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We present a general formalism of the theory of a three-level atom interacting with one-mode or
two-mode cavity fields of arbitrary detunings. The dynamic behavior of the mean atomic level oc-
cupation probabilities are investigated numerically as functions of time and detuning parameters.
A number of novel phenomena are discovered and discussed.

I. INTRODUCTION

There are very few quantum-mechanical models that
are exactly soluble. The Jaynes-Cummings (JC) model'
is one of them. It has been studied extensively because
of its simple and realistic representation of the dipole in-
teraction between an atom and the quantized radiation
field.

When the cavity mode is initially prepared in a
coherent state, the JC model is found to possess a num-
ber of interesting features. The Rabi oscillations for the
principal dynamic variables such as atomic level occupa-
tions have a Gaussian decay envelope despite the loss
free nature of the model. Analytical expressions for the
time dependence of the density matrix elements of the
atom have been derived, and the coherent JC model has
been shown to be related to the quantum theory of
lasers in an earlier review. It has also been found from
the study of photon-number probabilities that the atom
acts like a nonlinear filter on the coherent properties of
the interacting field. In addition, the model has a strik-
ing feature discovered in 1980—the decayed Gaussian
envelope of Rabi oscillations revives spontaneously.
Thus it may be regarded as a useful model for the study
of irreversibility and the long-time coherence properties
of interacting fields. The quantum collapse and revival
phenomena are recently studied in detail for the JC
model with cavity damping and for a system of two
atoms interacting with a quantized radiation field. It is
found that the Rabi oscillation envelope is not Gaussian
any more.

In short, the most important attraction of the JC
model is that it exhibits, without perturbative expansions
or statistical decorrelations, many quantum-mechanical
effects in the case of strong or weak interaction, long- or
short-time regime, on or off the resonance.

To investigate the physical phenomena associated with
the two-photon process, it is necessary to extend the JC
model to the three-level atom. The dynamical behavior

of an atom (two level to three level) interacting with
quantized cavity fields has been discussed in a recent re-
view in which one finds detailed discussions on quan-
tum wave-packet collapse and revival phenomena,
coherent trapping states, and experimental prospects.
More recently, the interaction of a three-level atom with
two cavity fields is investigated numerically. The mean
atomic occupation and mean photon numbers for
different stimulating sources and equal detuning are dis-
cussed. Furthermore, the dependence of coherent prop-
erties of the stimulated fields on the stimulating sources
has also been studied. ' It is found that double stimula-
tion will cause the field to approach its initial coherent
state and that different stimulating sources have different
effects.

However, discussions in existing literature have been
limited to one-photon or two-photon resonance with
equal detuning. It is therefore desirable to investigate
the off-resonance behavior of the interaction. In this
series of papers, we shall formulate the general problem
of a three-level atom interacting with one- or two-mode
cavity fields with arbitrary detunings. The theory
developed here should also be useful in dealing with oth-
er three-level problems such as double resonance, two-
mode lasers, and so on. We present in this first paper
the general formalism which is then applied to investi-
gate the time evolution as well as the detuning depen-
dence of the mean atomic level occupation probabilities
for two specific cases of interest. A number of novel
phenomena such as symmetry, asymmetry, and antisym-
metry of the probabilities with respect to the detuning
parameter on or off the resonance of the other mode are
exhibited. Studies on the photon-number probabilities,
possibilities of squeezing and antibunching, coherent
properties of the field, and the mean value of dipole
operator are now underway and will be reported in the
near future. As the experimental techniques are devel-
oping to realize a single atom in a cavity, " these studies
are no longer limited to academic interest only.
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II. FORMULATION OF THE THEORY

Consider a three-level atom interacting with the radia-
tion field in a cavity. Let the three levels be denoted by

1
c2 &,

1

b &, and
1

c &. If we limit our discussions to the
electronic dipole transitions

1

a &-
1

b & and
1
a &-

1
c &,

then there are three distinct atomic level configurations
as shown in Fig. 1. Following Ref. 8, these are called A,
:-, and V types. The transition

1

b &-
1

c & is forbidden in
this scheme.

