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An analysis is presented of optical heterodyne detection of an intracavity field within the con-
text of quantum measurement theory. We find the intracavity density operator becomes diagonal
in the basis which diagonalizes the measured quantity, a quadrature phase amplitude of the field.
This representation is the "pointer basis, " and this result is the continuous-measurement
equivalent of state reduction. The model illustrates a general feature of continuous measurement;
one parameter given by the product of the system and measuring device coupling bandwidth and
the fluctuations in the measuring device completely characterizes the measurement. This constant
determines both the rate of diagonalization of the density operator and the rate of growth of fluc-
tuations in the system quantity conjugate to the measured observable.

I. INTRGDUCTIC)N

Since the discovery of squeezed states of light, ' mea-
surements of phase-dependent properties of the quan-
tized electromagnetic field have become increasingly im-
portant. Squeezed states of light are states of the elec-
tromagnetic field which have phase-dependent noise.
Moreover, the noise in one quadrature phase is reduced
below that of the ground state of the field with a conse-
quent increase in the canonically conjugate quadrature.
The detection of squeezed states of light is based on opti-
cal heterodyne detection. A strong coherent local os-
cillator field of fixed carrier frequency and phase beats
with the signal field on a beam splitter. The combined
field from one output of the beam splitter is then subject-
ed to standard quantum counting measurements. It is
the local oscillator which defines the phase and frequen-
cy reference for the determination of phase-dependent
properties of the signal field.

However, if the field from only one output port of the
beam splitter is measured, an unambiguous determina-
tion of phase-dependent properties such as squeezing is
difficult, as this output field is "contaminated" with
reflected local oscillator intensity fluctuations which are,
of course, phase independent. A more refined version of
optical heterodyne detection, "balanced detection, " is
now employed to overcome this problem. In these
schemes the fields from both output ports of the beam
splitter are subjected to photon counting measurements
and the photoelectron current from both detectors com-
bined before subsequent analysis. In this way local oscil-
lator intensity fluctuations may be subtracted from the
measured photoelectron current which then is deter-
mined by the state of the signal field alone.

Balanced heterodyne detection realizes a direct mea-
surement of the quadrature phase amplitudes of the sig-
nal field. However, as was first pointed out by Yuen and
Shapiro, balanced detection is necessary only when
coherent fields, perhaps with additional phase-
independent noise, are the only local oscillator fields

available. If squeezed states of light are used for the lo-
cal oscillator, balanced detection is unnecessary; single-
port heterodyne detection with such states realizes a
direct measurement of the quadrature phase amplitudes
of the signal field. In the case considered in this paper,
heterodyne detection of an intracavity field, this is the
only option as the cavity has only one output port.

The description of heterodyne detection at optical fre-
quencies is well understood and is adequate to explain all
the experimental results. In this paper we will not raise
any questions regarding the adequacy of the standard
description. Rather we wish to consider some questions
of principle concerning the description of such measure-
ments within the wider context of quantum measure-
ment theory. For example, if in homodyne detection
one is making a direct measurement of quadrature phase
amplitude as is claimed, can one speak of "state reduc-
tion" in the system upon which the measurement is
made? Another related question one might ask concerns
the concept of a "pointer basis. " ' If a system is con-
nected to a measuring apparatus constructed to measure
a particular physical quantity then it is required that the
system density operator become diagonal in the basis
which diagonalizes the measured observable. Indeed,
there are measurement models which demonstrate this
behavior. It is the purpose of this paper firstly to define
in what sense these questions may meaningfully be put in
an optical context and secondly to provide some
answers. In so doing we hope to provide a concrete ex-
ample of a recently developed formalism for a complete
description of continuous measurement in quantum
mechanics.

