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Transport of large particles in flow through porous media
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There is considerable evidence indicating that significant reduction in the efficiency of many
processes in porous media, such as enhancing oil recovery, heterogeneous chemical reactions,
deep-bed filtration, gel permeation, and liquid chromatography, is due to the reduction in the per-
meability of the pore space. This reduction is due to the transport of particles, whose sizes are
comparable with those of the pores, and the subsequent blocking of the pores by various rnecha-
nisms. In this paper we develop a novel Monte Carlo method for theoretical modeling of this
phenomenon. Particles of various sizes are injected into the medium, and their migration in the
flow field is modeled by a random walk whose transition probability is proportional to the local
pore fluxes. Pores are blocked and their flow capacity is reduced (or vanished) when large parti-
cles pass through them (and reduce their flow capacity) or totally block them. The permeability of
the medium can ultimately vanish and, therefore, this phenomenon is a percolation process. Vari-
ous quantities of interest such as the variations of the permeability with process time and the dis-
tribution of pore-plugging times are computed. The critical exponent characterizing the vanishing
of the permeability near the percolation threshold appears to be different from that of percolation
conductivity. The agreement between our results and the available experimental data is excellent.

I. INTRODUCTION

Many operations in the chemical and petroleum indus-
try involve transport and reaction processes in disor-
dered porous media. Examples include multiphase fluid
flow in oil and gas reservoirs, filtration processes, wood
and coal combustion and gasification, heterogeneous
(catalytic) chemical reactions, gel permeation, and liquid
chromatography. The efficiency of such processes de-
pends crucially on the availability of open pore space
which provides transport paths for the flowing and
reacting materials. Thus if the permeability of the
porous medium, which is a measure of openness of the
pore space, is reduced during such processes, the
efficiency of the operation is also reduced, often dramati-
cally. An important reason for the reduction of the per-
meability is the migration of fine, solid particles whose
sizes are comparable with those of the pores of the medi-
um, in the flow field through the porous medium. These
particles can be the product of a chemical reaction
within the pore space or the result of a process such as
etching of the porous medium, which is intended to
change the structure of the pore space. Moreover, parti-
cles adhering to the pore walls, e.g. , diagenetic clays
which have been precipitated from formation water, can
be released upon contact with the flowing fluids because
of the change in the ionic environment or the flow rate.
In addition, during the flow of dilute, stable emulsions in
fine-grained porous media, ' a large reduction in the per-
meability of the porous media is usually observed. This
is because the ratio of emulsion size to pore size may be
of order of unity and, as a result, the pores of the medi-
um are blocked by the emulsions, a phenomenon which
is similar to the reduction of the permeability during the

migration of fine particles in flow through a porous
medium. Thus size exclusion, by which large particles
block smaller pores, is the dominant mechanism of the
reduction of permeability of the porous medium. Cap-
ture of the particles by the solid surface of the pore by,
e.g. , an electrostatic interaction between migrating parti-
cles and the surface, is another mechanism which results
in the reduction of the permeability. In addition, during
gel permeation in porous media and liquid chromatogra-
phy, ' size exclusion plays a fundamental role. In any
event, the permeability of the pore space reduces with
process time and can ultimately vanish if enough pores
are blocked. As such, this phenomenon is a percolation
process, although, as we argue below, it may not be an
ordinary percolation process and appears to be described
by a different set of critical exponents.

Past modeling of this phenomenon has involved
various geometrical models of the pore space, such as a
bundle of parallel capillary tubes with given pore-size
and particle-size distributions, or the Carman —Kozeny
model for permeability of a porous medium. More re-
cently, Soo, Williams, and Radke presented a filtration
model to describe the permeability reduction due to the
capture of droplets by the solid surface of the pores. Al-
though these models contain many essential features of
transport of fine particles in flow through porous media,
such as their deposition on the solid surface of the pores
and their possible release from the surface, their predic-
tions of the reduction in the permeability of the porous
media are much smaller than the experimental
data. "" This is because of the fact that models of the
pore space that have been employed by these authors
cannot represent the effect of the topology (connected-
ness) of the porous media and the interconnection be-
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tween the pores. It is well known that such models pre-
dict a zero-percolation threshold for the porous medium
and, therefore, it is not surprising that they predict a
permeability reduction which is much smaller than the
observed one. A recent advancement is the work of
Sharma and Yortsos, ' in which the authors employ a
network model of pore space to describe the transport of
fine particles in a flow field. However, an effective-
medium approximation (EMA) is used in order to de-
scribe the flow field and make the model analytically
tractable. Although the results are in better agreement
with the experimental data than those of previous mod-
els, their model is not totally satisfactory, since an EMA
cannot predict accurately the permeability of the porous
medium as the percolation threshold is approached.

