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A theory of Rydberg and continuum states in intense laser fields is developed based on the ob-
servation that the effect of laser radiation can be described in a scattering formulation as a finite-

volume interaction coupling Coulomb-type fragmentation channels. In particular, laser-induced

couplings may be incorporated in a multichannel quantum-defect treatment, in which a set of
dressed channels corresponding to different photon numbers is defined, with intensity-dependent

quantum defects and mixing angles. These quantities may be obtained by solving a system of
close-coupling equations for the electron wave function, in a frame where the asymptotic electron
oscillations are transformed away. This allows us to read off at a finite distance a radiative reac-
tion matrix, which is a smooth function of energy for an energy range small compared with the
photon frequency, and contains the net effect of radiative couplings. Calculations are presented
for ionization of hydrogen s states in circularly polarized laser light, with allowance for above-
threshold photon absorption.

I. INTRODUCTION

The development of powerful and tunable lasers has
caused a rapid increase of multiphoton experiments,
both in atoms and molecules. In these processes bound
and autoionizing Rydberg states play an important role,
as intermediate or final steps in the excitation sequence.
Although Rydberg states have been widely studied in
different contexts, the effect of an intense laser field on a
Rydberg electron is seldom taken into account for the
interpretation of the experimental spectra. Photoabsorp-
tion is usually treated at first nonvanishing order of per-
turbation theory, while it has been demonstrated that a
strong field may affect much more deeply the dynamics
of excited states. ' In the high-energy parts of spectra,
especially in the autoionization region of molecules, the
large number of closely lying Rydberg levels and of ion-
ization channels makes it necessary to define an efficient
nonperturbative treatment of radiative coupling between
several Rydberg series and continua.

On the other hand, theoretical work on laser-assisted
electron collisions in the low-energy region, where a slow
electron is scattered by an ionic target in presence of
strong laser radiation, is presently in an initial stage.

Obviously, the Rydberg and low-energy scattering
problems are related, both involving threshold electrons
moving mostly in a Coulomb field. This paper aims at
emphasizing that they are actually identical, because the
bulk of the field interaction, at least for uv or optical
wavelengths, acts at short range, where the electron is
strongly accelerated by the Coulomb forces and is in-
sensitive to small differences in its asymptotic kinetic en-

ergy, either positive or negative. The short-range —or
more generally finite-range —character of the electron-
field interaction is physically grounded in the asymptotic
behavior of the electron. At long range the effect of the

time-dependent laser field amounts to elastic forced os-
cillations without real absorption or emission of photons,
much as for a free electron ranging in a classical oscillat-
ing electric field. As will be shown below (Sec. II A),
once in our theoretical treatment the asymptotic oscilla-
tions have been transformed away, the remaining in-
teraction is a short-range potential coupling Coulomb
channels.

The identification of radiative interaction as a short-
range coupling opens the route for a theoretical ap-
proach which treats separately the short- and long-range
processes and connects them in a further step. In partic-
ular, radiative couplings may be incorporated in a mul-
tichannel quantum-defect treatment (MQDT), leading
to the definition of a set of dressed channels with
intensity-dependent phase shifts and mixing coefficients.
These quantities may be obtained by perturbation theory
for sufficiently weak fields or by solving, in a finite region
of the space, a set of close-coupling equations which will
be derived and discussed in Sec. IIB. Specifying then
the asymptotic behavior in each dressed channel (open
or closed) will provide a unified description of an entire
series of Rydberg states and the adjoining continuum in
a laser field, and more generally of radiative coupling be-
tween several Rydberg series and continua. This ap-
proach, therefore, complements and extends the familiar
two-level approach by making the wealth of MQDT con-
cepts available to solve problems of the dressed atom in
the field of quantum optics. The present treatment can
be ranged among the nonperturbative methods for
describing multiphoton ionization of atoms or multi-
photon dissociation of molecules. This type of calcula-
tions, which have recently received a strong impulse due
to the development of high-power lasers, includes all or-
ders of interactions within a given set of Floquet chan-
nels' (or basis set), the accuracy being only limited by
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the number of channels included.
As a first illustration, Sec. III describes the ionization

process of Rydberg s states in an hydrogen atom, with
allowance for above-threshold multiphoton absorption.
The range of the radiative coupling, the number of par-
tial waves to be included in the close-coupling system at
a given laser intensity, and the energy dependence of the
radiative reaction matrix are carefully discussed. Exten-
sions to more complex cases are outlined.

II. SCHRODINGER EQUATION
AND WAVE FUNCTION FOR ELECTRON

IN LASER FIELD

A. The interaction Hamiltonian

We consider an electron moving in an atomic poten-
tial V(x), which behaves asymptotically like a Coulomb
potential, and under the influence of a (classical) laser
field described by a vector potential A(x, t ) in the
Coulomb gauge. Its Schrodinger equation with the
minimal coupling Hamiltonian, Hv(t), for the wave
function %~(x, t ) is

i' +y(x, t ) =a
Bt [p —e A(O, t)] +V(x) 4v(x, t),

2m

(2.1)

where p is the momentum operator. The subscript V for
H~ and Ov indicates that in first-order perturbation
theory (in the light field) Eq. (2.1) leads to transition ma-
trix elements in the velocity form. In Eq. (2.1) we have
made the dipole approximation; this is valid to the ex-
tent we are able to restrict our considerations to an in-
teraction volume small compared with the optical wave-
length, a point which for the optical range will be
justified below.