The paper is organized as follows. In Sec. II we de-
scribe the particular experimental scheme we wish to
discuss. It is the measurement of the quadrature phase
amplitudes for a single-mode intracavity field via
squeezed-state heterodyne detection. This system is not
the standard heterodyne configuration for which the sig-
nal is traveling wave rather than an intracavity field.
However, from the point of view of quantum measure-
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ment theory it is more instructive to consider the cavity
mode signal configuration. A simple analysis based on
mode-amplitude transformations illustrates how a
squeezed local oscillator field may be used to avoid the
refIected local oscillator intensity fluctuations discussed
above. In Sec. III we determine the evolution of the
measured system during the continuous measurement
and the evolution of the measurement results. Our treat-
ment is based on techniques recently presented by Bar-
chielli and related techniques of Gardiner and Collett. '

We show that the measured photoelectron current does
indeed realize a measurement of either canonically con-
jugate intracavity quadrature phase amplitudes depend-
ing on the phase of the local oscillator. Furthermore, we
show that the density operator of the system is diagonal-
ized in the basis which diagonalizes the measured quan-
tity. Thus the pointer basis is established and changing
the phase of the local oscillator changes the pointer
basis. The results illustrate a general feature of continu-
ous measurement, namely, a single parameter given by
the product of the Auctuations in the measuring device
and the bandwidth of the system-measuring-device cou-
pling completely characterize the measurement process.

b. (ai ) = v'rja, (co) V—1 rjb—, (co),

a. ( ai ) =v'g b, ( cu ) + i/1 —i)a, ( cg ) .

Due to the phase shift around the cavity we have

a, (co)=e' a, (cu),

(2. 1 a)

(2.1b)

(2. 1c)

where

2&
(Mo —CO )

with 0, the cavity-free spectral range and coo the cavity
resonance frequency. Equations (2. 1a) —(2. 1 c) may be
used to show

ao(co)=,~ b;(co) .
v'rl

1 —e' v 1 —rl
(2.2)

We now take the good cavity limit; that is, we assume
the loss through the output mirror is small. This limit
may be stated as g «1 and we put

with the beam splitter. These two operators are coupled
to the two external amplitudes at the same frequency by
the equations

II. THE MEASUREMENT MODEL 2&
(2.3)

A schematic outline of the experimental scheme is
shown in Fig. 1. A single-mode ring cavity field is cou-
pled to an external field via a partially transparent mir-
ror of transmittivity g. The input field with positive fre-
quency components represented by the operator b, (t)
beats with the cavity field to produce the output field
b, (t) which thus carriers information about the intracav-
ity field. This information is extracted by standard pho-
toelectron detection and analysis of the resulting current
(i (t) &. The input field, that is the local oscillator, is
prepared in a broadband squeezed state at the carrier
frequency A, „o, where LO refers to the local oscillator.

A simple description of this system may be given as
follows (see Fig. 1). Let a, (co ) denote the operator
Fourier amplitude of the cavity field at frequency co just
prior to interaction with the beam splitter and let a, (co)
denote the corresponding operator just after interaction

L
a,(co)

a (co)
b. (t)

b, (co)
PD

b,. (t) b (I)

FICx. 1. Schematic representation of the cavity quadrature
phase measurement scheme and the beam splitter relations.
a(t), b;(t), and b, (t) represent the positive frequency com-
ponents of the internal field, input field, and output field, re-
spectively. PD is a photoelectron detector.

with /&&A, /2~. Thus

($0, /2ir)'~
ao(co) = . b, (co),

/2 —i Deci
(2.4)

where Ace =coo—co. This approximates the Airy function
response of the cavity for q «1 with a Lorentzian of
width g/2. "

Information regarding the cavity field is carried to the
photodetector via the output field. To see this consider
the first- and second-order moments for the output
photon-number operator at frequency co = fbi o ——coo (res-
onance). The average photon number at this frequency
1s

&b',b, & =«.,",&+(1—&)&b,"b, &

—v'r)(1 —t))(a, b, +a, b, & (2.5)

(we have dropped the explicit reference to the frequency
co=QLo ——coo). Assume the input field to be in a broad-
band squeezed state

~

'1'& related to the vacuum by the
unitary transformation'

