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The electromagnetic field of a Kerr-Newman source
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The origins of the electromagnetic field of the Kerr-Newman source are a system of currents
and of electric surface charges which are distributed over a circular disc of radius a, centered at
the origin, and oriented normally to the direction of the angular momentum vector. For a positive
total electric charge e, the surface-charge density is negative inside the disc, becoming infinitely

negative as the rim of the disc is approached. On the rim, there is a positive charge of infinite

density which not only neutralizes the negative charge distributed in the interior of the disc, but
also leaves a residue of a positive charge equal to e. Similarly, the currents How in the negative
direction inside the disc, with a current density which becomes infinitely negative at the rim. On

the rim there is a positive current of infinite intensity, which generates a magnetic moment corn-

pensating the negative magnetic moments distributed in the interior, and leaves a net integrated
magnetic moment of magnitude ea, the latter being equal to the dipole component of the total
magnetic moment. The gyromagnetic ratio for the total magnetic moment is 2, as it is for the di-

pole component.

I. INTRODUCTION

The solution of the Einstein-Maxwell equations for a
spinning charged mass was given by Kerr' and Newman
et al. In the Kerr-Newman metric, there appears an
arbitrary constant a, having the dimension of a length,
which is equal to 1/c times the angular momentum per
unit mass of the source. By analyzing the asymptotic
form of the electromagnetic field for large distances from
the source, one finds that the Kerr-Newman source
possesses a magnetic dipole moment pD, given by

J =amc, (2)

where m denotes the mass of the source. If the total
magnetic moment p were equal to the dipole component
lzD only, then Eqs. (1) and (2) would imply that the
gyromagnetic ratio g of the source is

g P
J mc

(3)

Since, classically, the gyromagnetic ratio for a charged
mass point moving in a circular orbit is equal to e/2mc,
it follows that the gyromagnetic ratio given by Eq. (3) is
2, as in Dirac's theory of the electron.

The gyromagnetic ratio of 2 for the Kerr-Newman
source is puzzling, considering that it was derived from
a purely classical theory. A gyromagnetic ratio of 2 for
a classical system raises the question as to whether the

pD
——ea,

where e denotes the electric charge of the source. The
angular momentum J of the source, deduced from the
asymptotic form of the metric, is

0, = 2ea [z f x =y =0.
( 2+ 2)2' (4)

Consider a line integral of the magnetic field taken on a
loop consisting of the z axis extending from z = —ao to
z =+ oo, and closing in a circle at infinity. On the cir-
cular path, ds grows like R, whereas H falls ofF 1ikeR, hence the integral f H ds on the circle vanishes.
We therefore have

f H ds=2 J H, dz=4ea J
Q 0 ( 2+ 2)2

2e

If the magnetic field were due to a current j(a) flowing
in a ring of radius a centered on the z axis, and lying in
the x-y plane, we would have

H ds=4nj(a)= 2e
a

Since the magnetic moment p(a) of such a ring current
is given by

gyromagnetic ratio of Dirac s electron is of intrinsic
quantum origin. For this reason, as well as for astro-
physical applications to the theory of rotating charged
stellar models, it is of interest to study the internal elec-
tromagnetic structure of the Kerr-Newman source.

Now, in their original paper, Newman et al. conclud-
ed that the Kerr-Newman source is not a point source,
but a ring of mass and charge rotating about the axis of
symmetry, the radius of this ring being equal to a. It
will be shown below that on the axis of symmetry z, the
vertical component of the magnetic field of the Kerr-
Newman source is given by
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p(a)=ma j(a)
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2e 4p(a)
Q

2
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ea

(
2 g2)1/2

yielding a finite value for the total charge:

(21) ~ M
&k

~ M

g(k)+g=e .

As in the case of the magnetic field, we have

(22)

eaEg=
2 2 3/2'(a —k )

(23) i& iQ && LO

The electric field grows like e for A, =a +e, com-
pared to the e ' variation near a charged wire, and the

variation near an electric point source.
Note that on the z axis, there are two saddle points at

z =+a. There are no sources at these points because
~

E
~

vanishes there.