It is well known that by the unitary (gauge) transfor-
mation

iA —%„(x,t)=
at

1 p'+ V(x+a(t))
2m

+ —,'ma(t) %„(x,t) . (2.3)

and

H, q(t)= — p A(O, t)+ A(O, t)
m

'
2m

H, (tL) = —ex.@(O,t),

(2.4a)

(2.4b)

In the Hamiltonian H„ in Eq. (2.3) the first and second
terms correspond to the kinetic energy and the potential
in the new frame, while the last term is just the energy
—,
' m a( t) of oscillation of a free electron, a term which
gives rise only to a time-dependent phase factor for the
wave function %~ (x, t). In writing Eq. (2.3) we have ta-
citly assumed that A(O, t), a(t), and a(t) are zero for
times before the laser pulse reaches the atom, and the
subscript A for the wave function refers to the accelera-
tion form for first-order transition matrix elements.

In discussing the Schrodinger equations (2.1)—(2.3) we
emphasize the following points.

(i) The Schrodinger equations (2.1)—(2.3) are related by
(time-dependent) unitary transformations; therefore, they
make identical physical predictions. Note, however, that
operators which correspond to "true physical observ-
ables" (in the sense of Cohen-Tannoudji et al. '

) will
differ in all three cases: The kinetic momentum opera-
tor, for example, is m v ——p —e A(O, t), n.

L
——p, and

n „=p+ma(t) in the first, second, and third cases, re-
spectively [with p = (fi/i )V' the canonical momentum
operator].

(ii) Approximate methods for solving the Schrodinger
equation in a time-dependent field are usually based on
separating the Hamiltonian H(t) into an unperturbed
Hamiltonian HD ——( 1/2m )p + V( x ), and an interaction
part H, (t). In the three cases (2.1) to (2.3) the interac-
tion Hamiltonians have the form

—iex A( t)O/R4 ( t ) H, „(t)= V(x+a(t) )—V(x)+ —,'ma(t) (2.4c)

the Schrodinger equation (2.1) is transformed to a form
with dipole "length" Hamiltonian, denoted by Ht (t),

r

iR O'L(x, t)=a
Bt p + V(x ) —ex.@(0,t ) +L (x, t ),

2m

(2.2)

with 4'( tO)=@(t)ee + c.c.=(a/at) A(O, t) the elec-
tric field at the position x=0. Here e is the polarization
vector, 6'(t) a slowly varying laser amplitude, and to the
laser frequency.

The same Schrodinger equation may still be written in
a third form, obtained by transforming the wave func-
tion 4 ~(x, t ) to a new frame, according to
%„(x,t)=e ~ '"~"+~(x,t) with a(t) the solution of
Newton's equation m(d /dt )a(t)=e@(O,t) for a free
electron oscillating in the laser field. In this "space-
translated frame"" the Schrodinger equation is

H, „(t)=e /4n. e0a(t).x/r + (2.5)

i.e., like the potential of an oscillating dipole, and thus
this form is the most convenient when dealing with elec-
trons in extended Rydberg orbitals or in the continuum.
In the present exploratory work the calculations will be

respectively. Note that in view of the different relation-
ships between the (physical) kinetic momentum operator
m and the canonical momentum p, Ho has an entirely
different physical meaning in each case.

A central point we wish to emphasize is that the three
interaction Hamiltonians (2.4a) —(2.4c) put the weight of
the interaction into diferent regions of space: Close to the
atomic core, it is preferable to work with the dipole in-
teraction Hamiltonian H, L (t) = —ex.E(0, t ), which there
becomes a perturbation (in the sense that H&L ~0 for
r=

~

x
~

~0).'3 On the other hand, H&z(t) goes to zero
asymptotically as it behaves for large r as
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restricted to hydrogen and we shall use the Hamiltonian
H ) z ( t ) in whole space. For complex atoms or mole-
cules, the electronic wave functions are dificult to deter-
mine accurately inside the core region and the use of
H)~(t) which requires precise knowledge of the wave
functions near the origin is dangerous. One should thus
solve the Schrodinger equation using the length form
H, L (t) in an inner region, and the acceleration form in
an outer region to ensure convergence. The wave func-
tions in both regions should then be connected by the
time-dependent unitary transformation leading from the
fixed to the space-translated frame. This procedure,
reminiscent of (but not identical to) the frame-
transformation technique in MQDT, has already been
used by Peach' and Seaton' in calculating radial dipole
matrix elements: They performed the radial integration
in the length form r up to a value r =a and then
switched to the acceleration form r, thus introducing
a surface term to be evaluated at r =a. Extension of
these ideas to radiative close-coupling equations will be
one of the future developments of this work.

We conclude this section by pointing out the physical
picture which emerges from this discussion. The elec-
tronic motion is governed by different forces in different
regions of configuration space: Close to the core the
atomic forces dominate; in the asymptotic domain the
electron vibrates rapidly in the time-dependent optical
laser field while the weak atomic force is responsible for
a slow mean motion of the electron in the asymptotic
Coulomb potential. Transitions from Rydberg states to
different bound or free orbits by absorption or induced
emission of laser photons occur in the transition zone be-
tween the two regions which are dominated by different
forces.