~

+ & = 0
~

0 & with

Utb, (co) U =a(co)+p(co)b, (co)+ v(co)b, (2ALo —co),

(2.6)
with

~

p(co)
~

—
~

v(co)
~

= 1. Such states are generated
by two-photon processes which couple modes at frequen-
cies co and 2QLo —~, i.e., the symmetric side bands of
the carrier frequency. The parameter a(co) represents a
coherent component on the squeezed field and we as-
sume

IOAe',
a(co) =,

0) co~ALo
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Using Eq. (2.6) we find

(btb, )=A + lvl (2.8)

We further assume that the intensity of the input field is
due mainly to the coherent excitation, i.e., A »

I

v
I

but that nonetheless
I

v
I

»1, and we assume» iI(a, a, ). Using these assumptions we find that

( b obo ) = ( 1 —iI ) A —2 v'iI( I —rI ) ( &e ), (2.9)

where

Xe ——(a;e ' +a,te' ) . (2.10)

X& and Xz+ &2 are the canonically conjugate quadrature
phase amplitudes of the cavity field. Thus the mean
photon number of the output field gives the mean of the
cavity quadrature phase amplitudes.

We also find the variance in the output field photon
number to be given by

V(hobo)=23 (1 —rt) I I pllv I

cos[2(H+. ((l)]

+I v
I

+ —,
' )+i)(1—il)A V(Xe),

Y

-)(b j

(2. 1 1)

where V(S)—:(B ) —(B ) and P is defined by pv
=

I pllv I

e '~. The first term in Eq. (2.11) is due to
reflected local oscillator intensity fluctuations. The ad-
vantage of using a squeezed local oscillator is due to the
fact that this term may be made small for an appropriate
choice of phases 8 and P. To see this, we redefine the
quantities p and v in terms of the squeeze parameter r
by p I

=coshr,
I

v
I

=sinhr. We also define the input
field quadrature phase amplitudes

$'& ——(b, e'~+b, e '~) .

(In fact, $ o and $ „/z are the dc components of the oscil-
lating in phase and quadrature phase amplitudes defined
with respect to the carrier frequency Q„o.) One then
easily establishes that

(b, ) =we",
V(~p) =2

I vllv I
+2

I

v
I

'+ 1 =e'"

y+-n)=2 I
v I' —2ls llv +l=e

These quantities are represented in Figs. 2(a) —2(c). The
squeezed state

I
4) is represented in a complex plane

with a vector of length A and phase 0 with "error el-
lipses" indicating the quadrature phase variances. In
Figs. 2(b) and 2(c) we represent the state with 0+/
=rr/2 and 3 »

I

v
I

»1. It is clear that for both
cases this choice of phase corresponds to a state with re-
duced intensity fluctuations and increased phase fluctua-
tions.

Returning to Eq. (2.11) we see that the first term may
be made small with 0+P=m. /2. In view of the discus-
sion of the previous paragraph this ensures that the local
oscillator is in a state with reduced intensity fluctuations.
Changing 9 through n/2 radians while ensuring 8+/
=m. /2 enables one to measure unambiguously both
quadrature phases of the intracavity field.

FIG. 2. Complex amplitude diagram for the squeezed state
of the input field at the carrier frequency. $', = P&
Y2—:Y& ~2. (a) 0,$ arbitrary; (b) H=vr/2, /=0; (c) 0=0,
(() =~/2.

III. DYNAMICS OF THE CONTINUOUS
MEASUREMENT

In Sec. II we specified the arrangement for optical
quadrature phase measurements that we wish to discuss
from the point of view of quantum measurement theory.
The measured system is the single-mode intracavity field.
The measuring device or "meter" is separated into two
stages. The first stage coupled directly to the measured
system is the external field. This is coupled to the
second stage represented by the photoelectron detector
and associated circuitry. Our description will be
confined to an analysis of the dynamics of the measured
system and the dynamics of the measurement result, that
is, the photoelectron current. It is only the coupling of
the system and the first meter stage which can directly
efl'ect the system. Preparing the local oscillator in a
squeezed state is to be regarded as an essential element
in specifying the nature of the measuring device. That
is, the measuring device is so "constructed" as to pro-
vide an accurate determination of the system quadrature
phase amplitudes.