The goal of this paper is to develop a Monte Carlo
method for studying the transport of fine particles in
flow through a porous medium and its effect on permea-
bility. Our method is closely related to the Monte Carlo
method that we developed' earlier to study hydro-
dynamic dispersion in porous media, although there are
also significant differences between the two methods be-
cause the two problems are totally unrelated. We con-
sider only the reduction of the permeability of the
porous medium due to the size-exclusion mechanism and
ignore any other factor that can affect the permeability
of the pore space. In a future paper, ' we will investi-
gate the effect of other mechanisms of permeability
reduction. However, we show here that there is excel-
lent qualitative agreement between our results and the
experimental data. This indicates that the dominant
mechanism of the reduction of the permeability of a
porous medium may be the size-exclusion phenomenon,
as mentioned above.

The plan of this paper is as follows. In Sec. II we give
the details of our Monte Carlo method. Section III con-
tains the results and the discussion of our Monte Carlo
simulations of the problem. The paper is summarized in
Sec. IV where we also discuss how an analytical model
may be developed to predict the Monte Carlo results.

II. MONTE CARLO SIMULATIONS METHOD

The porous medium is represented by a two-
dimensional square network. The bonds of the network,
which represent the pore throats of the porous medium,
are assumed to be cylindrical capillary tubes which have
no converging or diverging section. The radii R of the
tubes are distributed according to a statistical distribu-
tion, which, in the present paper, is assumed to be the
Rayleigh distribution

f (R)=2a R exp( —a R ),
where a is a characteristic pore radius. This distribu-
tion mimics qualitatively the pore-size distributions
determined experimentally by several investigators. ' '
The sites of the network, which represent the pore bo-
dies of the porous medium, are assumed to be large
enough in order to be able to contain the fine particles,
although the effect of their sizes on the flow field is ig-

nored. Creeping flow within each bond is assumed, and
the pressure distribution in the network is computed.
This is done by solving a standard Kirchhoff-law formu-
lation in which the flow rate in each bond is the product
of the pressure difference between its nodes and its hy-
drodynamic conductance, which is proportional to R
The boundary conditions are constant pressures imposed
at the entrance and exit plane of the network (X=O and
X =L, respectively), and matched periodic conditions in
the Y direction. From the pressure distribution and the
bond radii, the average flow velocity and the flow rate in
each bond is calculated and the permeability of the en-
tire network is determined.

After the flow field is determined, solid particles are
injected into the network at random at plane X=O. This
can be done in several ways. For example, one can in-
ject a single particle into the network at time t=O, the
second particle at time At, and the Nth particle at time
(Ã —1)b,t. Alternatively, we can inject simultaneously a
set of M particles into the network at time t=O, the
second set at time At, and so on, where M can vary from
set to set. Finally, we may choose the time intervals be-
tween two consecutive injections from a probability den-
sity function. The results presented in this paper are
with the second method. After each time interval, we
inject M particles into the network. We take M to be a
random variable uniformly distributed in the interval
(O,L). This is because of the fact that at any given time
a different number of solid particles may enter the
porous medium.