B. The radiative close-coupling equations

—iX(cot +5)—iEt /fiXe (2.6)

with F(( '(r) a radial wave function and E a quasienergy,
reduces the time-dependent Schrodinger equation (2.3) to
a system of time-independent close-coupling equations,

dE+1VAco ——,'mm ao+ l(l+ 1 )

field, thus defining a set of reaction channels involving
the laser photons; (ii) identification of the coupling be-
tween channels involving different photon numbers as a
Pnite ra-nge interaction between Coulomb type fragmen-
tation channels; (iii) definition of a reaction matrix at the
border of the interaction zone, which describes the ab-
sorption and emission of laser photons and is a slowly
varying function of energy; (iv) specifying the asymptotic
conditions in each channel (open or closed), according to
the methods of quantum-defect theory, to study the
properties of Rydberg and continuum states in a laser
field.

To be specific, we study in the following the simplest
possible system, namely, a Rydberg electron in a hydro-
gen atom under the inhuence of circularly polarized
light g(0, t)=@oee ' '+ c.c. [e= —(e, +ie2)l&2]
which is adiabatically turned on and off. The potential
V(x+a(t)) is now a Coulomb potential which is moving
with angular frequency co on a circle in the xy plane of
our coordinate system. We have a(t) = —ao[e)cos(cot
+5)+ezsin(cot+6)] with the radius cto() 0) and phase 5
defined by —&2e@o/men =aoe ' . In this case the Flo-
quet ansatz

We proceed in our discussion by studying the electron
wave function in the presence of a laser field. According
to the above considerations, this is most conveniently
done in the space-translated form of the Schrodinger
equation (2.3). The essential steps are (i) derivation of a
system of (time-independent) close-coupling equations
using a Floquet (Fourier) and angular momentum
decomposition of the electron wave function in the laser

I

V(0) (~ ) F(x)(

'(a, r )F,', ,'(r) =0 . (2.7)
N', I', m '

Here the potential terms Vt ( '(ao, r ) are defined as
the Fourier coe%cients of matrix elements of the poten-
tial V(x+a(t)) between spherical harmonics function,

V(~ ~,)(a,r)= I dge '~ ~)~(lm
~
V(x+uo(e, cosg+e2sing))

~

l'm')

47760
(lm

l
Ck )v )v.

~

l'm')( —l) C„()v )v. )(ir/2, 0)r "( /r )+' (2.8)

The second line in Eq. (2.8) has been derived with the
help of the multipole expansion formula for Coulomb
potentials with Ck (8,4) unnormalized spherical har-
monies and r =min(ao, r ), r =max(ao, r ). The pa-
rameter ao plays the role of an intensity parameter in
our problem. When the close-coupling equations (2.7)
are rewritten in atomic units, the dimensionless parame-
ter which determines the coupling between the channels

in Eq. (2.7) is

ao=ao/ao =&2(2 Ry/fico) (I /Io)' (2.9)

with ao the Bohr radius, Ry the Rydberg unit,
I=2ceo

~

( 0 ~

the light intensity, and Io ——2ceob, „=1.4)& 10' W/cm the atomic unit light intensity. In
the close-coupling equations (2.7) each channel is
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+ ~ ~ ~ (2.10)

i.e., the leading diagonal term falls off like a Coulomb
potential. Degenerate channels with different l and l'
are coupled asymptotically by an 1/r potential. Equa-
tion (2.10) together with (2.7) identifies the thresholds of
our system as —Nficu+ —,'mao ap. In comparison with
the zero-field value, the thresholds are shifted by
—,'mco ao=e

l @o l
/mco, the oscillation energy of the

free electron in a laser field. For the following it is con-
venient to rescale the energy E according to
E+—,'mco ap~E. The asymptotically dominant inter-
channel potential goes like

2 ao
1 lm im (cto «)=+ ~Im

I ci, *l I

i m ~ 2 + ' ' '

4~up r

(2.1 1)

which decays like 1/r . It is essential that the interac-
tion terms which asymptotically behave as 1/r couple
only channels differing by one photon energy Aco, i.e.,
channels with diFerent thresholds [see Eq. (2.11)].'

Indeed, the asymptotic oscillations of the Coulomb func-
tions in nondegenerate channels tend to interfere des-
tructively, thus limiting the effective range of the cou-
pling to a finite region. The border r, of this region may
be estimated from r, »r, with r, a stationary phase
point defined by hkr, = 1, where b k is the difference be-
tween the local electron wave numbers belonging to
channels differing by one photon energy %co. A crude es-
timate shows that for energies near threshold this is
equivalent to r, =co (in atomic units), which shows
that the interaction volume contracts with increasing fre-
quency. ' Note that r, = 1/bk = 1/[dk /de)fico] with
dk/de=A'v„b[,

~
corresponds to the distance where the

local orbital frequency co, (br)= U,„b(r) /r of the electron
equals the laser frequency co. ' Quantitative results illus-
trating the finite size of the interaction volume will be
presented in Sec. III A. Finally, we note that for optical
transitions the radius r, is much smaller than the laser
wavelength. This implies the validity of the dipole ap-
proximation when calculating laser-induced Rydberg-
continuum or free-free transitions. '

The above discussion has pointed out the role of the
frequency in limiting the interaction volume. On the

identified by the parameters [N, l, m I with N the Flo-
quet (photon) index and l, m angular momentum quan-
tum numbers of the electron. The prime on the sum in
Eq. (2.7) indicates that diagonal terms should be left out
in performing the sum. Note that according to Eq. (2.8)
channels [N, l, m I with N+l=even (odd) are only cou-
pled to channels [N', 1', m'I with N'+ I'=even (odd).

