland was specifically for nonuniform fields, and the
summations in that work are approximate.

Further evaluation of these models should be made
when more detailed calculations utilizing three-
moment, ' ' ' Monte Carlo, or Boltzmann techniques and
including anisotropic electron scattering become avail-
able. In the meantime, it would be of interest to extend
these models to numerical simulations of electron behav-
ior in the nonuniform electric fields present, for example,
in the cathode fall of electric discharges.
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