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Moments, S(j,K), of the generalized oscillator strength distribution are global properties of the
Bethe surface. Apart from S( —1,K) which is related to the Wailer-Hartree incoherent scattering
factor, little is known about these moments for nonzero K. This paper describes high-accuracy
calculations of S(1,K) and S(2,K) for molecular hydrogen. Comparison with experiment is made,
and the utility of simple asymptotic approximations is confirmed. The moments are used to calcu-
late differential cross sections for the inelastic scattering of x rays using the constant-momentum-
transfer and constant-angle theories of Bonham. These cross sections differ from the Waller-
Hartree cross sections at large angles thus demonstrating the importance of making corrections to
the Wailer-Hartree theory if the incoherent scattering factor S(K) is to be extracted from experi-
mental inelastic cross sections. Total cross sections for scattering of 6- and 7-keV photons from
Hz are compared with synchrotron radiation scattering experiments. The calculations suggest that
the Bonham constant-angle cross sections agree best with experiment. However, further experi-
mental and theoretical work is needed to obtain firm conclusions about the limitations of Waller-
Hartree theory.

I. INTRODUCTION

The target dependence of the Bethe-Born differential
cross section for the inelastic scattering of fast charged
structureless particles from atoms and molecules is
governed by the generalized oscillator strength (GOS) of
the target. ' A plot of the GOS as a function of the ener-
gy loss E and the momentum transfer K (or lnK2)
defines the Bethe surface which contains all the informa-
tion necessary to predict, within the framework of the
first Born approximation, the behavior of matter under
charged-particle impact.

The energy moments of the GOS are defined by

S (j,K)= g E„'f„(K)+ f E&[df (K,E)/dE]dE,

monia by Lahmam-Bennani et al. ' " and for atomic
helium by Ketkar and Bonham. ' ' '

The purpose of this paper is to report high-accuracy
calculations of S(1,K) and S(2,K) for molecular hydro-
gen. Section II contains an outline of the methods used
to obtain the moments which are tabulated and com-
pared with experiment in Sec. III. X-ray inelastic cross
sections computed by Bonham's methods, " which re-
quire knowledge of S(1,K) and S(2,K), are presented,
discussed, and compared with experiment and the usual
Wailer-Hartree cross sections in Sec. IV. Concluding re-
marks are made in Sec. V. Rydberg atomic units
(h =2sr, ao ——1, e =&2, m, = —,', c =2/a in which a is

the fine-structure constant) are used throughout this pa-
per.

j (5/2 (1) II. METHODOLOGY

where f„(K) is the GOS for bound-state transitions and
df (K,E)/dE is the density of the GOS for transitions
into the continuum. These moments are global proper-
ties of the Bethe surface and have been studied extensive-
ly in the optical limit (K~O). However, the only fa-
miliar moment for nonzero X is

S( —1,K) =S (K)/K

where S(K) is the usual incoherent scattering factor. '
Very little is known about the other moments for
nonzero K. In particular, the exact S(1,K) and S(2,K)
are known for atomic hydrogen and we recently report-
ed high-accuracy calculations for atomic helium. On
the experimental side, there are the early measurements
of the energy moments for atomic helium and molecu-
lar hydrogen made by Wellenstein, Bonham, and Ulsh.
More recently, measurements have been made for am-

A. Theory

S(1,K) =K [S(K)+cr„(K)]—a (K)+4T/3 (3)

and

S(2,K)=NK +4TK +b(K)+(16sr/3) g Z„p(R„)
A

(4)

It is known that S(l,K) and S(2,K) can be expressed
as ground-state expectation values and exp1icit formulas
are available for atoms. ' The extension of the S(2,K)
expression to the molecular case is also known. Howev-
er, a tedious derivation along well-known lines was
necessary to obtain the S(1,K) formula in the molecular
case. The final expressions, within the framework of the
Born-Oppenheimer fixed nuclei approximation, are
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in which T is the electronic kinetic energy, p(r) is the
ground-state electronic charge density normalized to the
number of electrons X, the sum in Eq. (4) is over nuclei
with charges Z~ e and position vectors R~, and %(ri, rz)=(1+Piz)(1+Pgi, ) g CJPJ(r, , rz),

J
(loa)

1.425, and 1.450 from 36-term, explicitly correlated,
Gaussian geminal, spin-free wave functions of the form