The potential terms in Eq. (2.7) have the following
properties. First of all, the potential V&'~'& ~ goes asymp-
totically like

[p] e 1 1 &o2 2

~t, i' (~o ")=— ~a' &im
l Cz, o l

i'm )
4m'ep r 2 r3

C. The radiative reaction matrix

For a given energy E and N„, channels included in
the calculation, there are N„, real independent solutions
of the close-coupling system which may be written for
r&r, as

F; (r)=s, (r)5,"+c;(r)J7, (r &r,"), (2.12)

where j={N,l. , m I denotes the index of the solution
and i the channel components. s; =s( s;, i, , r ) and

c; =c(s;,1,. , «) are energy-normalized regular and irregu-
lar Coulomb wave functions for the energy
s; =E+N;fuu [i.e., the electron energy referred to the
threshold of channel i, dressed with N, photons (see Fig.
3)]. % is a real symmetric matrix which varies slowly
with the asymptotic electron energy since it is construct-
ed at short range (r «r, ) where the electron is strongly
accelerated by the Coulomb field. '

The physical interpretation of the smooth % matrix
depends on the energy range considered. If all channels
are open (s, &0 for all i), A is the usual reaction matrix
describing laser-induced transitions between alternative
fragmentation channels (e.g. , for inverse bremsstrah-
lung). The corresponding laser-assisted collision cross
sections are obtained from the scattering matrix

y = (1+i8 )(1 i%)— (2.13)

which is again a smooth function of energy E.
If only N, channels are open, the N, =N„,—N,

closed channels (s, & 0) must be eliminated from the
asymptotic wave function (r ~ oo ) since the correspond-
ing Coulomb functions s, and c, have exponentially

other hand, it is apparent from the form of the potential
V(x+a(t)) and its matrix elements (2.5) that the size of
the interaction zone grows with the oscillation radius ap.
For the range of ap and co values studied in Sec. III, we
have ap & r„so that the frequency is the dominating fac-
tor to determine the boundary of the reaction zone.

The possibility of truncating the set of close-coupling
equations (2.7) is mainly a question of light intensity for
a given laser frequency. As we noted before, it is the di-
mensionless parameter c7p which determines the strength
of the coupling between the different fragmentation
channels. For c7p&&1 this coupling is weak and we ex-
pect the results of perturbation theory (with respect to
the field intensity) to emerge in this limit. More
specifically, we show in the Appendix that the close-
coupling equations (2.7) reduce in the weak field limit to
Dalgarno-Lewis-type equations, which have been ex-
tensively used to perform the summations over the atom-
ic spectrum in perturbative multiphoton calculations.
On the other hand, for Kp& 1 the interchannel coupling
becomes strong and one expects that the size of the trun-
cated system (the number of channels included) should
be increased until convergence is found for the given
light intensity. A discussion of convergence with in-
creasing light intensity and comparison with perturba-
tion theory results will be given in Sec. III for H in cir-
cularly polarized laser light.
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diverging components. This elimination leads to the
MQDT expression of the effective reaction matrix R (di-
mensions N, XN, ), restricted to the open channel space,

R =A„—A„[tan(~v, )+A„] (2.14)

with the subscripts o and c referring to a partitioning of
with respect to open and closed channels;

[tan(~v, )],J = tan(~v; )5;~ is an N, X N, diagonal matrix
with v, effective quantum numbers defined by c,; = —1

Ry/v, . The analogous relation for the scattering matrix
S =(1+iR )/(1 —iR ) in terms of the smooth matrix X is

~ O. I5

LJJ

O. I

I—

~~oor

C3
C3

0 IO
l

20 50

S p
p d

r (a.U. )

S=X„—X„(e ' —X„) 'X„. (2.15)

III. SOLUTION OF THE RADIATIVE
CLOSE-COUPLING EQUATIONS FOR HYDROGEN

A. Range of the radiative coupling

Contrarily to % and X, the matrices R and S vary rapid-
ly with the energy (via the energy variables v, ) in the vi-

cinity of the complex poles of Eqs. (2.14) and (2.15),
which correspond to Rydberg resonances in the closed
channels. These resonances have a finite width due to
the decay of the Rydberg electron into the ionization
continuum. Explicit calculation of ionization rates of
Rydberg states based on reaction or scattering matrix
elements will be presented in Sec. III. Here we conclude
by stressing that the weak energy dependence of the gen-
eralized reaction matrix W, a central property due to the
limited range of the radiative coupling, allows the sys-
tem of coupled equations (2.7) to be solved on a broad
energy grid. In particular, A can be extrapolated across
a Rydberg threshold, thus describing simultaneously
laser-induced continuum-continuum transitions and
Rydberg-state properties. We will take advantage of this
property in the calculations described below.

FICx. 1. Convergence of the radial integral in Eq. (3.1) for
l~l +1 dipolar transitions as a function of the upper integra-
tion limit r.

property is still more apparent on Fig. 2, where the radi-
al matrix elements for l~l+1 transitions are drawn as
a function of l, for different photon energies: For a
given frequency, the dipole moment becomes very small
when the centrifugal barrier prevents the electron from
penetrating into the core region. Another point which is
clearly illustrated in Fig. 2 is the contraction of the in-
teraction region with increasing photon frequency in ac-
cordance with the previous estimate r, =co: At high
frequency, the magnitude of the transition matrix ele-
ment drops much more rapidly when l increases. This
property will help in restricting the number of partial
waves to be included in the calculation, thus limiting the
size of the close-coupling system.