There are two complementary aspects to a measure-
ment theoretical analysis of this experiment. Firstly one
must determine the time evolution of the measured sys-
tem and secondly one must show what system variables
determine the measurement results. These two aspects
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must finally be shown to be consistent in a sense to be
defined below.

Before presenting an analysis of this measurement it
will be useful to make some comments regarding mea-
surements in general. Consider a situation where one
makes an instantaneous measurement of some physical
quantity represented by an operator 3 (for simplicity we
will assume A to have a discrete spectrum). Let p(0)
denote the initial density operator for the system. There
are two ways in which one may think about this mea-
surement. ' Firstly consider the ensemble of identically
prepared systems described by p(0). Subject each system
to the measurement and record the result. The result of
each measurement is, of course, unpredictable in general
but must be one of the eigenvalues of A. The relative
frequency with which a particular eigenvalue occurs is
determined by P(a) =tr[p(0)

~

a ) (a
~ ] and the resolu-

tion of the measuring device. If this device is so con-
structed as to resolve the neighboring eigenvalues the
relative frequency of results is determined by P (a) alone.
One may now form a new ensemble by selecting those
elements of the initial ensemble which upon interaction
with the measurement device gave the result a. This
new ensemble is assumed to be described by the density
operator p"=

~

a )(a
~

. This assumption is often re-
ferred to as the projection postulate or state reduction.
This first sense of a measurement has been called a selec-
tive measurement. ' It is an appropriate sense when the
description of a measurement includes statements about
a particular experimental result. However, one may
think of the measurement in another sense which may be
referred to as the nonselective sense of measurement. In
this case we retain all members of the initial ensemble
after interaction with the measuring device to form the
new ensemble. If we are to be consistent with the pro-
jection postulate this new ensemble must be described by
the density operator p

' ' =g, P (a )
~

a ) ( a . In the
sense of a nonselective measurement the density operator
has become diagonal in the basis which diagonalizes the
measured quantity. This preferred basis has been called
the pointer basis. ' We see that the projection postulate
and the existence of a pointer basis are equivalent as-
sumptions regarding the interaction of a system with a
measuring device. The nonselective sense of measure-
ment is appropriate when the description of the mea-
surement concerns only the state of the measured system
and no statements about measurement results.

Varying opinions are held regarding the projection
postulate (equivalently, the existence of a pointer basis).
Are these assumptions necessary or merely a conse-
quence of the detailed quantum dynamics of the coupled
system —measuring-device complex' We wish to show
only that a pointer basis appropriate for a quadrature
phase measurement (nonselective sense) arises naturally
given certain not unreasonable assumptions about the
external field states. At this level of description we need
not concern ourselves with what happens further down
the measurement chain.

A theory of continuous measurement must show
firstly how the coupling of the measured system to the
measurement device leads to a diagonalization of the

H =Acooa a+i%~
LO

(3.1)

(we are working in an interaction picture with respect to
the external fields). The positive frequency components
of the external field at the input are

1/2

b; (co)ef dc' %co

B 277 2

where B is some appropriate bandwidth of integration.
As the cavity only "sees" external modes centered
around coo we will assume the bandwidth to be

B:ALo +c ~2 & cu & QLo+Qc/2, (3.3)

with ALo-coo, and 0, is the cavity-free spectral range.
Using Eq. (3.2) we assume that the input field may be
approximated by a one-dimensional traveling wave of
fixed polarization. The coupling of the internal fie1ds
has been chosen so that ~ has units of frequency.

The commutation relations for the operators b, (co)
and b,"(co) may be taken as

[b, (co), b; (co)]= 5(co —co') .
C

(3.4)

The state of the input field is taken to be a broadband
squeezed state with coherent excitation at the carrier fre-
quency fILo. This state is defined in Eq. (2.6), and one
easily verifies that

(b, (co) ) =2~Re' 6(co —co'), (3.5a)

(3.5b)

( b, b, (co)b,b; (co') ) =4~ 6(co —co'),p N(cu)

C

where we have put

(3.5c)

p(co)v(co) =4vr,
~

v(co)
~

=4~ N(co)/fI, (3.6)
C

We have also redefined the magnitude of the coherent
amplitude for convenience. The units have been chosen
so that M (co) and N (co ) are dimensionless, with
N(co)/II, representing the average number of quanta
per unit bandwidth.