S(SC)=(4~)-' f dA G(K),

G(K)=X+ f [2I (ri, rz) —p(ri)p{rz)]

Xexp[iK (r, —rz)]dr, drz,

(sa)

(5b)

P, (r, , rz)=exp( —a r„P—r&„. g, r—,z -ri, r„—z —),r, z )

(10b)

cr„(IC)=(4') ' f dQx.
~

F(K)
~

F(K)= f exp(iK. r)p(r)dr,

a(E)=(4ir) ' f dQxg(K),

g(K)= —(2/K ) g g (exp[iK (r —r„)]
m n

(n&m )

X(K.p )(K p„)),

(6a)

(6b)

(7a)

b(K)=16 f P(u)u jz(Ku)du,
0

P(u)= f I (r„rz)6(u —
~
r, —rz

~

)dr, drz .

(8a)

(8b)

In the above, I (ri, rz) is the ground-state electron pair
density' normalized to the number of electron pairs
X(%—1)/2, P(u) is the radial intracule density, ' r
and p, respectively, are position and momentum vec-
tors of electron m in Eq. (7b) where the expectation
value is taken with respect to the ground-state wave
function, jz in Eq. (8a) is a spherical Bessel function, and
5 in Eq. (8b) is the Dirac 6 function. In the case that all
K-dependent functions are spherically symmetric, Eqs.
(5)—(7) reduce to the well-known atomic expressions. '

Each of the above quantities depends on the internu-
clear separation R, and can be denoted as Q(R). The
efFects of molecular vibration can be taken into account
by computing the average

Q= f ~p,J(R)
~

Q(R)R dR (9)

B. Wave-function and computational details

The various quantities defined in Eqs. (3)—(8) were
computed for the ground 'X+ state of H2 at five bond
lengths corresponding to R /a o = 1.350, 1.375, 1.400,

in which P,z is the vibration-rotation wave function cor-
responding to the state labeled by the vibrational and ro-
tational quantum numbers U and J, respectively. In this
paper, attention will be restricted to the ground U =J=O
state. It is possible to derive expressions for the mo-
ments S(j,K) without invoking the Born-Oppenheimer
approximation. Such expressions for S(O,K) and
S ( —1,IC ) have been studied previously' but, to our
knowledge, are not known for S(1,IC) and S(2,K). We
have not attempted to examine such expressions because
(i) we felt that the Born-Oppenheimer approximation is
adequately accurate for our purposes and (ii) suitable
nonadiabatic wave functions for H2 are not available.

Q(R)=ao+aiR + zR + 3R +a4R

which upon combination with Eq. (9) yields

Q=ao+ai(R )+az(R )+a3(R )+a4(R~},

(9')

(9")

where (R") stands for (v=O, J =0
~

R"
~

v=O, J =0).
The requisite values of the matrix elements (R") were
obtained from a recent compilation ' which is based
on the most accurate potential curves available.

III. MOMENTS OF THE BETHE SURFACE

Table I contains values of S(1,K), S(2,K), and all
their components for 'Xg+ Hz at R=1.4ao and Table II
contains the vibrationally averaged values. Accurate
values for R = 1.4a o in the optical limit are
a (0)= —0.268 96 and S(1,0) =3.4024. The good agree-
ment between the accurate values and those in Table I is
reassuring.

Ulsh et al. have mapped out the Bethe surface for H2
using 25-keV electrons. A comparison with their experi-
mental moments is presented in Table III and Fig. 1.
The theoretical values are within the experimental error
bars for Ea o )2. The discrepancies between the exper-
imental and theoretical moments are due partly to

and P]2 ls an operator which interchanges the coordi-
nates of electrons 1 and 2, P,& is an operator that inter-
changes the coordinates of protons a and b, the r, are
distances between particles m and n, (a, ,P, , g, , z), , y' )

are nonlinear variational parameters optimized' ' for
R=1.4ao, and the linear coefFicients C were optimized
by us for each R. These wave functions yield variational
energies which difFer from the exact ' nonrelativistic
Born-Oppenheimer values by 9.2, 9.0, and 9.5 cm ' at
R /a„= 1.35, 1.40, and 1.45, respectively.

