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Classification scheme of triply excited states from a molecular viewpoint
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Energy levels of triply excited states of an atom with all three electrons in the same shell are ob-

tained by a model calculation. The nodal pattern of an eigenfunction at the symmetry configuration

plays a crucial role in the manifestation of moleculelike modes as in the case of doubly excited states.
It is shown that the correlation of the three electrons leads to normal modes isomorphic to those of a
molecule with D3p, symmetry. The energy levels may be thus regrouped into manifolds, each reveal-

ing the rotational level structure of a symmetric top. The validity of the model is discussed in refer-

ence to known experimental and theoretical results.

I. INTRODUCTION

The study of doubly excited states has been a central
theme in atomic physics over the past two decades.
Theoretical investigations of two-electron atoms have re-
vealed systematic features in energy levels and lifetimes
controlled by correlations. A large amount of effort has
been devoted to seeking a language for describing ob-
served features from a unified viewpoint, resulting in a
unification of the hyperspherical analysis of radial corre-
lations and the rovibrational description of angular
correlations. ' Two-electron correlation patterns are
now understood to be isomorphic to the stretching and
rovibrational modes of a Aoppy linear triatomic molecule.
The sought language is thus analogous to that of molecu-
lar physics, a rather natural consequence in retrospect be-
cause the latter came into use precisely for the purpose of
describing strong correlations of atoms in a molecule. Al-
though there exist subtle differences between electrons in
an atom and atoms in a molecule, "' the isomorphism
tells us why Macek's adiabatic description of doubly
excited states, modeled after the Born-Oppenheimer treat-
ment of molecules, has been quite successful.

Strong correlations are also expected in triply and mul-

tiply excited states. Experimental observations and
theoretical studies of these states are scarce so far, but
several isolated resonances have been ascribed to tem-
porary formation of triply excited states (Sec. IV). The
importance of multiply excited states has been also recog-
nized recently in multiple charge transfer in the collision
of highly charged ions with atoms. ' Progress in experi-
mental and computational technology will undoubtedly
reveal a multitude of triply excited states in the near fu-
ture. It appears thus timely to begin a search for a simple
and comprehensive language for classifying and interpret-
ing triply excited states. Instead of studying resonance by
resonance, this paper extends previous analyses of doubly
excited states to triply excited states and seeks a language
capable of treating each manifold of resonances collective-
ly, elucidating the systematics of energy-level positions

from a molecular viewpoint.
Identification of moleculelike modes in multiply excited

atomic states has been conceptually elusive. Electrons
will readily fall away from an equilibrium configuration
since it is achieved by the competition between electron-
electron repulsion and electron-nucleus attraction, thus in-
trinsically unstable. However, it should be recognized
that the attractiveness of the nucleus causes the electrons
to orbit around it, thus the average effective force on the
electronic orbits rather than the electrons themselves tends
to confine the orientational degrees of freedom. As a re-
sult, parameters representing the orbits would perform ro-
vibrational motion under the inhuence of the electron-
electron interaction. This argument rationalizes the use of
the molecular language for the study of electron correla-
tions.

Although it would be desirable to deduce an effective
Hamiltonian for the motion of the electronic orbits, it is
not essential to write down such a Hamiltonian explicitly
for observing moleculelike modes of multiply excited
states and predicting qualitatively correct energy ordering.
We demonstrate moleculelike modes by analyzing the an-
gular correlations of triply excited states in a model
three-electron problem. The model assumes that the auer-
age radial distances of the electrons are equal, which is
tantamount to restricting their radial degrees of freedom
while leaving the orientational degrees of freedom uncon-
strained. " This model is introduced as an approximation
to the variational diagonalization of the three-electron
Hamiltonian in such a manner that its systematic im-
provement may be readily foreseen. Although limited by
the neglect of radial correlations, this type of model per-
mits us to sort out dominant effects of angular correla-
tions which shape the level structure of triply excited
states in a given quantum shell. We will regroup the en-
ergy levels of this model into manifolds according to the
nodal patterns of the eigenfunctions at the symmetric
equilibrium configuration. We shall classify the resultant
manifolds from a molecular viewpoint rendering a global
understanding of three-electron correlations. Specifically,
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we show that energy levels of each manifold reveal a
structure analogous to that of a symmetric top while
different manifolds are characterized by different vibra-
tional modes.

This article is organized as follows. Section IIA for-
mulates the model clarifying each step of our approxima-
tion, Sec. II B discusses a method for computing energy
levels and eigenfunctions, and Sec. IIC presents the re-
sulting levels, using only the standard configuration la-
bels, and points out the limitation of this representation.
Section III introduces an alternative viewpoint analogous
to molecular physics which permits us to see the rovibra-
tional level structure resembling that of a molecule with
the D3~ symmetry. Section IV discusses the implication
and validity of the present study in reference to the previ-
ously calculated or observed triply excited resonances of

He . Section V concludes the paper with a brief discus-
sion on radial correlations, pointing out the present
work s implications on triply excited states of multielect-
ron atoms.