If only one mode with frequency Q of the electromag-
netic field participates, the Hamiltonian on the rotating-
wave approximation can be written, in the interaction
picture, as

H =1'(H0+H'),

where

Ho —— g co„A„A~+Qa a
g=a, b, c

and the interaction H' for A type,

H'=A e1' aAtAb+X2e 'aA, A, +H. c. , (3a)

with 6& ——0—co, +cob, 52 ——0—co, +~„for " type,

(3b)

with b, 1
———(0—cob+co, ), b, 2 ——0—co, +co, ; and for V

type,

and k2 are the usual coupling constants.
In a similar fashion, we write the Hamiltonian for

two-mode coupling in which mode 1 is coupled to the
transition

1

a &-1 ' & and mode 2 to
1

a &-1 c & as follows:

Ho —— g co„A „A„+ g 0;a, a, . (4)
g=a, b, c

For A type,

i =1,2

—iA)t —i 52tH'=A, ,e
' a] A, Ab+A2e a2A, A, +H. c. , (5a)

with b i
——0,—Ma+Mb& A2 B2 Ma+~c& for = type,

ib, )t —ih2tH'=A. ]e a, Ab A, +A2e a2A, A, +H. c. , (Sb)

with b, 1
———(01—cob +co, ), b, 2

——n2 —co, +co, ; for V

type,
ib, [t i 52tH' = k&e a ] Ab Aa +k2e a 2 Ac Aa +H. c. , (5c)

can be solved at the same time. Let us assume that the
initial state is, for one mode,

(7a)

with b, , =(tI, —cob+co, ), b2= —(02 —cu, +co, ). Here
a, (a, ) is the creation (annihilation) operator of a photon
in mode i. For both cases of one-mode and two-mode
field, the Schrodinger equation

i
1

p—(r) &
=H'

1
g(t) &

8
at

ih)t i 62tH'=A, )e aAb A, +A2e aA, A, +H. c. , (3c) and for two modes,

with b, , = —(tI cob+co, —), b, 2= —(Q —co, +co, ). In the
above equations, the operator A „(A„) creates (annihi-
lates) an atom in the state 12) &, and a "(a) creates (an-
nihilates) a photon in the mode under consideration.

10(o) & =
I n 41 42& 19&14142& (7b)

where we have expanded the photon state into a set of
Fock states, i.e., for one mode,

(0)
1
g&=QQ(n)

1

n &

and for two modes,

(Sa)

1 2 1 1 2 2 1 2

nl, n2

(Sb)

(b)
I b&

Ic& At a time t )0, the state vector becomes' ' for one
mode,

1
p(t) & =QQ(n)[A(n„t)

1
a, n, &+B(nb, t)

1
b, nb &

la& +C(n„t)
1
c,n, &] (9a)

lc& and for two modes,

I
@(r)&= g Q1(n1)Q2(n2)

nl, n2

Ic) x [A (n1„n2, , t) 1
a, n 1, , n2, &

+B(n lb n2b r )
I
&.„,.„&

FIG. 1. Typical configurations of the energy levels of a
three-level atom. (a) A type, (b):" type, and (c) V type. +C(n„,n „t)1 , „e, n, &], (9b)
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i 62tiC= V2e ' A,

(10)

where A stands for the probability amplitude A (n„t ) or
A(n„, nz„t), etc. The Vs are just constants depending
upon the particular case and particular type of the atom-
ic configuration.

To solve (10), we assume C=e'"'. Substituting this C
in (10) we find that p satisfy the third-order equation,

P +X1P +X2P+X3 =0,3 2

where

X, =6,—262,

Xz = —
l: V1+ Vv+~2(~1 —~2) l

X3 ——(62 —b, )V2 .

Equation (11) is similar to Eq. (3.2) in Ref. 14, Eq. (5) in
Ref. 15, and Eq. (4) in Ref. 16. It is expected to have
three different real roots. ' ' The explicit expressions
for these roots are

C 2,3=+( V1+ Vz)'"

for one-photon resonance (b, , =62 ——0);

(13)

where n„ is the photon number when the atom is in the
level g, and n,.„is the number referring to the mode i.