It must be pointed out that the convergence with radi-
al distance is slower for the matrix elements A con-IJ
necting two degenerate channels (N, =N ) for which in-
terferences do not act destructively. ' Nevertheless,
these channels are coupled weakly by higher-order mul-
tipole terms [Eq. (2.10)], corresponding to indirect radia-
tive transitions.

The finite-range character of the radiative interaction
is most easily discussed in the weak field limit c7p((1.
The asymptotically dominating coupling between the
fragmentation channels is the ao/r term (in a.u. ). In
first-order perturbation theory for a free-free transition
i=lN=O, l, m]~j=[N=+1, 1', m'] we find the reac-
tion matrix element

%;I = —&2vrao(l;m,
~

e e„ l I/m~ )

X f drs(e, , l, , r)1/r s(e, l, r)
p

(3.1)

(with s; and s Coulomb functions normalized as in Ref.
5, r in a.u. and e„a radial unit vector) which, of course,
is proportional to the radial continuum-continuum tran-
sition matrix element in the acceleration form. Figure 1

is a plot of the accumulated radial integral as a function
of the upper integration limit for E, =0, c =co=0.3 Ry,
and l, =0,1,2 (l =l, +1). The finite range of the radia-
tive interaction is illustrated in Fig. 1 by the fact that
the integrals have essentially converged in a region
r &15ap. Note that the radial integrals are built at
larger distances and decrease in magnitude for higher l
values, due to the increasing centrifugal potential. This

B. Solution of the close-coupling equations

02l
0

O
015,—

Cf 0 0'.
C9
Iij

O. l

PHOTON ENESi'O'Y

(rydb erg)
0/

———OZ
04

n 0.0
IX

6
ANGULAR MOMENTUM

FIG. 2. Radial integral in Eq. (3.1) for i~1+1 dipolar
transitions as a function of I for different photon energies.

To illustrate the method we have studied photoioniza-
tion of ns Rydberg states of hydrogen by circularly po-
larized light as a function of light intensity. The discus-
sion will be centered on the cases where single photoion-
ization is energetically possible [n &(1 Ry/lrico)', see
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@he%
(I,f, l)
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Z, a, z)

OPEN'

CHANNELS

FIG. 3. Schematic representation of Rydberg-state multi-

photon ionization in hydrogen. (a) Usual representation, (b)
collisional (MQDT) representation; the arrows indicate the ra-
diative transitions between the dressed channels. For simplici-

ty stimulated emission is not indicated and only channels with
N =I are shown.

Fig. 3(a)], such that an increasing light intensity will
cause absorption of additional photons in the continuum
(above-threshold ionization). In its simplest form the
system of close-coupling equations must include a single
closed channel with an s electron and a number of open
channels with higher I values [Fig. 3(b)]. At high inten-
sities additional closed channels reached by stimulated
emission must be introduced, as indicated in Fig. 4. In
the present calculations we have included up to 25 chan-
nels with l values up to l = 8, and Floquet indices
0&N (8.

The corresponding close-coupling system (2.7) is
solved by propagating the solution typically out to
r, =50 a.u. At r, the channel radial wave functions are
matched to pure Coulomb functions with corresponding
l values and energies; the radiative reaction matrix is ex-
tracted according to Eq. (2.12). The calculations have
been performed slightly above threshold [E=0.01 Ry,
region I of Fig. 3(b)], but we have verified that almost
identical results are obtained for energies just below
threshold [E &0, region II of Fig. 3(b)]. More generally,
the reaction matrix % is found to vary very slowly with
energy, as expected for a given frequency co (variations
with co are also smooth but much more noticeable).

An example of the convergence of the results with the
size of the close-coupling system is given in Table I
which shows values of the reaction matrix element A, z
for various levels of truncation. We recall that the pa-
rameter ao [Eq. (2.9)] combines both the intensity and

(O, s,o) + (o,d, o) (o,g,o)

(-I, p, -I) (-I,f,-I)

CLOSEO
CHANNELS

FIG. 4. Absorption and stimulated emission processes for
an s electron in circularly polarized light. Only the processes
involving up to five partial waves are indicated. Stimulated
emission to the strongly closed channels (dashed arrows) is not
included in the present work.

the frequency of the laser Geld. For the frequency
co =0.35 Ry used in the calculations, perturbation
theory —in which J7,2 is simply proportional to a dipole
matrix element [Eq. (3.1)]—appears to be valid for in-
tensities I & 10' W/cm (ao & 0. 1). A satisfying conver-
gence is reached in the nine-channel calculation (0(N,
l & 4) for intensities of the order of 6X 10' W/cm
(ao= 1), but up to 20 channels are needed in the intensi-
ty range 10' W/cm .

At this stage of our calculations we have not included
strongly closed channels corresponding to laser-induced
transitions down to low-lying bound states (dashed ar-
rows in Fig. 4, X &0). These states lead to the appear-
ance of resonances; far away from these resonances one
expects these deeply bound channels to make small con-
tributions, but obviously they have to be included in fur-
ther calculations. Having negligible amplitudes at the
border r, of the interaction region where the reaction
matrix is extracted, these additional channels should not
be treated as the other ones (open or weakly closed), but
as "bound channels" (in the sense of Seaton in the Ap-
pendix of Ref. 5) eliminating their diverging components
from the beginning. Inclusion of these strongly closed
channels will induce a comparatively rapid variation
with energy of the otherwise smooth reaction matrix %
near the resonances, the low-lying bound states acting as
isolated perturbers.