II. MODEL THREE-ELECTRON PROBLEM

A. Description of the model

As noted in the Introduction, the collective modes of
the three electrons in an atom pertain to the motion of
their orbits rather than to the localized oscillations of the
electrons themselves. In order to take this fact into ac-
count, we derive our model from an approximation of the
quasibound states by the restricted intrashell
configuration-interaction (CI) wave functions of the form

l ) l213,L12,S)2
Cl, l,'I,

" g( —1) Pal, 'I', (,"(rl, r2, r3)
P

where L and S are total angular momentum and spin, re-
spectively, N is the principal quantum number of the
shell, Z* is the effective charge to be determined shortly,
and P denotes a permutation operator of S3. Here

p~ I'I,"(r1,r2, r3) is an unsymmetrized basis function

defined by

Ql I I (r1 r2 r3) fNI (r1 )fNI (r2 )fNI (r3 )

( )X "(123) (2)

with

Itlll'I', l3(~) = [[~!,(rl)~l, (r2)) " I'l, (r3)]M',

X "(1,2, 3)=[[X(l)X(2)] "X(3)]",

(3)

(4)

where in (2) fNI(r) is the Coulomb radial wave function
with the effective charge Z* and l. 12 and S]2 are inter-
mediate angular momentum and spin L]2 ——11+12 and
S12=s1+ s2, respectively. In (3) and henceforth, co

denotes r1, r2, and r3 collectively, and X in (4) denotes a
spin function.

The three-electron Hamiltonian reads

H=Hp+ V, ,
with

Hp= g
i=1

1 1+ +
r12 r23 r 31

Because we use a unique effective charge Z* for all the
three electrons, the expectation value of Hp with respect

to the wave function (1) is

(H )=(ql ~H ~% )/('0 ~% )

(2Z —Z'),
2%

(8)

( V, , ) =3 —
)
=v 3Z" /N

v'3r (9)

where r is the distance of each electron from the nucleus.
Adding (8) and (9) and minimizing with respect to Z*, we
get

Z* =Z —1/3/3 (10)

and

E= —3Z*/2N2 .

Equation (11) is the quantized energy of a three-electron
system in the fie)d of a nucleus with effective charge Z*.
The rest of the paper examines, in essence, the departure
of ( V, , ) from this simple estimate, while holding (Hp)
and Z* as given by (8) and (10), respectively.

Although we can evaluate the expectation value of V, ,
rigorously using wave function (1), we employ a
simplification similar to that employed in the rigid bender
model. " Recalling that (9) is equivalent to replacing the
radial distance of each electron by

r=N /Z*, (12)

which is independent of the angular and spin quantum
numbers. In order to estimate Z*, let us evaluate the ex-
pectation value of the electron-electron interaction poten-
tial V, , approximately and minimize the total energy
with respect to Z*. To this end, consider an equilateral
triangle formed by the three electrons with the nucleus at
its center. We approximate ( V, , ) by the expectation
value at this configuration, thus
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we set r& ——r2 ——r3 ——r in V, , but without restricting the
angular degrees of freedom. Consequently, the variational
procedure requires us to diagonalize this efFective poten-
tial V, , using the angular and spin basis functions (3) and
(4). The approximate total energy is then

three electrons deviates from the equilateral triangle con-
sidered above. Despite these limitations our model is
sufFiciently realistic for predicting the qualitatively correct
behavior of the system (Sec. IV).

B. Computational procedure

(13)

Before going further, let us comment on some obvious
limitations of the model. Firstly, Axing the screened
charges of all the three electrons to a unique constant Z'
does not represent the radial correlation fully. In a real
system the effective charge of each electron fluctuates
about Z*. Inclusion of such fluctuations is what is nor-
mally done by the full CI calculation. Secondly, if basis
functions representing such fluctuations were included,
(Ho) would no longer be independent of the angular and
spin quantum numbers. Omitting this effect becomes a
good approximation when Z is so large that V, , may be
treated perturbatively. In contrast, (Ho) is expected to
depend on the angular and spin correlations in negative
ions. Our model neglects this fact entirely. Thirdly, re-
placing r; by r neglects the dependence of the size of an
electronic orbit on its eccentricity. Thus ( V, , ) as evalu-
ated with this restriction does not reQect subtle effects
such as the rotational contraction of the system. "' Last-
ly, replacing r by N /Z' is an underestimate because the
repulsion becomes stronger as the configuration of the

Let us describe in some detail how the matrix elements
are evaluated. For computational convenience, we order
the angular momenta I~, lq, l3 as follows.