0

IV. THEORY

In Finkelstein's formulation of the Kerr-Newman
solution, ' the electromagnetic field can be represented
as the gradient of a potential:

FIG. 3. Branch-line cuts in the complex z plane. (a)
A. =(3/2)a, (b) A, =(1/2)a.

E+iH= —e V(Q '),
where

0=[x +y +(z ia) ]—'

=(R2 —a —2iaz)'/, R =(x +y +z )'

(24)

(25)

0+=[A, +( ia) —]' = —i (a —X )'

II =+i(a —A )', z =0, A&a,
0+=(A, —a )' =II, z =0, A, &a .

(29)

(30)

For large values of R, the potential e/Q has the asymp-
totic expansion

e e ea ieaz~—+ + + '

2R' (26)

z, =i (a +A. ), z2=i (a —A, ), A, =(x +y )' (27)

We make cuts on the imaginary z axis from z] up to
z =+i oo, and from z2 down to z = —i ao, as is shown in
Fig. 3. It is seen that for k&a [Fig. 3(a)) the real z axis
is not crossed by the branch lines. Hence, 0 and the
electromagnetic field are analytic outside the disc. On
the other hand, for A, &a [Fig. 3(b)] the lower branch line
crosses the real z axis. It follows that for A, &a, the po-
tential 0 changes sign at z =0:

Since the potential of a magnetic dipole of magnetic mo-
ment pD is equal to (pDz/R'), we identify pD with ea,
as given in Eq. (1).

As a first step, we have to make the function 0 single
valued in the complex z plane, since it has branch points
on the imaginary axis at z, and z2, given by

At X=O, we take

II+ =+(z ia), I—I, = —(z ia), A, =O, — (31)

this assignment following from the requirement of con-
tinuity at A, =O with the expressions given in Eq. (29), as
X~0.

V. THE MAGNETIC FIELD

It follows from Eq. (24) that the vertical component of
the magnetic field H, is given by

H, = —Im —=+e Im
e (z ia )—

az n (32)

By (30) and (32), we have

where Im denotes the imaginary part. At z =0,

+= ( —ia)
H, =eIm =O=H, , z =0, A, &a .

(
.)3( 2 g2)3/2

(33)

= —0+, z =0, A&a, (28)

where 0 denotes the value of the radical in Eq. (25) for
z =0, and 0+ for z =0+. It will be shown below that
this feature of a sign reversal has the important physical
consequence that the sources of the electromagnetic field
are confined to the interior and to the rim of a disc of
radius a, centered at the origin, and lying in the x-y
plane.

On the Riemann sheet, as cut in Fig. 3, we have, at
z=0,

eaH+= — =H, z=0, A~a .z (g2 2)3/2 z

Now

H2 ———e Im (0 ) =e Im
BA, Q3

Hence,

ekH+=- z =0+, A. &a
(

2 g2)3/2 '

(34)

(35)

(36)
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Hg =+
2 2 3/2'

ea

(
2 g2)3/2 '

H& ——0, z =0, A~a .

At A, =O, we get from Eqs. (31) and (32)

2ea z

(z+a )

(37)

(38)

(39)

477 f J (A )dA
(

2 g2)1/2

2 f P(k)dk

f p(A. )dA, = M, (44)

We now study the structure of the sources giving rise
to the magnetic field in the Kerr-Newman source. It is
clear from Fig. 1 that the sources are located inside the
disc and on its rim, since the horizontal component of
the magnetic field H& suffers there a reversal as the sur-
face of the disc is crossed, and since the field is continu-
ous outside the disc. By taking a line integral L

&
of the

magnetic field on a loop in the k-z plane starting at A. +,
going to (A, ++dA, +), and then returning to X on the
negative side of the disc, we get

2ek dA, . 4p(A)dk
L1 ——2H2 dA, = —

2 2 3/2 4'1r~ (~)d~
2

(40)

Here, j (A, )dA, denotes the current flowing between A. and
(A, +dk), and p(A. )dk the magnetic moment generated
by this current. We see that this magnetic moment is
negative, and is given by

to within a relative error of order e/a. Hence the con-
tribution M from sources close to the rim becomes posi-
tively infinite as

giving

ea 2

2 2 1/22(a —A, )
(45)

p-M(X)+M= 2 ——(a —/(, )'/ ~ea, A~a+ .
2 a

(46)

VI. THE ELECTRIC FIEI.D

The total magnetic moment p of the Kerr-Newman
source is therefore equal to the dipole component pD
given in Eq. (1), and the gyromagnetic ratio for the total
moment is equal to 2.