Using the interaction Hamiltonian (3) or (5) and the
state vector (9), the Schrodinger equation (6) can be re-
duced by a standard procedure' ' to a set of coupled
equations

—i b, 1t —i 62tiA =V e 'B+V2e 'C,

P1=52

1u'2 3 T ( +2 b1 )+—[V 1 + V, + ( b 2 b1 ) —/4 ]

for the special case' in which 51/42 ———V, /V2, and

p'1 Tx1 +T(x1 3x2) cos~ ~

1 2 1/2

@2=—Yx1+T(x 1
—3xz) cos(61+ 777)1 2 2 1/2 2

p3 = ——,x, + —,(x, —3x2 ) cos(8+ , 77)—1 2 1/2 4

39X 1X2
—2X 1

—27X 30=-,' cos
2(x', —3x, )'"

(19a)

(19b)

(19c)

(19d)

—iA t
A = —e ' Q U, 112,;e

i (61 ~ 2))t 2
3

tp, . t
e ' ' g U,. (11z, —b,211', —Vz)e

1 i =1

C=Vzg Ue (20c)

The coefticients U; depend on the level configuration and
initial condition. Their explicit expressions are calculat-
ed and listed in Table I, which is very useful in various
calculations.

The atomic level occupation probabilities are most
easily calculated from the density matrix which is
defined by

P(t) =
~
g(t) & ( 1t (t) ~, (21)

IP1t
in general. In any case, we can write C =C1e

tP2t rP3t+Cze +C3 e and insert it in ( 10) to obtain the
solution

P, =0, Pz 3
——

2
+( V, + Vz+ b, /4)' (14) where the state vector is given by (9) with the probability

amplitudes (20). The results are, for one mode,

for two-photon resonance (6, =62——5);
(62 —5)V', b,, (g, g) V',

+P2 3
—— +G+

G —b, z/4 ' 2 2G ( b, z /2+ G )

( V2 + Vz +g2/4)1/2

for nearly two-photon resonance' (
~
b1 —42

~
&&bz);

(15)

P, (t)=QP(n)
~
A(n„t)

~

and for two modes,

P, (t)= g P(n„nz)
~
A(n„,nz„t)

~

n1, n2

for one mode,

(22a)

(22b)

(bz —6, ) Vz
P1=

1+ 2

(2b.z
—b, ) V1 + b, z Vz +V2 V2
2(V, + Vz)

Pb(t)=QP(n)
~

B(nb, t)
~

(16) and for two modes,

Pb(t)= y P(n„nz)
~
B(n,b, nzb, t)

~

';
nl, n2

(23a)

(23b)

for small detunings or strong fields (
~
6, ~, ~

62
~

«V1+ Vz);

V3=~2+ V1 /~1+ V2/~22

for large detunings and weak fields (
~
b1 ~, ~

b, z ~» V1, Vz);

for one mode,

P, (t)=QP(n)
~

C(n„t)
~

and for two modes,

P, (t)= g P(ni, nz)
~
C(n1„nz„t)

~

n1, n2

(24a)

(24b)
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where
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and

P(n)=
I
Q(n)

I

2

+ U, U3[cos(p, p—3)t —1]

P, (&)=2 2 [cos(pi —p2 )r 1 ]

(25a)

for the coherent state,

P(n)=e "n "In!,
for the thermal state

P(n)=n "/(n+1)" +'

(25b)

(25c)

i'"2)=
I Qi((n, )

I

2
I Q („2

al photoil disti ib t' 8

ly related to the
' ' '

1

o and hence are direct-
initia state of the fi

for the Fock state,
e eld. Examples are,

P(n)=5
nn

+UU c3 [cos(p2 —p3)t —1 ] I V P(z n ), (28b)

Pb(&)=1 P, (—r) P, (—r) . (28c)

(29)

Here we have me made use of the in'e initial conditions

The mean ho
fr

p oton number can be
rom these results. W'

is given by

e obtained directl
'a photon number n tr n, it

( n( r)) =n+P, (r)+2P, (r

and for the squeezed state

P(n) =(n!cosh y) (P/2)(c osh y) "Y "H„H„( Y)

Xexp[ —P (1—tanhy)],

where n is the mean hmean p oton number in t
th d tt"

matter to verify that

P. (&)+P,(r)+P, (r) =1 .

(25d)

(26)