TABLE 1. Convergence of the reaction matrix element %,2 with the size of the radiative close-coupling system. [—2] meatus
&(10 . co=0.35 Ry.

ao I (W/cm ) Perturb. ' 4 (l =2) 6 (1'=3)
Number of channels included

9 (I =4) 12 (I =5) 16 (]t =6) 20 (I =7) 25 (I =8)
0.1

0.5
1.0
1.5
2.0

6.6[ 11]
1.6[13]
6.6[13]
1.5[14]
2.6[14]

—4.37[—2]
—2. 18[—1]
—4.37[—1]
—6.55[ —1]
—0.87

—4.37[—2]
—2.24[ —1]
—4.77[ —1]
—8.40[ —1]
—1.80

—4.37[—2]
—2.26[ —1]
—4.95[ —1]
—8.85[ —1]
—1.82

—4.37[ —2]
—2.27[ —1]
—5.00[ —1]
—9.05[ —1]
—1.84

—2.27[ —1]
—5.01[—1]
—9.13[—1]
—1.85

—2.27[ —1]
—5.02[ —1]
—9.16[—1]
—1.86

—5.02[ —1] —5.03[—1]
—9.18[—1] —9.20[ —1]
—1.86 —1.86

'Equation (3.1), J7» proportional to ao.
The l value in parentheses denotes the largest partial wave included in the calculation.
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C. ac-Stark broadening and shift of ns Rydberg states

The ionization width and shift of the members of the
ns Rydberg series are easily obtained from the smooth
scattering matrix g introduced in Sec. IIC, more pre-
cisely, from the poles of the scattering matrix S defined

by Eq. (2.15), i.e. , the complex roots of the equation

0.15—

0 10

. ~ ' 'M
~ r ~ ~ ~

~ ~

det(X„—e ')=0 . (3.2) 0.05

In the present calculation all the closed channels have
the same threshold energy (Floquet index N =0) such
that v, =v=( —1 Ry/E)' is a scalar matrix. In this
case (3.2) has solutions v =n —p (n integer) where

p =a +iP (p= 1, . . . , N, ) are complex quantum de-
fects defined by

Z X„Z=e27Tl p (3.3)

with Z a complex orthogonal matrix. ' Thus we obtain
for the complex energies

E„' = —1 Ry/(n —a —i/3 ) =E„il„—/2, (3.4)

whose real parts identify the resonance energies (includ-
ing an ac-Stark shift) referred to the shifted N =0
threshold [compare Eq. (2.7) and following discussion],
while the imaginary parts I „represent the full widths
at half maximum of the resonances

E„=—1 Ry/(n —a ) = —1 Ry/n —2 Rya /n

I „=2RyP /(n —a )
(3.5)

provided one has P «n —a, which is always the case
in the range of intensities considered. Note that the
Stark shift represented by a does not contain the contri-
bution of low-lying bound states since our calculation
does not include channels with N &0.

Equation (3.5) shows that both the shift and the width
scale roughly as n for a given series. The new feature,
when compared with the usual MQDT applications, is
that the complex quantum defects p are intensity
dependent. At moderate intensities (ao«1) the cou-
pling between the closed channels l =0,2, 4, . . . is weak
and the matrix X„ is almost diagonal (Z is almost a unit
matrix). In this case the dressed channels may be ap-
proximately identified with the bare channels and the
P, /(n —a, ), f32/(n —a2), . . . are proportional to the
ionization widths of the ns, nd states, etc. As an exam-
ple, Fig. 5 shows the variation of P, as a function of the
parameter ao [Eq. (2.9)]. The comparison between the
results of several calculations, difT'ering by the size of the
close-coupling system, illustrates the need for increasing
the number of channels (partial waves and Floquet
blocks) at high intensities.

In order to visualize the behavior of these Rydberg
levels with increasing laser intensity, Fig. 6 shows a
model calculation of a resonantly enhanced multiphoton
ionization spectrum which could be obtained by scan-
ning the energy region just below threshold with a weak
laser selectively exciting ns states. Ionization by this
first weak probe laser is assumed to be negligible but a
single photon absorption from a second intense laser is

1-0 2.0-2
Ko

3.0 4.0

FIG. 5. Variation of the imaginary part of the complex
quantum defect p, [Eq. (3.3)] as a function of the intensity pa-
rameter cYO [solid curve; 4-channel calculation (0&N, I &2);
dashed curve; 9-channel calculation (0& N, l &4); dotted curve;
20-channel calculation (0 & N, 1 & 7)]. The frequency is
co=0.35 Ry.

g) =2).+X.,Z (e '"' —e
'"

)
—'Z T2), , (3.6)

where the 2)'s are complex dipole moments related to
the real ones, D, by 2)= —i/2(1+X)D. Equation (3.6)
leads to the partial cross sections (recall D; ~ 5;,)

(3.7)

for each open channel I, and to the total cross section
o.„,which is obtained by summing over the open chan-
nels. The ratio o.;/o. „,calculated at the resonance ener-
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FIG. 6. Theoretical spectrum for the resonantly enhanced
multiphoton ionization process of the ns Rydberg series in hy-

drogen for various laser intensities and circularly polarized
light (co=0.35 Ry). Note that only the n-dependent part of the
shift [Eq. (3.5)] is indicated.