We now derive an evolution equation for the intracav-

system density operator in a preferred basis, the pointer
basis. Secondly, it must show that the system quantity
about which information is obtained is indeed diagonal
in the pointer basis. This is the required consistency of
description mentioned in the first paragraph of this sec-
tion. Finally, it must show that fluctuations in pll those
variables which do not commute with the measured
quantity grow in accordance with the appropriate uncer-
tainty relation. All of these features are demonstrated in
the idealized models of Refs. 14 and 15. We now show
how they arise in the more realistic model of this paper.

The Hamiltonian describing the interaction of the
external field will be taken to be

1/2
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ity field. In as much as such an equation describes the
effect of the measurement on the system when no at-
tempt is made to record the results, such an equation de-
scribes a nonselective measurement. Our derivation will
follow the treatment of Barchielli.

The change in the state of intracavity field in time dt
is given by

(dSt(t)dS t(t) ) =2~
n,

'

(dS t(t)dS(t) ) =2m. dt,0,
(dS(t)dS t(t) ) =2~ dt,0,

(3.12c)

(3.12d)

(3.12e)

dp(t)=p(t +dt) p(t)—,
where

p(t +dt) =tr„o[0'(dt)p(t)pLo(t)0 (dt)],

(3.7)

(3.8)

with p„o(t) being the state of the input field at time t,
tr„o denoting a trace over all external field variables, and

0(dt)=exp 8odt+~[adB (t) adB(—t)] (3.9)

dS(t) =S(t +dt) S(t—),
w1th

1 /2

B(t)= f ds b, (s) .
LO 0

(3.10)

(3.1 1)

Using Eqs. (3.4), (3.5a) —(3.5c), (3.10), and (3.11) one finds

(dB(t))=A "dt, (3.12a)

(dS(t)dB(t) ) =2m e dt,0, ' (3.12b)

Equation (3.9) contains the quantum Wiener process
dB (t) defined by '

where N = N(Q Lo), M =M($1Lo). In deriving Eqs.
(3.12a)—(3.12e) we have assumed that M(co) and N(ai)
are slowly varying around Q, Lo —coo over the bandwidth
of integration. This is a reasonable assumption if the
cavity resonance is sufficiently narrow (g«Q, /2') and
constitutes a Markov approximation. We are assuming
that the fluctuations in the external field occur on a
much shorter time scale (and thus the spectrum of the
external field is relatively broad) than the time scale of
the cavity field which is determined by g the width of
the cavity resonance. This assumption is also implicit in
Eq. (3.8) where we have factorized the state of the total
system at the start of the time interval dt. The Markov
approximation is vital to all of what follows, and in par-
ticular leads directly to the existence of a pointer basis.
The extent to which one is prepared to accept the latter
is determined by the extent to which the former assump-
tion is justified. Inspection of Eqs. (3.12) make it readily
apparent why dB (t) is referred to as a quantum Wiener
process; both first- and second-order moments are linear
1n dt. 16

Expanding U(dt) in Eq. (3.8) to second order in a and
evaluating the trace over the external field using Eqs.
(3.12a)—(3.12e) we find

p(t +dt) =p(t) ——[Bo,p(t)]dt+Ir[e*(t)a e(t)a—,p(t)]dt

+ [2ap(t)a —a ap(t) —p(t)a a]dt+nv [2a p(t)a —aa p(t) —p(t)aa ]dt
vrx' (N+1) 2 N

0, Q,

e " [2ap(t)a —a p(t) —p(t)a ]dt0,
(3.13)