Closed formulas can be obtained for all quantities of
interest in Eqs. (3)—(8) for wave functions of the form
(10) and were used by us with the following exceptions.
The spherical averages of Eqs. (5a) and (6a) were per-
formed numerically, as was the Hankel transform of Eq.
(8a). For the latter, P(u) was already available from our
previous work on Coulomb holes' and correlation po-
tentials. ' Maclaurin and asymptotic expansions of
b (K) were not found useful in contrast with our calcula-
tions for atomic helium. Note that we used values of T
and Q„Z„p(R& ) obtained' from the work of Kolos
and Wolniewicz ' ' because they are more accurate than
those predicted by our wave functions.

The average over the vibrational motion was carried
out by representing each property Q (R ) by a quartic in-
terpolating polynomial as follows:
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difBculties in extrapolating the missing tail ' of the ex-
perimental GOS and partly to the neglect of nonadiabat-
ic e8'ects in our calculations.

Two simple approximations to the moments are also
of interest. The first is the asymptotic approximation
for large K whereby

in which

C =(16m /3) g Zzp(R& )+4h (0)

where

h (u)=P(u)/(4nu).

(1 lc)

S(1,K) —NK +4T/3+O(K '),
S(2,K)-NK +4TK +C+O(K '),

(1 la)
is the spherical average of the intracule density. ' The
other approximation to the moments of H2 is to simply

TABLE I. Calculated energy moments and their components for ground-state H2 at R =1.4. Note
that T=2.3500654314 and Q„Z„p(R„)=0.92030. All quantities are in Rydberg atomic units as
defined in Sec. I.

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.4
4.8
5.2
5.6
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

S{K)

0.000 00
0.015 10
0.059 50
0.13060
0.224 40
0.335 98
0.460 01
0.591 20
0.724 75
0.856 56
0.983 40
1.102 92
1.213 57
1.314 53
1.405 51
1.486 65
1 ~ 558 38
1.621 31
1.676 19
1.723 77
1.764 83
1.830 34
1.878 10
1.912 53
1.937 16
1.954 68
1.967 10
1.975 92
1.982 19
1.986 67
1.989 91
1.993 98
1.996 23
1.997 52
1.998 31
1.998 81
1.99947
1.999 73
1.999 84
1.99990
1.99994
1.999 96
1.999 97
1.999 98
1.999 98

ee

4.000 00
3.966 22
3.866 94
3.708 01
3.498 48
3.249 58
2.973 59
2.682 77
2.388 40
2.100 14
1.825 64
1.570 43
1.338 03
1 ~ 130 18
0.947 21
0.788 36
0.652 12
0.536 51
0.439 32
0.358 28
0.291 19
0.190 85
0.124 27
0.080 75
0.052 61
0.034 53
0.022 94
0.015 51
0.01070
0.007 56
0.005 47
0.003 06
0.001 82
0.001 12
0.000 70
0.000 44
0.000 13
0.000 04
0.000 02
0.000 01
0.000 00
0.000 00
0.000 00
0.000 00
0.000 00

a(K)
—0.267 95
—0.251 33
—0.203 36
—0.129 39
—0.037 42

0.062 98
0.162 00
0.250 78
0.322 27
0.371 85
0.397 43
0.399 25
0.379 52
0.341 77
0.290 32
0.229 72
0.164 32
0.097 99
0.033 91

—0.025 51
—0.078 58
—0.162 31
—0.215 58
—0.242 32
—0.248 80
—0.241 50
—0.225 93
—0.206 24
—0.185 30
—0.164 93
—0.146 18
—0.115 17
—0.092 71
—0.076 89
—0.065 46
—0.056 69
—0.040 69
—0.029 86
—0.022 87
—0.018 27
—0.014 97
—0.012 49
—0.01065
—0.009 31
—0.008 32

b(K)

0.000 00
0.006 25
0.024 80
0.055 08
0.096 16
0.146 84
0.205 70
0.271 18
0.341 65
0.415 50
0.491 21
0.567 37
0.642 73
0.716 25
0.787 07
0.854 50
0.91806
0.977 42
1.032 39
1.082 92
1.129 04
1.208 56
1.272 49
1.322 81
1.361 65
1.391 02
1.412 73
1.428 34
1.439 13
1.446 15
1.450 26
1.452 25
1.448 89
1.442 47
1.434 37
1.425 41
1.402 11
1.379 97
1.360 08
1.342 54
1.327 16
1.313 65
1.301 74
1.291 19
1.281 79