(i) IT'all I's are diff'erent, then 1~ & Iz &13.
(ii) If any pair of I s are identical, then we set l ~ =lq re-

gardless of l3.
The permutation group S3 possesses six permutations,

each belonging to one of the following three equivalence
classes.

(i) Class 1, consisting of the identity e.
(ii) Class 2, consisting of the transpositions (12), (23),

and (31).
(iii) class 3, consisting of the cyclic permutations (123)

and (123) .
This fact will be referred to in the subsequent discus-

sions. Calculating the matrix elements of operators such
as (23), Ilr23, . . . necessitates recoupling of the angular
momenta as well as spins because our basis functions are
adapted to the intermediate coupling of I~ and 12 and of
S& and S2. Let us demonstrate the recoupling technique
using operator (23) as an example. Now consider the
equation

((1112)+ [2 I 13
~

I / y(1213 )I 23 )( I ) (I j y(1312 )+$3
~
(I) I3 )+ ]3 (12 )yI//31$(ro )

L23,L,3

(14)

The last expression results from three steps. The first step goes to the coupling of l2 and Eq. The second step is to inter-
change r3 and r2, which gives rise to the interchange of 13 and l2 and the phase ( —1) ' ' ". The third step couples I ~

and 13. Equation (14) leads to

('(t'I(l I3(r0) (
(23)

( Pl I2I3(ro)) ~l2!3 g ((1112)L12~13
~

11 (1213)L23)(
L23,613

TABLE I. Matrix representation of the permutation operators for the doublet state with respect to the basis vector

7'(1,2, 3)
7 (1,2, 3)

where X' and 7 are triplet and singlet parent spin functions Eq. (4). The corresponding matrices for the quartet state are one dimen-
sional and are identically 1 with respect to X'.

1 0
'0 1

(123)

1

2
v'3

v'3

2.

1

2
v'3
2

(123)
v'3

1

2

(12)

1 0
0 —1

2
v'3
2

(23)

1

2

1

2
v'3

(31)
v'3

2

1

2
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The matrix elements of the permutation operators with
respect to spin functions (4) are well known; the principle
of evaluation being identical to that of the angular part.
The result' is reproduced in Table I for later use.

This technique permits us to calculate the overlap and
potential energy matrices. However, some of the antisym-
metrized basis functions are identically zero or linearly
dependent, particularly when lj ——l2 ——l3. To avoid spuri-
ous eigenvalues in a specific numerical calculation, it is
essential to deduce the number of linearly independent
basis functions explicitly. We do so by following Clark
and Greene. ' The cases lI&l2&l3 and ll ——l2&l3 are
trivial. The first case l»l2&l3 gives one quartet and two
doublet (S~q =0 and 1) states and the second case
l(=12~13 gives one quartet and one doublet (S~2=1)
state if ( —1) ' ' "=1 but only one doublet (S~q ——0) if

( —1) ' ' "= —l. If l~ =lq =l3 =l, then the set of nor-
malized functions:

(16)

transforms onto itself under any permutation operation
where 0&L&2 (21. S&2 ——1 for quartet and SI2 ——0 and 1

for doublet. According to the group theory, the number n

of nontrivial vectors belonging to a particular irreducible
representation is obtained by'

1n= —p Q,
h

(17)

where h is the order of the group (equal to 6 here), and P
represents the characters of the permutation operators in
the vector space (16), and Q represents the characters of
the permutation operators in the irreducible representa-
tion of interest which is A q, the totally antisymmetric rep-
resentation. Accordingly, Q consists of the following ele-
ments: 1 for the first class with the identity and also for
the third class with the cyclic permutations, —1 for the
second class with the three transpositions. Hence, Eq.
(17) reads explicitly as

12 ~Sl

($&, I &, (r0» "(»3)
I »« —3 x (»)+»& (»3)

~ &I,Pr, (~» "(»3» (17')

employing e, (12), and (123) as the representative elements
of the three classes. n may thus be evaluated readily us-

ing the recoupling technique described above. The total
number of nontrivial eigenvectors of H,~ may be obtained
in this manner and used to monitor the reliability of the
numerical orthogonalization procedure.