3eaA,

2( ' —X')'" (41)

The total magnetic moment M(k) of the currents flow-
ing inside a disc of radius A, is

M(A, )= f p(A, )dX
0

We have from Eq. (24)

8 e (z —ia)E, = —Re —=+e Re
9z

e
E& ———Re —=+e Re

(47)

(4&)

, „,—2+ —(a' —X2)'/2, a&a .
(

2 g2)1/2

where Re denotes the real part. Using Eq. (29) in Eq.
(47), we confirm relations (16) to (20). From (30) it fol-
lows that

(42) E, =O, z =0, A&a . (49)
Clearly, M(A, ) becomes negatively infinite when A, ap-
proaches a from the inside.

As A~a, the lower branch line in Fig. 3 touches the
real z axis and the singularity zz of 0 lands on the real z
axis. In order to ascertain the contribution to the mag-
netic moment originating from the vicinity of the rim of
the disc, we evaluate a line integral Lz of the magnetic
field, starting at A, +, going up and then down to cross
the A, axis at A, ~a, and returning to A. from below. We
have

We also find from (47) and (31) that

2 2

E, = e(z —a ) z )0, A, =O,
(z2+a2)2 (50)

E, =—e(z —a )
2 2

z &0, A, =O,(z2+a2) (51)

in line with the arrows drawn in Fig. 2. Similarly, we
find that

L = t(Hwads = —Imp —dse
2 Bs 0, eA,

Ez ——
z z 3/z, z=0, A&a,

(X —a )
(52)

= —Im
e 2e

II+ (
2 g2)1/2

E~ ——0, z=0, A&a . (53)

by (29). It follows that

(43) With the integrated charge Q(A, ), which is contained
within a disc of radius A, given in Eq. (20), we now
proceed to evaluate the remaining charge contained be-
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tween A. and a +. One way of doing this is to use
Gauss's theorem by evaluating the electric Aux normal
to the surface of a torus, centered on the rim of the disc,
and having a circular cross section of radius r ( & a ). On
this circle we have

z =r sing, A, =a rc—os/, (54)

with /=0 at k+ and $=2rr at A, , on the two sides of
the disc.

We have

—Re( A, 1II ) =Re =const,(z —ia)
(64)

(z ia—)Im(AV) = —Im 0 =const . (65)

We now introduce coordinates (r, H) (Kerr, ' Finkel-
stein, ') defined so that

as becomes evident on taking the differential of (X%),
and using (62). Similarly, a solution of Eq. (60) for the
magnetic lines of force is

Q=(r 2ar—e' )' (55) A=[X +(z —ia) ]'/ =r ia c—osH,

For the component E, normal to the surface of the torus
we have

(X 2+y2)1 /2
(66)

8 e (r ae '~—
)E,= —Re —=+e Re

a~ n (56)

From this definition, it follows that

A, =(a +r )' sinH, z =r cosH, (67)

By Gauss's theorem, the charge Q(r) contained inside
the torus of cross-sectional radius ~ is given by

and that r is related to R =(x +y +z )'/ through the
equation

e~ I.a
Re

2 ~Q

g= 2m.

sing e= —Ren ~=0 2

ea

(
2 g2 1/2

By Eq. (20), the total charge Q is

Q =Q(k)+Q(r)=e .

Q(r)= f E,2mkrdg
4m 0

2' (r —ae'~)'er Re — (a —r cos1(j)2 0 A

I,a ia

r —(R —a )r —a z =0. (68)

For large values of R, r~R. In the (x,y, z) coordinate
system used in previous sections, the lines r =const are
confocal ellipsoids, and the lines t9=const are hyper-
boloids of one sheet.