S(1,K)

3.4014
3.4246
3.4938
3.6083
3.7665
3.9668
4.2075
4.4869
4.8036
5.1565
5.5450
5.9689
6.4282
6.9232
7.4544
8.0225
8.6280
9.2715
9.9537

10.675
11.436
13.078
14.883
16.850
18.982
21.278
23.737
26.361
29.147
32.095
35.206
41.911
49.261
57.254
65.888
75 ~ 163

101.15
131.15
165.15
203.14
245 ~ 14
291.14
341.14
395.14
453.14

S(2,K)

15.420
15.520
15.824
16.337
17.071
18.042
19.269
20.777
22.597
24.762
27.311
30.290
33.746
37.735
42.315
47.550
53.510
60.268
67.904
76.502
86.150

108.98
137.19
171.68
213.41
263.41
322.81
392.78
474.61
569.63
679.27
948.48

1295.1
1733.4
2278 ~ 5
2947.3
5279.4
8810.4

13 900
20 957
30436
42 842
58 727
78 691

103 382
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use twice the moments for atomic hydrogen.

S(1,K)=2' +—', ,

S(2,E)=2K +8' + —", .

Thus,

(12a)

(12b)

even at small K. The good agreement between the latter
and the exact values confirms our earlier suggestion
that the asymptotic approximations are useful ones.

IV. INELASTIC SCATTERING
These two approximations are also compared with the
complete calculations in Table III and Fig. 1. Both ap-
proximations underestimate the exact values with the ex-
ception of the asymptotic approximation (1 lb) to S(2,IC)
at small K. The noninteracting atom approximations
(12) are inferior to the asymptotic approximations (11)

A. Comparison of various theories

Bonham" has developed corrections to the usual
&aller-Hartree approximation for the total inelastic
scattering cross-section o. differential with respect to the
solid angle 0 for detection of scattered x rays from

TABLE II. Vibrationally averaged moments and their components for H, . Vibrationally averaged
T=2.318912, and Q„Z„p(R„)=0.907 31. All quantities are in Rydberg atomic units.

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.4
4.8
5.2
5.6
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

S(K)

0.000 00
0.015 40
0.06066
0.13306
0.228 47
0.341 78
0.467 49
0.600 18
0.734 94
0.867 62
0.994 98
1.11469
1.225 26
1.325 89
1.416 35
1.496 85
1.567 84
1.629 99
1.684 07
1.730 85
1.771 15
1.835 25
1.881 81
1.915 27
1.939 13
1.956 08
1.968 08
1.976 60
1.982 66
1.987 01
1.990 15
1.994 12
1.996 32
1.997 59
1.998 36
1.998 85
1.99948
1.999 74
1.999 85
1.999 91
1.999 94
1.999 96
1.999 97
1.999 98
1.999 98

ee

4.000 00
3.965 37
3.863 64
3.700 97
3.486 84
3.233 01
2.952 25
2.657 26
2.359 63
2.069 19
1.793 65
1.538 45
1.306 99
1.100 82
0.920 08
0.763 79
0.630 29
0.517 44
0.422 92
0.344 40
0.279 61
0.183 13
0.11941
0.077 89
0.05106
0.033 80
0.022 68
0.015 48
0.01078
0.007 66
0.005 56
0.003 09
0.001 81
0.001 09
0.000 67
0.000 41
0.000 13
0.000 05
0.000 02
0.000 01
0.000 00
0.000 00
0.000 00
0.000 00
0.000 00

a(K)
—0.264 17
—0.247 58
—0.19976
—0.126 18
—0.035 05

0.063 91
0.16080
0.246 75
0.314 88
0.360 79
0.382 70
0.381 18
0.358 73
0.31909
0.266 73
0.206 23
0.141 89
0.077 46
0.015 95

—0.040 40
—0.090 12
—0.166 94
—0.213 99
—0.235 86
—0.239 07
—0.230 01
—0.213 92
—0.194 63
—0.174 69
—0.155 63
—0.138 31
—0.10995
—0.089 40
—0.074 69
—0.063 77
—0.055 17
—0.039 25
—0.028 69
—0.021 99
—0.017 58
—0.014 41
—0.012 03
—0.01027
—0.008 99
—0.008 03

b(K)