R =exp[g (a; b; a, b, )]—
e [2a p(t)a —a a p(t) —p(t)a a ]dt,0,

i (0—AL~r)
where e(t) = Ae

To make a connection with the discussion of Sec. II we note that the transformations of Eqs. (2.1a) and (2.1b) are
defined by the unitary operator

as

bo ——R bR, ao ——R aR,
with i/71=sing. In the good cavity case, il «1 and thus g =il=(2ir/0, . If we write ~=gQ, /2ir, then the good
cavity approximation consists in taking

gQ,
(3.14)

Thus in the good cavity case the evolution equation for the cavity field may be written
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dp(t) i— gQ,
dt [H, ,p(t)]+ 2'

[/2

[e*(t)a e—(t)a,p(t)]

+ ~ (%+1)[2ap(t)a —a ap(t) —p(t)a a]+ ~ X[2a p(t)a —aa p(t) —p(t)aa ]2 2
r

2iALot —2t AL~M* [2 p(t) — p(t) —p(t) ]— M [2 p(t) — p(t) —p(t) ],
2 2

(3.15)

where Ho ——R~oa a. We now transform to an interaction picture for the intracavity fields via

—tO, L&a atV(t)=e

dpr(t)
dt

id[—a a,p(t) j+
2w

A [ae ' —a e', pr(t)]

The evolution equation in this interaction picture becomes
1/2

+ (N +1)[2 ap(rt) a —a apr(t) pr(t)a —a]+ Ã[2a pr(t)a —aa "pr(t) —pr(t)aa ]2 2

2
M*[2apr(t)a —a pr(t) pr(t)a —]— M [2a pr(t)a —a a pr(t) pr(t)a a—],

2
(3.16)

where 6 =~o—Lo.
This is the master equation in the interaction picture for a single mode interacting with a squeezed-state bath and

was first obtained in a quantum optical context by Gardiner and Collett' (with b. =0). The first term in Eq. (3.16)
represents the free evolution of the cavity field. The second term represents a coherent driving of the cavity. Note
that the field seen by the cavity is enhanced by the factor (gQ, /2ir)'r .

Writing M =
~

M
~

e ', Eq. (3.16) may be written in terms of the quadrature phase amplitudes; thus

dp, (t) $0,
dt

i 5[X~+X q+ —rr, pr(t)] 2i A — [X~sin(8+$)+X~+„eicos(8+$),pr(t)]+ '
277

igl2[X&, jX—
& r~, pr(t)] ]+igl2[X& rz, IXt„pr(t) I ] (3.17)

'"[&p, [Xt, pr(t)] j 4e'"[Xp .r
—[Xt, .~ Pr(')]]

where

X —= —,
' (ae '~+ a te '~)&=Y (3.18)

2 —2f(Xt,+ ri) =pe =D~+
dt

(3.19a)

(X~)=pe ":D~ . —
dt

(3.19b)

and we have used
~

M
~

=sinhr coshr, X =sinh r. The
first and second terms in Eqs. (3.17) have been discussed
in the previous paragraph. The third and fourth terms
represent damping of the mean quadrature phase ampli-
tudes (X&+ zz) and (X&), respectively. The fifth and
sixth terms have two very important effects from the
point of view of measurement theory. To see what these
are let us imagine for the moment that they are the only
terms in the master equation. The evolution equations
for the second-order moments are then easily shown to
be

Thus both quadratures experience a diffusion with
diffusion constants D&+ /2 and D& for X&+ /2 and X&,
respectively. If the squeezing of the local oscillator is
significant D&+ /2

——0, while D& becomes quite large. In
this case the measuring process is causing fluctuations in

X& to grow at a considerable rate. If there is no squeez-
ing in the external field (r =0) the fluctuations in each
quadrature grow at the same rate. Thus the first effect
of these double commutator terms is to drive the fluctua-
tions in the cavity quadrature phase amplitudes.

To understand the second effect let
i
x ) and

~ y )
denote the representations which diagonalize X'~ and
X'&+„&z, respectively. If D&+ /p 0, then

q, (y I p I

y') = —Dp(y —y')'(y IPI y') .