The particles are assumed to be effectively spherical
(circular in two dimensions) the effective radii of which
are distributed according to a particle-size distribution
which, in the present paper, is either a uniform distribu-
tion in the interval (0, 1) or the Rayleigh distribution.
Within each pore, a particle moves with the mean flow
velocity of the pore. Because the size of a particle is
finite, its motion can disturb the flow pattern within the
pore. However, we neglect such disturbances because
taking them into account would make the computations
extremely complicated. We also neglect the possible
capture of the particles by the solid surface of the pore;
these issues will be considered in a future paper. '

When a particle arrives at a node, it leaves into one of
the attached bonds which is open to flow (i.e., it has not
been plugged yet). The transition probability for going
from one pore into another is assumed to be proportion-
al to the fraction of the flow rate departing from the
node through that node. After a particle selects one of
the available pores, its effective radius r is compared
with that of the pore R. If r &R, the particle is allowed
to move into that pore and to be carried with the flow.
However, if r )R, the entrance to the pore is blocked
by the solid particle and the pore is completely plugged.
This is effectively equivalent to removing the pore from
the network (i.e., setting its radius to be zero) and, there-
fore, the phenomenon is a percolation process. This pro-
cedure is then repeated for all the particles in the net-
work. Once the plugged pores are identified, a new flow
field is computed, taking into account the presence of all
solid particles in the system and their effect on the flow
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field, and the permeability of the network is computed.
Particle injection is continued until there is no longer
any significant change in the network permeability, or
until the network is completely plugged and its permea-
bility vanishes. Alternatively, one can stop the injection
of the particles after a certain amount of them have been
injected into the system, and study the structure of the
resulting network. The extent of the pore plugging and
the decrease in the permeability of the network depend
crucially on the size distribution for the pores and parti-
cles and the method of injection of the particles into the
network. These factors also inhuence the time at which
the network becomes macroscopically plugged and its
permeability vanishes; these are discussed below. This
Monte Carlo method is very similar to that used for the
study of hydrodynamic dispersion, ' although the two
problems are totally different. We used networks of
sizes I.=40 and 60, and we typically averaged the results
over ten different realizations of the network.

III. RESULTS AND DISCUSSION

We have carried out extensive Monte Carlo simula-
tions of the process described above. We have used two
different values of At in our simulations, At=1000 and
5000. The units of time depend on the units of
volumetric How rate in the network. Changing At en-
ables one to change the effective concentration or
volume fraction of the solid particles in the pore space.
Small values of At mean a large concentration of the
solid particles (since for a given process time, more par-
ticles have entered the pore space), and vice versa. Fig-
ure 1 shows the variations of the permeability of the net-
work with the process time. The permeability of the
network is normalized with its value when no pore has
plugged yet (i.e., its permeability at t=O). The results
are for the Rayleigh distribution for the pore sizes with
o. =1, and a uniform particle size distribution. As can
be seen, the permeability drops sharply after a relatively
short time, and the decrease is sharper for the smaller
value of At. After some time, the permeability reaches
its steady-state value and changes very little with the
process time. This means that with the pore-size and
particle-size distributions that have been used, almost no
pore can be plugged after time t =2&10, because there
is not a large enough particle to plug a relatively large
pore. In order to be able to compare directly the results
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FIG. 2. Dependence of the permeability of the network on
the pore volume injected, for various values of At.
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with the experimental data, ""we present in Fig. 2 the
variations of the permeability of the network with the
pore volume injected r. Here r is defined by r=Qt/V,
where Q is the total volumetric flow rate in the network
at time t and V the total volume of the unplugged net-
work at t=0. The results are in qualitative agreement
with the experimental data. "'" although our results
show a steeper decrease in the permeability of the net-
work than those of the experimental data.

In order to interpret the results in terms of the con-
cepts of percolation theory, the variations of the permea-
bility of the network with the fraction q of the un-
plugged pores at time t are shown in Fig. 3. Two points
are worth noting. The shapes of these curves are totally
different from those of percolation conductivity (the ana-
log of permeability) which have been obtained for the
square network; see, e.g. , Kirkpatrick. ' Whereas per-
colation conductivity decreases essentially linearly with
the fraction of conducting bond (i.e., the analog of un-
plugged pores in our study), except very close to the per-
colation threshold p, = —,', the permeability of the net-
work in our study decreases more slowly with q, and the
decrease in the permeability is not even linear. More-
over, the percolation threshold q, of our network (i.e.,
the point at which the permeability effectively vanishes)
appears to be higher than that of the percolation con-
ductivity. This is because in our simulations the bonds
of the network are not blocked completely at random.
Those pores that are in the direction of the average
(macroscopic) flow have larger fluid fluxes and, there-
fore, are more likely to be selected by the solid particles
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FIG. 1. Variation of the permeability of the network with
process time for various values of At.