The factor 2 in the 1

„11 o o
I

b

'n e ast term is a

d t, h r 0th h
I~~ and a

b
at the field intensit

'
e

h d h
The probab 1

wo-p oton stimuu ated emission.
q

e unmg parameters b, ('— Thes, i=12) ar
e time t is in 1/A, . Th e initial mean

!0

III. ATOMIC LEVEL
OCCUPATION PROBABILITIES (a)

We shhall now discuss the atomi
b b'1 t' th h g

For one-mode " type, the atom st
p oton distribution

Fo Tbl I fid

1 V1 ~P12P13

U2 V1 /P2 1P23

3 V1 ~P31P32

(27)

d V —A,and V, =hi(n+1), V =1, (n+2
w ic weta e(9)and

' g

d f o 11 1ew at engthy but strai " s, we
g'

occupation probabilities
ua-

P, (t)=2 g [ U, Ui 2pip2[cos(pi —p2)r —1]
(c)

0

'JO

+ U1U 3plp3[cos(p, —p3)t —1]

+ U2U 3p2ii3[cos(p2 —p )t —1
' 'P n''P(n),

(28a)

0 2

FIT&. 2. Short-tir -time behavior of the a
probabilities for 5 =5. ((a) P (t

e atomic level occup t(, ), (b) Pb(t), and (c) P, (t).
upa ion
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photon number is arbitrarily taken to be n =30. The re-
sults are shown in Figs. 2—5. For a fixed value of 6, ,
the probabilities are plotted as functions of t for five
diferent values of Az. Figure 2 depicts the variation in
short-time regime and Fig. 3 shows the variation in
long-time regime for 6& ——5. It is observed that the oc-
currence of collapse and revival ' depends upon the de-

tunings. In the case of two-photon resonance, or when
6, =62——5, both the first collapse and first revival occur
in the shortest time. This time becomes longer as

~

b, -1"
b, 2! increases. On the other hand, the effects of detun-
ings on the oscillation frequency and on the time of re-
vivals after the first one do not seem to be regular. This
means that the dependence on the detunings of the

0
I'

I I I l I

Dp=5

.auUll+lluaa~. „
-~~rnmggpmlHw

~g~iQiSha~sss .~
~P7fgggggggf ~~

I I I I

UQJ~~~~~~ .~ ~mmnaqgyernw~&~~' ~

I I I I I

z&=0
~~ggggllllilLURss)""~~WIN&~

I I I I I I I

I I I I

0
I L

2077

Igl'QlllSs
I I I I I I

407r

Pb

Ra ~ -—e—

0
I

Dp=5

0
I

Z, =O

0
I

0
I

'

~

nfl lIhlll!~

0
I I

20Tt
I

40 7T

t
FIG. 3. Lon - '

P, (t).
ong-time behavior of atomic level occUpation probabilities for 6 =5 and several choices of & . (a) p (t) (b) ( )

1 g r b
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0
I

k&4~4Rkk
V 'T

P 1

I

--vv ~ F

0 2077

FIQ. 3. (Continued).

coherence can be rather complicated, and further study
is necessary before more definite conclusions can be
made.

During the time period between the collapse and the
revival, all the occupation probabilities are nearly con-
stants and their values depend strongly upon the detun-
ings. This may reAect the "competition" among the
three probabilities. ' It is also seen from these figures
that the probabilities take their extremum values at the
two-photon resonance 6, =62——5. While P, and Pb are
both at minimum as 6& ——52 ——5, P, is at its maximum.
This interesting phenomenon is resulted from the two-
photon transition. In addition to the existing transition

~

a ) ~
~

c ), there is now strong two-photon transition
~

b ) ~
~

c ). Thus the probability of finding the atom in

~

c ) is greatly enhanced and at the same time P, and pb
are at their minima. When the detunings are far from
two-photon resonance, the amplitude of P, decreases.
This may also be attributed to the two-photon process
because there is practically no two-photon transition in
this case. Since the larger value of

~
b, -b, z ~

implies that
52 is also far from one-photon resonance, there is only
weak correlation between P, and the field. Consequent-
ly, the coherence effect is weak and P, oscillates with
small amplitude.