0.000 00
0.006 17
0.024 47
0.054 32
0.094 79
0.144 66
0.202 49
0.266 72
0.335 72
0.407 89
0.481 72
0.555 82
0.628 97
0.700 16
0.768 57
0.833 54
0.894 64
0.951 56
1.004 15
1.052 39
1.096 31
1.171 83
1.232 31
1.279 78
1.316 32
1.343 91
1.364 27
1 ~ 378 91
1.389 01
1 ~ 395 59
1.39943
1.401 25
1 ~ 398 03
1.391 88
1.384 10
1.375 49
1.353 04
1.331 69
1.312 51
1.295 61
1.280 80
1.267 78
1.256 30
1.246 13
1.237 08

S{1,K)

3.3561
3.3793
3.4486
3.5631
3.7214
3.9217
4.1622
4.4413
4.7575
5.1099
5.4978
5.9210
6.3796
6.8739
7.4046
7.9721
8.5772
9.2205
9.9026

10.624
11.385
13.028
14.833
16.801
18.934
21.231
23.691
26.315
29.102
32.051
35.161
41.868
49.218
57.211
65.845
75.121

101.11
131.11
165.10
203 ~ 10
245 ~ 10
291.10
341.10
395.10
453.10

S(2,K)

15.202
15.301
15.601
16.107
16.832
17.791
19.003
20.494
22.293
24.435
26.959
29.910
33.335
37.290
41.834
47.031
52.950
59.664
67.255
75.804
85.401

108.12
136.22
170.58
212.17
262.03
321.26
391.07
472.73
567.57
677.01
945.80

1292.0
1729.7
2274.4
2942.5
5273 ~ 1

8802.2
13 890
20 944
30 421
42 824
58 706
78 666

103 354
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TABLE III. Comparison of calculated moments for ground-state H2 with experimental, asymptotic, and 2H values. The num-
bers in parentheses are uncertainties in the experimental values. All quantities are in Rydberg atomic units.

0.795

1.174

1.552

2.309

3.064

3.819

5.325

7.572

2H'

3.9317

5.4232

7.4841

13.330

21.443

31.836

59.378

117.34

4.3984

5.8900

7.9508

13.796

21.910

32.303

59.845

117.80

4.7879
4.7418
6.3054
6.2569
8.3326
8.2820

14.041
13.991
22.047
22.000
32.384
32.339
59.883
59.840

117.82
117.78

S(1,K)
Asym. Theory' Experiment

4.32(0.13)

5.98(0.18)

7.91(0.40)

13.8(0.70)

22.5(1.4)

31.8(2.0)

59.7(4.8)

121.0(9.7)

2H'

16.527

25.492

41.540

110.17

262.04

552.78

1845.6

7044.0

Asym.

23.340

33.350

50.841

123.56

281.12

579.13

1891.2

7130.2

S(2,Z)
Theory'

22.504
22.201
32.798
32.396
50.554
50.014

123.63
122.71
281 ~ 34
279.91
579.40
577.31

1891.5
1887.7
7130.4
7123.0

Experiment"

13.5(0.07)

25.3( 1.0)

40.4( 4.0)

113(11.0)

290(14)

552(66)

1870(280)

7430( 1100)

'Approximation of Eqs. (12) based on noninteracting hydrogen atoms.
Asymptotic approximation (R = 1.4), Eqs. (11), using h{0)=0.0175 as computed for wave function (10) in Ref. 17.

'Calculated from the explicitly correlated wave functions. See Sec. II B. The upper values correspond to R =1.4ao and the lower
values are the vibrationally averaged values for the U=O, J=O state.
Experiment involving impact by 25-keV electrons (Ref. 9). See also Ref. 26.

atomic and molecular targets. For data collected at con-
stant momentum transfer K, he finds

(do IdA);=(crT/2)[S(K)fo XK Eo 'f—,
+K S(1,K)EO f2
—K S(2,K)EO f3+0(E ~~~)],

(13)
I

where fo= 1+x, f, =1+2x —x, f2=1 —x +x,
f3 ——x —x with x =cos(20ti) in which Os is defined by
cos20~ =1—2K /(~ Eo o T' is the Thompson constant, cz

is the fine-structure constant, Eo is the energy of the in-
cident x ray, and E is the maximum observable energy
loss. For data collected at jixed scattering angle Hs, the
correct expression is

(do ld0); =(o Tfo/2) [S(K, ) 2K, NEO '+—(a /4)[(3 —2x)S(1,K, )+(5 4x)T(1,K, )]—

—(a /4EO)[S(2, K, )+(5—2x)T(2, K, )]+O(E )I, (14a)

in which

T(j,K)=K [dS(j,K)ldK ] for j =1,2,
and K, is the elastic momentum transfer defined by

K, =a Eo(1—x)/2 .