Using Eq. (66), we find that

(z ia) — cosH sin H
Re =cos6 +

u +cos 0
(57)

where

(69)

r
u =

a
(70)

Hence, the electric lines of force are determined parame-
trically from

VII. MAPFING THE ELECTROMAGNETIC FIELD

Instead of integrating the differential equation
cos H( 1 Bc os H)—

B —cosO

1/2

=u(H) . (71)

dz E,
dX Eg

(59) The (k, z) coordinates of an electric line characterized by
a given value of the parameter B are determined from

for the electric lines of force, and the equation

dz
dk,

H,
(60)

for the magnetic lines of force, we found it preferable to
use instead the electromagnetic stream function +, based
on the potential of Eq. (24), namely,

A, =a (1+u )'/ sinH, z =au cosH .

Similarly, one finds for the magnetic lines

(z —ia) u sin H 1

u '+ cos20

u = A sin H+( A sin H —cos H)'/

(72)

(73)

(74)

(z ia)—
kQ

from which the fields can be derived:

E, = —Re (A%), Ez ———Rea
az

H, =—Im (A%), Hz ———Im=1 a a+
az

(61)

(62)

(63) 2 a 2(1+z /3z /
) (75)

where the coordinates (k, z) of a magnetic line labeled by
a given value of the constant A are determined, again,
from Eq. (72).

The electric line of force for 8 =1 in Eq. (71) is the
one passing through the saddle points in Fig. 2 at
z =+a. It is not quite a circle, its equation being given
by

A solution of Eq. (59), giving the electric lines of force,
is

It should be noted that the coordinates (r, H), intro-
duced in Eqs. (66)—(68), are identical with the spherical
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coordinates in which Chandrasekhar succeeded in
separating Dirac's equation in Kerr geometry. The
point r =0, 0=~/2, corresponds to the circle k =a,
which is the rim of the disc.

As for the image of the disc in the (r, O) plane, we
note from Eq. (66) that when z =0,

r =iU,

~( 2 g2)1/2
0 cos 1 r—a

u
~

& a+(a —A. )'

(80)

Il= +i (a —A, )' =r —ia cosO, (76)
VIII. DISCUSSION

where the minus sign applies to the side of the disc at
z =0+, and the plus sign to the 0 side. If r is real it
must vanish on the disc, and then

A=a sin0, (77)

A, =[a —(u —a cosO) ]'

Hence, r can take on a purely imaginary value iU, with

~

u & 2a. When O =~/2, Eq. (78) yields
X=(a' —u')'" u &a

The image of the disc in the (r, O) plane is either

r=0, 0=sin (79)

or

with 0 &0& ~/2 on the positive side, and ~/2 & 0 & ~ on
the negative side. If r =(u +iu), then the vanishing of
the imaginary part of (r —ia cosO) requires that
u (u —a cosO) vanish. The root u =a cosO does not yield
points lying in the interior of the disc. The root u =0
gives

In the analysis of the electromagnetic field of the
Kerr-Newman source, only two physical parameters
enter, namely, the charge e, and the length a, but not the
mass m, nor the angular momentum J. Only three of
these four parameters can be assigned arbitrary values,
because of the relation J =cma. Our results should be
of interest in the study of the electromagnetic field in ro-
tating charged stellar models, including the theory of
black holes.

We were led to this investigation in the course of test-
ing a proposed model of the atomic nucleus taken as a
Kerr-Newman source, under the assumption that the an-
gular momentum of the source is equal to the intrinsic
spin angular momentum of the nucleus.

The parameter a in this model of the nucleus is of the
order of the compton wavelength of the nucleus (fi/mc).
Now that we know that the Kerr-Newman source is not
pointlike, but has a physical extension over a disc of the
order of the Compton wavelength of the nucleus, with a
complicated distribution of currents and surface charges,
the fact that it has a gyromagnetic ratio of 2 is less strik-
ing.

Note added in proof. In an illuminating paper, W. Is-
rael [W. Israel, Phys. Rev. D 2, 641 (1970)] discusses the
electromagnetic field of the Kerr-Newman metric. Un-
der the assumption that the sources are limited to the
disk of radius a, he derives relations (10) and (18) for the
current distribution and the charge distribution over the
disk.
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