To see how the probabilities depend on the detuning
parameters at a given time, we plot in Fig. 4 the varia-
tion with 62 at different stages of time for 6,=0. The
same plot is made in Fig. 5 for 6,=5. In both cases, it
is observed that the oscillatory dependence of the proba-
bilities on 52 will appear, then disappear, and then ap-
pear again. This is because the probabilities also have

oscillatory time dependence. We are not able to explain
why rapid oscillations occur in these figures. We note,
however, that the probabilities oscillate with large ampli-
tudes, indicating strong correlation, when t=8m (in the
first revival region) and t =151r (in the second revival re-

gion), while the oscillation amplitudes are small, indicat-
ing weak correlation at t = 101r (in the collapse region).

Another feature we observe from Figs. 4 and 5 is that
all the curves in Fig. 4 (b, , =0, on resonance) are sym-

metric with respect to 52 ——0, and those in Fig. 5 are all

asymmetric (b. , =5, off resonance) with respect to b, z
——0.

We believe that this is due to the joint effect on the two-
photon transition and ac Stark shift of the atomic levels.
This asymmetry which is sometimes known as disper-
sion' can also be observed in Figs. 2 and 3.

We now turn our attention to the second case, two-

mode A type. Here the initial atomic state is
~

a ) and

the initial photon distribution is again a coherent state,

namely,

't+) +&2 ~ n]P(n„nz)=e n, n z In, !n,!, (30)

and

U1 (I 1+~12)~P12P13

U2 (Pz+ 512)/I 211 23

U3 (1 3+512)/1 31@32

(31)

where n, (n z ) is the initial mean photon number for
mode 1(2). As what we have done previously, we first
find from Table I
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f=o "0.5

p - I.O

- 0.5

p IO

- 0.5
t=O

I.o

-05
Pb—-I.O

- 0.5

P -I.O

-0.5

) =O.ger

1

~=0.477-

) =0.87T

f =$77
I I

I I L

II I

I

-IO 0 lo -ID 0 ' '

l52

ation probabilities vs 6z forFIG.~ 4. Atomic level occupa ion

5& ——0 at different times.

Ip -Ip 0 Ip -IO 0
Dp

-IO
Dp

ation robabjlj. ties vs ~zFIG. 5 Atomic level occupa ion p
6 =5 at different times.I

IO

V) ——A, )(n ) + 1),
V2 =X2(n2+1) .

(32)
P (r)=2 X I UI U2[cos pl p2 )r —1]C

the r

)r —1P. (r) =1+2 ~ [U U2plp2[«s(p| —p2

Substituting (32) inin (12) and t enh (19), we can find the
h o-mode equations inbilities from the two-m

tdio b t t ihtf d22 —(24). The calculation is tedtous u
and esults are

+ U, U3[cos(p, —p3)t —1]

+ U~ U3 [cos(p2 —p3)t—2
— t —1 P(n&, nz),

+ Ul U3plp3[cos(pl —p3 )r —1] P„(t)=1 P, (r) P, (r), — — (33c)

+ U~»S u3[cos(S ~
—V3 )r —1]]

(33a)&(P(n, , n2 ), use of the initial conditionsw ereh we have made use o t e
=0.P, (0)=1 and PI, (0)=P,(0)=
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FIG. 9. Long-time behavior of (a) P, (t), (b) Pb(t), (c) P, (t)

for 6) ——5.
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With the initial mean photon numbers n, and nz, we
have the mean photon numbers for the two modes

( n t( r)) =n, +P~(&),

(n, (r))=n, +P, (r) .

(34a)

(34b)

It seems that only one-photon transition is possible in
this case.

Equations (33) are calculated numerically for the occu-
pation probabilities. For simplicity and definiteness, we
set A,

&

——kz ——k and n
&

——nz ——5. The detuning parameters
are measured in the unit of A, , and the time is in 1/X.
The time variation of the probabilities are plotted for
selected Az values in Figs. 6 and 7 when mode one is on
resonance, that is, when 6, =0. Figures 8 and 9 show
the same plots when mode one is off resonance, 5,= 5 in
this case. It is observed in Figs. 6 and 7 that as

~
Az

~

increases, the collapse time increases, the revival time
decreases, and the probabilities oscillate with lower fre-
quencies. There is no such regularity when mode 1 is o6'

the resonance as can be seen in Figs. 8 and 9. Therefore
the dependence of coherence on detunings can be very
complicated. The complex situation is understandable if
one looks at Eqs. (33). Each of the occupation probabili-
ties contains three sets of beat frequency, namely,

p $ pz pz p3 and p &

—p3 ~ They determine, in turn,
three series of coherent oscillations of which every one
has its own collapse time, revival time, and oscillation
frequency. Furthermore, the eigenvalues p&, pz, and p3
are all complicated functions of 6, and Az. Therefore,
the dependence of occupation probabilities on the 6's
cannot be analyzed in any simple manner.