(14b)

(14c)

Note well that Eqs. (13) and (14) are expressed in Ryd-
berg atomic units as defined in Sec. I. The first term in
both Eqs. (13) and (14a) is the familiar Wailer-Hartree
result. The constant-momentum formula (13) should''
be more accurate but the constant-angle formula (14)
corresponds to the data collection mode employed in all
experiments reported so far. Bonham also gave a
quasirelativistic formula for the constant-momentum-
transfer case but it will not be considered further be-
cause its predictions have been found to be rather simi-
lar to that of the corresponding nonrelativistic formula
(13).

1.6

{o)

(g) I.O
O

.
/I

//
i/

. '
//

0.4
0 I

0.7—

(b)

I/
//

.I'C

.~ /'
M ~

/ ~
I

4 0 I 2 3 4

2.5 ~

M
2.0

D

I.O

FIG. 1. Moments of the Bethe surface for H2. (a) S(1,K),
(b) S(2,K). Note the logarithmic scale. ~, experiment (Ref. 9);

theory {R = 1.4a0 ) using correlated wave function;
asymptotic estimates, Eqs. (11); —.—- —., nonin-

teracting hydrogen atoms, Eqs. (12).
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FIG. 2. Total differential cross sections for inelastic scatter-
ing of x rays from H2 (R=1.4ao). (a) Mo Kcx (17.441 keV) x

rays, (b) W Ko. (58.856 keV) x rays. ———,Bonham
constant-E formula, Eq. (13); ———., Bonham constant-angle
formula, Eq. (14). For this case K is defined by Eq. (14c).

, Wailer-Hartree theory.

FIG. 3. Apparent incoherent scattering factors for H,
(R=1.4ao) as defined in Eq. (15). (a) Mo Ka (17.441 keV) x
rays, (b) W Ka (58.856 keV) x rays. ———,using Bonham
constant-K cross sections; —.——., using Bonham constant-
angle cross sections; - ., Wailer-Hartree theory.

In Fig. 2 the Bonham cross sections (13) and (14) are
compared with the Wailer-Hartree cross section for in-
elastic scattering of Mo Ka and W Ee radiation from
H2 molecules. For the constant-angle cross section, K in
Fig. 2 corresponds to K, as given by Eq. (14c). The
Bonham cross sections are virtually indistinguishable
from the Wailer-Hartree cross section at small E but
substantial differences can be seen at large angles (larger
K). Consider scattering of W Ka x rays as in Fig. 2(b).
All three cross sections are essentially identical for
Kao &7 or 8& &13. For 7&Kao &20 (or 13'&gz &39 )

the Bonham cross sections agree well with each other
but are lower than the Wailer-Hartree cross section.
For even larger K or L9&, all three cross sections differ
from one another. For back scattering (0~ =vr/2,
Kao =31.57) the constant-angle cross section, the
Wailer-Hartree cross section, and the constant-K cross
section, respectively, are in the ratio 1.36 to 2.00 to 2.64.
These differences are less than those reported earlier for

S, (K)=(2lcr Tfo)(do. ldfl ); . (15)

Note that S, (K)=S(K) within Wailer-Hartree theory.
However, S, (K) will differ from S(K) if the true cross
section is inserted into Eq. (15). This is illustrated in
Fig. 3 which displays S(K) and S, (K) for H, calculated
from both Bonham cross sections (13) and (14). The
differences are substantial at large K and increase in
magnitude with the frequency of the incident x ray.

helium. Unfortunately, the latter are in error; the
correct results for helium are very similar to those
shown for H2 in this paper.