FIG. 3. Permeability of the network as a function of the
fraction of unplugged pores for various values of ht.
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and be plugged. Moreover, the blockage of a pore de-
pends on its effective radius and the effective size of the
particle that is encountering it. Thus we may expect a
higher percolation threshold than that of the percolation
conductivity, consistent with our results. The shape of
the permeability curve might also indicate that near q„
one has

K =(q —q, )",

where p is presumably a universal exponent. We expect
p to be different from that of percolation conductivity,
whose best current estimate is about 1.3, ' and in fact we
believe @&1; this is discussed below. Our results do,
however, indicate that the phenomenon of pore plugging
is sensitive to the morphology of the pore space (i.e. , its
geometry, represented by the pore-size distribution, and
topology), the particle-size distribution, and the concen-
tration of the solid particles.

Figure 4 represents the distributions of the distances,
along the direction of macroscopic average velocity that
the solid particles travel before they cause any plugging.
Although the two distributions for the two values of At
are qualitatively similar, the distance that is traveled by
the particles is larger for larger values of ht. This is in
agreement with experimental observations" '" that for
less concentrated systems (i.e. , larger values of b, t in our
model) the particles travel a larger distance before they
cause any pore plugging. It is also intuitively clear that,
if the system is highly concentrated, more pores are
plugged and, therefore, it is more difficult for the parti-
cle to travel before any pore plugging takes place.

To investigate the effect of mean-flow orientation on
the pore-plugging process, we applied a pressure
difference at 45' to the two pore directions and thereby
produced flow in the diagonal direction. In this case, by
virtue of the pore orientations, two bonds at each node
carry fluxes into the node and the two other carry fluxes
out, i.e., they are directed away. Thus we obtain a fully
directed square network in the language of percolation
theory, though the full directedness of the network is not
intrinsic but is flow induced and dynamical. Moreover,
no pore in a particle direction is more likely to be
plugged because, on the average, all pores that are
directed away from a node carry the same flux. There-
fore, we may expect the percolation threshold of the
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FIG. 5. Reduction of the permeability of the oriented net-
work with the injected pore volume for various values of ht.

oriented network at which the permeability vanishes to
be lower than that of the usual square network discussed
below.

Figure 5 represents the reduction of the permeability
of the oriented network with the injected pore volume.
This figure shows that, at least for larger values of At,
the permeability of the oriented network decreases more
slowly than that of the unoriented one. This may be ex-
pected on intuitive grounds because the plugging of the
pores of the oriented network is more random than
those of the unoriented network. As a result, the per-
meability of the network should decrease more slowly as
more pores are plugged. This figure is in excellent
agreement with the experimental data, "'" and it may
indicate that the dominant mechanism of pore plugging
during the transport of fine particles, in flow through a
porous medium is the size-exclusion mechanism, and
that other possible mechanisms, such as the capture of
fine particles by the surface of the pores, may be of
secondary importance. Of course, capture of a solid par-
ticle by the surface of the pores depends on several fac-
tors. It depends primarily on the fluid flux within a
pore. If the flux is large, , the particle is quickly trans-
ported to the end of the pore, and it is not very likely
that the particle and the pore walls can interact with one
another and, thus, the particle may not be captured by
the surface of the pores. Capture of a particle depends
also on the ratio r of particle size to pore size. If this ra-
tio is close to unity, it is more likely that the particle
would be captured by the surface of the pores. More-
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FIG. 4. Distribution of the distances, along the direction of
macroscopic mean velocity, that the particles travel before they
cause any pore plugging.