It is immediately apparent that there is a rapid decay of
the ofl'-diagonal terms (i.e., the "coherences") in the basis

~ y ), which diagonalizes X&+ &~. This decay depends
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b, (t)=0 (t)b;(t)~(t), (3.21)

where U(t) is the unitary time evolution operator for the
coupled cavity and external fields. To analyze the pho-
ton counting process we define the photon-number sto-
chastic process A(t),

P, (t)= f ds b, (s)b, (s) .
LO

(3.22)

The corresponding output operator is

8,(t)=U (t)1V;(t)0(t) .

Using a result from Barchielli,

N, (t)=U r N, (t)Ur, 't'T &t

(3.23)

on D& and the square of the separation of the super-
posed states forming the off-diagonal terms. This latter
dependence is characteristic of coherence decay in open
systems and provides an automatic semiclassical lim-
it. ' ' It would appear that the pointer basis is the
basis which diagonalizes X&+„z2 and thus X&+~&2 is the
measured quantity. Similar statements would hold for
X'& in the case that r &0 with

~

r
~

&& l. If there is no
squeezing in the external field D& ——D&+ &2 and the evo-
lution tries to diagonalize simultaneously in the basis

~

x ), y ). Thus the second effect of the fifth and sixth
terms in Eq. (3.17) is to diagonalize p in the basis which
diagonalizes X& (fifth term) and X&+„&2 (sixth term).

Let us summarize the results obtained above for the
case that the external field is prepared in a highly
squeezed state. The evolution of the cavity field is such
as to diagonalize the density operator in the basis which
diagonalizes X'&+„&2 and to cause the fluctuations in the
conjugate variable X'& to grow. The rate of both these
processes is determined by the constant D& ——ge ". The
fluctuations in X'&+ &2 grow at the much smaller rate
ge ". These facts suggest that the model realizes a
measurement of X'&+ &2. To verify this conclusion we
now turn to an analysis of the measured result.

Information about the intracavity field is carried by
the output modes bo(t) and is "extracted" via standard
photon counting. As discussed in Ref. 9 the output field
operators are simply the Heisenberg picture operators
for the external field, i.e.,

The mean output current from the photoelectron
counter is given by'

(i(t)) = f F(t —t')(dNo(t) ), (3.25)

where F(t —t') is the detector response function. For a
detector with an instantaneous response

(3.26)

(factors of electronic charge, etc. , have been set to unity).
Using Eq. (3.9) we find that in the good cavity case,

(dN o(t)) =(dN, (t))+1)..(a(t)dB (t)+a (t)dB(t))

+g(a (t)a(t))dt —g(dB (t)dB(t)) .

A (Xe(t) ) +g( a a ), (3.28)

where

X (t)=a(t)e " +a (t)e (3.29)

is the intracavity quadrature phase at the reference fre-
quency ALo. If we assume that the cavity enhancement
is such as to make the third term in Eq. (3.28) the dom-
inant term [i.e., (gQ, /2~)' &&1, A &&N], then

]/2

&i(t)) = 2' (3.30)

The mean photocurrent is directly proportional to the
intracavity quadrature phase defined with respect to the
local oscillator carrier frequency.

We now consider fluctuations in the measured result
as determined by the current two-time correlation func-
tion,

(Ai (t, )bi(t, )):—(t (t, )t (t, )) —(t'(t, ) )(t (t, ) ),

(3.27)

The averages in Eq. (3.27) may be found using Eqs.
(3.10), (3.11), and (2.6). The final result is

dNO(t) =(1—g)N+ A
dt

we find that

dlV'o(t) = U t(t)U (dt)dS, (t)0(dt)U(t) '. (3.24)
I

with t, ) t2. This function is given by

(3.31)

tl t2
(Ai(ti)bi(tz)) = f ds& f ds2F(ti —s&)F(t2 —s2)[(dNO(si)dNO(sz)) —(dN0(s, ))(dNO(sz))] . (3.32)

(bi (t, )bi(t2) )