Frequently, the purpose of an x-ray experiment is to
extract S(K) which can be inverted to obtain informa-
tion about the effects of electron correlation on electron
pair densities. ' Define an apparent incoherent scatter-
ing factor by

TABLE IV. Comparison of theoretical total scattering cross sections for H, with experiment at

photon energies of 6.00 and 7.00 keV. The numbers in parentheses are uncertainties in the experimen-

tal values. The upper values correspond to R= 1.4ao and the lower values to the U=O, J=O state.

20~
(deg)

60.9

60.9

135.6

1.6309

1.9027

2.9795

Wailer-Hartree'

2.1930
2.1813
2.0813
2.0745
1.9892
1.9898

2.1762
2.1644
2.0616
2.0548
2.0157
2.0163

2.1694
2.1576
2.0537
2.0469
1.9117
1.9123

2(der/dQ), /o. rfo
Bonham Bonham

constant-K constant-angle' Experiment"

2.03(+0.13, —0. 10)

1.99(+0.13, —0. 10)

1.87(+0. 12, —0.09)

'Equation (16) with Wailer-Hartree inelastic cross sections.
Equation (16) with inelastic cross sections from Eq. (13).

'Equation (16) with inelastic cross sections from Eq. (14).
Reference 30.
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TABLE V. Comparison of theoretical total scattering cross sections for He with experiment at a

photon energy of 6.00 keV. The numbers in parentheses are uncertainties in the experimental values.

20~
(deg) Kao Wailer-Hartree'

2(do /d 0 ), /o rfo

Bonham Bonham
constant-K" constant-angle' Experiment

60.9
135.6

1.6309
2.9795

2.7388
2.1281

2.7220
2. 1549

2.7152
2.0508

2.60(+0.18, —0. 13)
2.04(+0. 13, —0. 10)

'Equation (16) with Wailer-Hartree inelastic cross sections. These values are the same as in Ref. 7.
"Equation (16) with inelastic cross sections from Eq. (13). These values are corrections to the ones
given in Table 4 of Ref. 7.
'Equation (16) with inelastic cross sections from Eq. (14) and energy moments of Ref. 7.
Reference 30.

B. Comparison with experiment

Total (elastic + inelastic) differential cross sections
(do /dQ), have been measured for the scattering of syn-
chrotron radiation from atomic helium and molecular
hydrogen. These can be computed from the inelastic
cross sections by adding the elastic contributions. Thus,

( d o /d Sl ), = ( d o /d 0 ), + ( d o. /d 6 ), ,

in which

(16a)

(do/dA), =(orfo/2)o„, (16b)

V. CONCLUDING REMARKS

Our high-accuracy calculations of the GOS moments
S(l,IC) and S(2,K) for Hz are the first ever for a mole-

where o.„ is defined by Eq. (6) and err and fo are the
same as in Eq. (13).

Tables IV and V present a comparison between the ex-
perimental values of Ice et al. and theoretical cross
sections based on Eq. (16) with inelastic contributions
computed from (a) Wailer-Hartree theory, (b) the
constant-IC formula, and (c) the constant-angle formula.
In all cases, the theoretical values based on inelastic
cross sections from the constant-angle formula lie closest
to the experimental ones. However, it is not clear what
conclusions can be drawn from this comparison because
(i) in most cases, the experimental error bars are not
sharp enough to distinguish among the different theoreti-
cal results, (ii) the experimental values were obtained
by a process which involves determination of a scale fac-
tor by comparison with Wailer-Hartree theory at one an-
gle and incident energy, and (iii) in the case of Hz, the
theoretical cross sections have not been corrected for
nonadiabatic effects.

cule. The results in this paper along with our previous
results for He show that the asymptotic estimates of
Eqs. (11) are reasonably accurate; they should be useful
for other systems as well since they can be computed
quite easily.

Our calculations of apparent incoherent scattering fac-
tors demonstrate the importance of using corrections to
the Wailer-Hartree theory if S(K) is to be extracted
from measured inelastic cross sections.

Further work is needed to help clarify the regions of
validity and accuracy of the constant-K formula (13) and
the constant-angle formula (14). On the experimental
side, new measurements with higher-energy x rays would
be helpful as would a reanalysis of the older experi-
ments using the Bonham cross sections in Tables IV
and V to determine the scale factor for conversion be-
tween relative and absolute cross sections. On the
theoretical side, a calculation of the nonadiabatic effects
on the moments of the Bethe surface and cross sections
for H2 would be helpful. Such a calculation is being
planned in our laboratory.
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