FIG. 6. Permeability of the oriented network as a function
of the fraction of unplugged pores.
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over, if r is close to unity, the transport of fine particles
can have a strong effect on the flow field within the pore,
which can affect the capture of the particles. Another
factor that influences the capture of the particles by the
pore walls is the strength of the interaction between the
particle and the pore walls. These matters will be dis-
cussed in a future paper. '

Figure 6 represents the variations of the permeability
of the network with the fraction q of unplugged pores.
A comparison between Fig. 6 and Fig. 3 shows again
that the permeability of the oriented network decreases
more slowly with q than that of the unoriented network.
The shape of the curves in Fig. 6 shows a more dramatic
departure from that of percolation conductivity. ' It
also indicates that p ~ 1, in contrast to the exponent of
percolation conductivity (or permeability, since the two
exponents must be the same in two dimensions), which is
always greater than unity.

Other important quantities are the distribution and
the average of times that the particles spend in the
porous medium before they cause any plugging.
Knowledge of these quantities may help one to predict
the time at which the porous medium becomes macro-
scopically disconnected and its permeability vanishes. In
Fig. 7, we present the distribution of plugging times, i.e.,
the times at which a given particle, after entering the
porous medium, plugs a pore. As can be seen, this dis-
tribution is long tailed and, while most particles plug a
pore after a relatively short time, some of the pores are
plugged after a long time. Because the particle-size dis-
tribution is uniform in the interval (0,1), while the pore
size distribution is given by Eq. (1) with a = 1, pores
whose effective sizes are close to unity are very difficult
to plug and their plugging times are very large.

Finally, to investigate the effect of pore-size and
particle-size distributions on the results, we calculated
the reduction in the permeability of the network if both
particle and pore sizes are distributed according to Eq.
(1), with a = 1 for the pore-size distribution and a = —, for
the particle-size distribution. The variations of the per-
meability with the process time are shown in Fig. 8. As
can be seen, the permeability decreases very sharply and
vanishes at a relatively short time. The shape of the
curve is also somewhat different from those discussed
above. This indicates that the permeability reduction is
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FICz. 8. Time dependence of the permeability of the network
if particle- and pore-size distributions are both given by the
Rayleigh distribution [Eq. (1)].

sensitive to the pore-size and particle-size distributions,
as discussed above.

IV. SUMMARY AND DISCUSSION
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We have developed a novel Monte-Carlo-simulation
approach to the problem of reduction of permeability of
a porous medium due to the plugging of its pores by
large solid particles. The results are in excellent qualita-
tive agreement with the available experimental
data. '' '" Since in our simulations we considered the
plugging of the pores only by the size-exclusion mecha-
nism, the agreement between our results and the experi-
mental data may indicate that during the migration of
fine-particles in flow through a porous medium, size ex-
clusion is the dominant mechanism of pore plugging.

Sharma and Yortsos' have developed an EMA to es-
timate the permeability K of the network as a function
of the fraction of the unplugged pores q. For a square
network, their equation for K becomes
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K —R
R dR =q —1,K+R4 (3)

ac a'C
Bx

+ VaVC =DL +DTVpC

where V, is the mean velocity of the flow, DI and DT

where 3 =R'/r~*, and R* and r* are the mean pore
size and particle size, respectively. The predictions of (3)
are shown in Fig. 9. They are qualitatively similar to
the Monte Carlo results, but the EMA predictions of the
permeability reduction are much steeper than those pre-
dicted by our Monte Carlo simulations. Asymptotically,
an EMA predicts that K=(q —q, )", with p, = —,'. Al-
though this value of p may not be exact, it does indicate
that the value of permeability exponent in the present
problem is different from that of percolation conductivi-
ty.

The close agreement between our results and the ex-
perimental data may indicate that, at least to a high de-
gree of accuracy, the concentration C of the particles
may obey a convective-diffusion equation (CDE)

are some effective diffusion coefficients measuring the
spread of the particles in the longitudinal (macroscopic
mean flow) and transverse (perpendicular to the macro-
scopic mean flow) directions, respectively, and Vz is the
Laplacian in transverse direction. This is because of the
fact that the random walk of a particle in a flow field
can be described' by a CDE. We will investigate this in
a future paper. '

In a future paper, ' we will consider other mecha-
nisms of permeability reduction during transport of fine
particles in flow through porous media. We will also at-
tempt to estimate the exponent p in order to establish
the universality class of the permeability of the network
in the present problem.
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