able to ionize the resonant ns levels. The weak excita-
tion process may be schematically described by a set of
real dipole transition moments D; (Ref. 5) associated
with the set of channels of our MQDT treatment
(dressed by the photons of the strong second laser). As-
suming for simplicity that only the first closed channel
(N =1 =m =0) is excited (D, ~ 5;t), an expression similar
to Eq. (2.15) may be derived for the outgoing amplitudes
in the open channels which in matrix notation reads
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gy E„, [Eq. (3.5)] yields the branching ratio for ioniza-
tion of the ns Rydberg state into the open channel i, i.e.,
after absorption of N; photons. An explicit expression
for the branching ratios in terms of the elements of the
smooth 7 matrix may be given in the simple case where
only the first closed channel (ns Rydberg series) plays a
role, i.e., at moderate intensity. Equations (3.6) and (3.7)
then lead to the partial cross sections

IO

—IO
I

UJI-

Y

YI

Yp

cr, icos'(mv) ~X;, ~'/~e ' —e

and to the total cross section

cr„,cccos (m.v)(1 —~X»
~

)/~ e ' —e

(3.8)

(3.9)

oIPl2

N

O

where the unitarity relation g, ~
X, & ~

=1 has been used.
The branching ratios

(3.10)

IPII

are energy independent in this case. In particular, they
yield the partial ionization rates for the ns Rydberg
states, which correspond as above to the poles in Eqs.
(3.8) and (3.9). These poles cause the series of reso-
nances in Fig. 6, where the total cross section (3.9) has
been plotted in arbitrary units for different laser intensi-
ties. They have almost Lorentzian shapes due to our
simplifying assumption of selective excitation of ns states
in the closed channel, with a slight asymmetry due to
the Stark shift and mixing with the continuum.

D. Multiphoton ionization rates

From the Stark broadening of the Rydberg states cal-
culated in Sec. III C [Eq. (3.5)], one gets immediately the
total ionization probability per unit time y„,=I „,/A.
The partial ionization rates y'„, ' corresponding to the ab-
sorption of k photons is then obtained by multiplying
the total ionization rates by the corresponding branching
ratio.

The total and partial ionization probabilities of the 6s
states are plotted in Fig. 7 as a function of the laser in-

tensity for the frequency co=0.35 Ry. The straight lines
correspond (in logarithmic coordinates) to perturbative
results obtained in lowest order of perturbation theory
for each partial rate y'"' (proportional to I"). The
close-coupling values hardly depart from the perturba-
tive ones below 10' W/cm . A quantitative comparison

IP I2 IOI3 IOI4
LASER INTENSITY ( W/cm )

FIG. 7. Ionization rate of hydrogen 6s state by circularly
polarized light (co=0.35 Ry). y denotes the total ionization
rate and y' ' the partial rate for k-photon ionization.

with accurate perturbation calculations of above-
threshold two-photon ionization ' is given in Table II
for some ns levels. The close-coupling equations have
been solved slightly above threshold (E =0.01 Ry) at rel-
atively weak intensities (a0=0. 1, see the second column)
and for different frequencies as indicated in the first
column. We have varied the radius r, of the interaction
zone (matching point to Coulomb functions) in order to
demonstrate once again the finite-range character of the
radiative interaction, since reasonable convergence is al-
ready obtained at r, =30 a.u. The two-photon ionization
rate for a given ns Rydberg state is simply obtained by
multiplying the total rate (3.5) by the square of the cor-
responding X matrix elements [Eq. (3.10)]. Note that the
three n values for which comparison with previous per-
turbation results is possible at co=0.2531 Ry are ob-
tained from a single close-coupling calculation and mul-
tiplication by a scaling factor n . The agreement is
very satisfying for the higher n values (n =5,6) and ob-
viously becomes worse with decreasing n, since extrapo-

TABLE II. Two-photon ionization rates (10 s ') for ns Rydberg states of H in circularly polarized light. For a given frequency
the close-coupling equations are solved at an energy E =0.01 Ry with four channels (0&N, l & 2), &TO ——0. 1, and different values r,
of the size of the reaction zone. In extrapolating to the bound-state region the energy dependence of the reaction matrix is ignored,
i.e., the ionization rates for all ns states are obtained from a single calculation above threshold.

co (Ry)

0.2531

0.3375
0.3645

I (W/cm )

1.79 X 10"

5.67' 10"
7.72 X 10"

0.285
2.28
7.70
3.09
0.721

0.282
2.27
7.66
3.07
0.717

Close-coupling calculations
r, =30ao r, =100ao

0.285
2.39

3.26
0.732

0.286
2.40
9.12
3.27
0.734

Perturbation theory
b

'From Klarsfeld and Maquet (Ref. 26).
From Aymar and Crance (Ref. 27).
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lation below threshold of 7 matrix elements without any
energy dependence becomes less and less valid.

Above 10' W/cm (ao&0. 5) the partial rates for the
lowest-order processes saturate (curves y"' and y' ' on
Fig. 7). From an analysis of our numerical results we
infer that the total rate (uppermost straight line on Fig.
7) is slightly larger than the prediction of first-order per-
turbation theory (golden-rule result) in the intensity
range below 5&10' W/cm and then becomes smaller.
An important point to be noted is that the total ioniza-
tion probability per unit time remains very close to the
golden-rule result up to intensities for which the partial
rates already difFer notably from their lowest-order per-
turbation values. The large range of intensities for
which the golden rule is valid for the total rate is some-
what surprising but has already been noted in experi-
ments as well as in calculations, e.g. , by Crance and
Sinzelle. This results from a balance between the alter-
native ionization continua, the saturation of the lowest-
order processes being partly compensated by the growth
of higher-order processes. Above-threshold ionization
tends to redistribute electrons among the available con-
tinua.