=2A [N+
~

M
~

cos[2(8+/)]+ —,
' I5(t, , t2)

+ A'~'(We(t, )dX, (t, ) ), (3.33)

Let us again assume that the photoelectron response
function is instantaneous. The analysis of Sec. II further
suggests we assume A »

~

M ~, N. With these two as-
sumptions we find

I

where

sin[I', ( t 2
—t, )!2]

6(t, , t, ) = II, (t, t,)—
2

The first term in Eq. (3.33) represents the white-noise lo-
cal oscillator intensity fluctuations rejected from the
cavity into the beam splitter. The last term in Eq. (3.33)
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is simply the two-time correlation function for the cavity
field quadrature defined in Eq. (3.29). Clearly for this
scheme to realize an unambiguous measurement of Xe(t)
we need to minimize the first term in Eq. (3.33). As in
Sec. II this is achieved by the choice 8+$=7r/2, for
which the first term reduces to

We conclude that this scheme realizes a measurement of
X'&(t), provided 8+ / = rr/2 and r » 1 with» [M [,N.

We must now check for consistency as discussed at
the beginning of this section; that is, we must verify
that the cavity field density operator is diagonalized in
the basis which diagonalizes Xe(t). Firstly we note that
the master equation (3.14) is in the interaction picture
defined by the frequency ALO and thus the quadrature
phase operators appearing in this equation are defined
with respect to this frequency. There are two cases to
consider.

(a) 8=0, P=~/2. In this case,

Xg o(t)=[a(t)e +a (t)e Lo ),
which in the interaction picture becomes

Xe o ——(a+a )=J) .

The density operator is diag onalized in the basis of
X&+„&2 which in this case is the basis of X, . Thus the
density operator is indeed diagonalized in the basis
which diagonalizes the measured result and consistency
is established.

(b) 0=sr/2, /=0.

Xo „~2(t)= i [a (t)e — a(t)e ], —

which, in the interaction picture, becomes

X2= i (a ——a ) .

The density operator is diagonalized in the basis of
X /2 =&2. Thus consistency is established.

IV. CONCLUSION AND DISCUSSION

We have given a quantum measurement theoretical
description of squeezed-state heterodyne detection of an
intracavity quadrature phase amplitude. The results il-
lustrate some important features of the quantum theory
of continuous measurement. An analysis of the mea-
sured result reveals what system observable has been
measured. An analysis of the measured system shows
that the system density operator becomes diagonal in the
basis which diagonalizes the operator representing the
measured quantity. Furthermore, fluctuations in the
canonically conjugate quantity are driven by a diffusion
process. One parameter D suffices to describe both the
diagonalization and the diffusion process. In the exam-
ple of this paper D =D& [Eq. (3.19b)]. The rate of
diffusion is proportional to D and the rate of diagonali-
zation is proportional to DX, where X is the separation
of the superposed states. That coherences decay in this
way is a typical property of open quantum systems. '

The essential assumptions which lead to these results
are as follows. Firstly, we have assumed there are two
widely separated time scales: (i) r~ the response time of
the measurement and (ii) r& the correlation time of the
meter states. In the frequency domain we have the
bandwidth of the response B„=(~z )

' and the band-
width of the meter noise B~=(r~) '. These time scales
are such that r~ &&r~ (B~ &&Biv). Secondly, we have
assumed that over a bandwidth Bz the meter noise is
essentially white. Finally, we require for a "good" mea-
surement the noise level of the meter X over the band-
width B~ may be made very small. In our model B~ =g
and X=e ". When these assumptions are satisfied, the
evolution of the system is given by a Markovian master
equation characterized by a parameter D =B~X '. For
a good measurement we require D to be very large.

A formal description of continuous measurement
which leads to this behavior has been developed by Bar-
chielli and co-workers. ' The results of this paper show
that optical heterodyne detection is a measurement
which falls under this general description. The assump-
tions required to establish the formal description are
quite clearly exemplified in the model of this paper, and
perhaps clarify the class of measurements which may be
described by the general formalism.
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