Pa -l.o Pb -l.O
t=0 lvr 05. P l.O

-0.5

It is also observed from these figures that in the case
of two-photon resonance or A, =hz, the collapse time is
shortest, the revival time longest, and the vibration fre-
quency highest. The probabilities P& and P, oscillate in
phase and both of them are out of phase with P, which
remains large. Consequently it is more probable to find
the atom in

l
a ) than in other states and hence the

two-photon transition is suppressed by the one-photon
transitions

~

a ) —
~

b ) and
l
a ) —

~

c ). Now these one-
photon transitions have the same coupling constant
(Xt ——A, 2), and the stimulated fields have the same
strength (n t n2 ).——When the detunings are also the
same (5t =b,2), the two one-photon transitions are under
identical conditions, and therefore have the same proper-
ties. Apparently these conditions are just right for the
collapse time, revival time, and oscillation frequency to
be at their extrema. Whether or not this is a mere coin-
cidence remains unknown, and more careful investiga-
tion is required to understand the physical picture.

Moreover, we notice that as
~

b, 2 ~

increases, the am-
plitude as well as the mean value of P, decreases. This
indicates that the more mode 2 deviates from the reso-
nance, the weaker its coupling with the atom results.
On the other hand, the coupling of mode 1 with the
atom is strengthened because both the mean value and

Pb

~~ t=04vr.
t=Q57T

~~ t=0Bvr.
~~ t=09'.

I I I ~ t I I I I i ~ ~ I I I I I k

-Io 0 IO -IO 0
I ~ I I I I I I I I

Io -IO 0 IO -IO O lO
I

-IQ O lO

FIG. 10. Atomic level occupation probabilities vs 6& for
various choices of 52 at t =0.5.

FIG. 11. Atomic level occupation probabilities vs 6, for
various choices of time with 52 ——5.
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amplitude of P& increase with increasing
~

Az
~

. This
reflects the competition between the atomic occupation
probabilities. From Figs. 9(b) and 9(c), we see that the
mean value of Pb is greater for 62 ———5 than for 62 ——5.
From the competition point of view, we expect the mean
value of P, for 62 ———5 to be smaller than that for
52 ——5. Actually, the opposite is true, the mean value of
P, is also greater when hz ———5. This may be attributed
to the ac Stark effect. ' When 6& and 62 have opposite
signs different modes appear to mutually support each
other provided that the field strengths are within a cer-
tain range of variation.

The occupation probabilities at t =0.5~ are plotted in
Fig. 10 as functions of 4& for various choices of Az. Evi-
dently the curves for Az ——0 are symmetric with respect
to 6& ——0. On the other hand, each of the probabilities is
antisymmetric with respect to 62 ——0. Such novel phe-
nomena exist at any arbitrary time. The probabilities
are also plotted in Fig. 11 for a fixed A2 ——5 but different
times. The asymmetry or dispersion phenomena become
remarkable for t ~0. 1m. In addition, it is also clear that
the probabilities show oscillatory dependence on 6, and
the oscillation frequencies become alternatively high and
low as t increases. We are not able to offer explanation
for these interesting phenomena at this stage but merely

point out that similar situations have been reported in
Refs. 16, 20, and 21.

IV. SUMMARY

We have established the general formalism for a
three-level atom interacting with one- or two-mode fields
of arbitrary detunings. The formalism applies to semi-
classical as well as quantum-mechanical treatment of the
problem. The atomic level occupation probabilities and
mean photon numbers are obtained for two typical cases
as functions of the detuning parameters. For the special
case of two-photon resonance, 6

&

——62, our results
reduce to those in the existing literature. ' A large
amount of numerical work has been carried out and a
number of interesting novel phenomena are discovered
and discussed. Off-resonance behavior of such proper-
ties as coherence, squeezing, and antibunching as well as
photon-number distribution will be reported elsewhere.
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