Finally, we give in Fig. 8 a schematic representation
of the energy distribution of the photoelectrons pro-
duced at the top of one of the ns resonances in Fig. 6,
for various laser intensities: Additional peaks appear
progressively when the laser intensity increases, and the
relative weight of the first peak decreases. Note that the
highest intensity (2. 6X10' W/cm ) corresponds to a
moderate value of the coupling parameter (ao ——2) due to
the large value of the frequency ~. Comparison with ex-

periments and calculations extending to higher intensi-
ties in order to study the shape of the photoelectron
spectrum are postponed to later publications.

IV. CONCLUSIONS

The various results described in Sec. III have
confirmed the finite-range character of the interaction
between slow electrons in a Rydberg or continuum state
and optical laser radiation. This property was predicted
in Sec. II from the convergent character of the radiative
Hamiltonian, expressed in a space-translated frame, and
from destructive interferences between nondegenerate
orbitals. The main consequence is the possibility of
defining a radiative reaction matrix, which is slowly
varying with energy, by solving a set of close-coupling
equations on a finite range of radial distances. We have
shown that convergence may be easily achieved both
with respect to the border r, of the interaction zone and
the number of Floquet channels, for a given frequency
and light intensity. Comparison with accurate perturba-
tive results for two-photon ionization rates at low inten-
sity demonstrate that a single calculation above thresh-
old yields reasonable results for a large range of n states
below threshold (at least n ) 5). This point is encourag-
ing for future development of our approach which is
mainly intended as an efficient treatment of high Ryd-
berg levels in complex multichannel situations, in the
presence of a strong laser field.

The major development required for the handling of
complex atoms and molecules is the implementation of a
mixed gauge representation, combining the advantages
of the length form at short distances and the accelera-
tion form at large distances for the dipole radiative
Hamiltonian. Then the radiative coupling could be
treated in the inner zone on the same footing as the in-
terelectronic interaction. Our approach will be particu-
larly convenient for describing autoionizing states ' due
to the unified description of Rydberg and continuum
states on one hand, and radiative and nonradiative in-
teractions on the other hand. In the molecular case a
further advantage of the limited range of the radiative
coupling is that calculations may be performed in the
Born-Oppenheimer approximation framework (fixed in-
ternuclear distance and molecular symmetry) adapted to
a Rydberg electron close to the molecular core. Pertur-
bations and autoionizing processes due to rotations and
vibrations can then be taken into account in a further
step using the frame-transformation technique, which
has been very successful in describing the low-intensity
photoionization spectra.
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APPENDIX: CONNECTION
WITH PERTURBATION THEORY

In this appendix we establish the relationship between
the familiar expressions for multiphoton transitions, ob-
tained in lowest-order perturbation theory, and reaction
matrix elements derived from the solution of the close-
coupling equations (2.7) at low intensities. To be

specific, we consider a two-photon process from an ini-
tial state (energy e;) with wave function ( x

~

i )
=s ( e, , l, , r) Y& ( 9,P ) to a final state with energy

I i

EI ——E, +2fiai and wave function (x
~
f )

—s ( Ef lf r ) Yi ( 0, P ). If we use as our starting pointf f
the dipole Hamiltonian H&L(t), we derive in second-
order perturbation theory the transition matrix element

I '=(f
~

( ex e—@0)(E;+fico Ho+—ie) '( ex e—60) .~i ) (@~0) .

On the other hand, the interaction Hamiltonian H, „(t) leads to the expression

TA' ——(f
~
[cz„e V, V](E;+%co—Ho+ie) '[a„e V, V. ] ~

i )+ ,'(f ~

[a—„eV, [a„e.V, V]] ~i ) (A2)

with the complex oscillation amplitude a„=—e 6'0/
m cu . It is not difficult to prove that TL '

=T„'' (=T' ') as expected from general considerations
on gauge invariance.

In the Dalgarno-Lewis method the calculation of the
first term on the right-hand side of Eq. (A2) (which in-
cludes the infinite summation over the complete atomic
spectrum) is reduced to solving an inhomogeneous
differential equation. Defining

which —by comparison with Eq. (2.7)—reveals that (A4)
can be identified as a truncated set of close-coupling
equations where the term which couples the intermedi-
ate state

~

A, ) back to
~

i ) has been omitted.
The relation between the scattering matrix in second-

order Born approximation, to be denoted by Xf'; and
the transition matrix element TI; [Eq. (A2)] is easily es-(2)

tablished as 7f,-' ———2~i Tf'; ' for c, ~ 0. To the extent 7f;
is a smooth function it can be extrapolated to the bound
region to give the ionization rate

~

A, ) =(E; +fun Ho+ ie) '[a„—e V, V]
~

i ),
we have to solve the set of equations

(A3)
2~

~

T(z)
~

2dE
dv

2
2~ 1 (2) dE

f (AS)

(E, Ho) ~i)=0, —

( E, + fico Ho )
~

X ) =[a„e—.V, V]
~

i ),
(A4)

for a Rydberg state with principal quantum numbers n.
The factor (dE/dv)

~

„=v„converts from energy nor-
malization to the usual normalization of the bound-state
wave function to unity.
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