C. Energy levels of the model

By imposing the form (1) on the CI wave functions, we
committed ourselves to describing intrashell states only.
However, as is well known from the study of doubly ex-
cited states, some states have a sizable contribution to the
angular correlation energy from virtual orbitals whose an-
gular momenta may exceed the upper limit of the intra-
shell angular momenta, namely N —1. For example, in
the N =2 shell, the intrashell configuration 2p S' mixes
with the configuration 2p3d S' where 3d represents a
virtual or polarized d orbital which sharpens the angular
correlation. For this reason it is necessary to make a
mock-up part of the effect due to virtual orbitals in our
model calculation. Here we choose the basis set for which
the maximum angular momentum permitted for each
electron is l,„=N. However, we exclude higher angular
momenta in order to avoid exaggerating the intershell
eject. We carry out a separate calculation in which
l „=N—1 in order to identify the genuine intrashell
states. The results to be presented below as well as in
Sec. IV exclude in this manner artificially produced inter-
shell states. The total angular momentum of an intrashell
state is always limited by 3N —3, and the parity of the
states, for which the total angular momentum is the max-
imum L =3N —3, must always be ( —1) .

Eev=27. 21)&(2.9035+v., „)
converts the energy position from a.u. into eV in a col-
lision of electrons with He( ls 'S').

The energy levels in this map show no obvious sys-
tematics. It appears rather hopeless to gain any insight

-0 24

-0.26
(we) (N=3)

-028-

w -030-

-0 32-

S S S P P P P D D D D F F «F F G G G H H

5TATE S

FICx. 1. Levels obtained by the model calculation for the
%=3 shell of He . States are labeled by L, S, and vr (horizontal
axis) and the energy is measured from the triple ionization
threshold in a.u. (vertical axis).

We show in Fig. 1 the energy levels of the N=3 shell of
He . The presentation and discussion of the result for
the N=2 shell are postponed until Sec. IV. In Fig. 1 the
horizontal axis labels symmetries by the good quantum
numbers L, S, and w. The vertical axis gives the absolute
energy in atomic units measured from the triple ionization
limit. It should be noted that the energy of the ground
state of He is —2.9035 a.u. relative to the triple ionization
limit. The formula
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into the three-electron correlation patterns unless we
modify our picture and adopt a more transparent repre-
sentation.

III. MOLECULAR INTERPRETATION
OF TRIPLY EXCITED STATES

A. Body-frame analysis of wave functions

Let us notice that the symmetry properties of an eigen-
function stem from the symmetry of the system, thus are
independent of the model. We first study the symmetry
properties of the general three-electron system, then see if
these properties are reflected in the energy-level structure
of Fig. 1. Because this article employs atomic physics
language, we feel it is necessary to work out the analysis
of the symmetry properties explicitly even at the risk of
repeating some facts familiar in molecular physics. A nat-
ural equilibrium configuration of the three electrons
whose dynamics is governed by Hamiltonian (5) is an
equilateral triangle with the nucleus at the center. The
fact that the inversion-permutation group and the D3$
point group acting on this configuration are isomorphic'
suggests a correspondence between the energy-level struc-
ture of triply excited states and that of a D3~ molecule.

Let us apply the body-frame analysis of Watanabe and
Lin"' to the three-electron system. First let us define our
body frame. As the z axis we take a totally antisymmetric
vector

S ~—S

Sy~ —S

S,~S, ,

(21)

which is nothing but a rotation of the original frame by ~
radians about the S, axis. Thus

D1t1M1(Q)~( —1)~D1(1~1(Q) (inversion) . (22)

The ri, r2, r3 vectors transform to the positions which are
the mirror image of the original vectors with respect to
the plane of the three electrons. Therefore, the property

&P(~—0,$)=( —1)™&P(&,$)

for short-hand notation, and m' denotes the directional
vectors r &, r q and r 3 defined in the body frame
(S„,S~,S, ), Q denotes the set of Euler angles for the trans-
formation between the laboratory and body frames, and
Q is the projection of L onto the body axis S„namely
Q =L S, . Note that there are only three degrees of free-
dom in m' since the orientation of the body is expressed
by Q.

Let us study the transformation properties of each rota-
tional component of (20) under inversion and permuta-
tions. First, under the inversion r~ —r, the frame vec-
tors transform as

S, =ri Xr2+rqX&3+r3Xri, (19a)
leads to

(19b)

which is orthogonal to the plane spanned by the electrons.
As the other two axes of the body frame, we take

v'3

2

C&g" (r0 ')~m( —1)~@(2"(ro ') (inversion), (23)

v'3S' =Sy XS, = [Zr3 —r1 —r2 —2(r1 r2)r3
2

+(r3'I1 r1'I2 I2 13)r1

+ ( r3'rl rl 'r2+ r2'r3)r2] (19c)

At the symmetric configuration where ri-r2 ——r2-r3=r3'r~,
vector S„' is proportional to

where m. =( —1) is the parity of the system. Wave11 +lz +13 ~

function (1) thus acquires the phase 7r as it should.
Let us next illustrate the geometrical significance of

each permutation through the example of transposition
(23), restricting ourselves to the D3h symmetric
configuration. The following discussion applies to states
whose eigenfunctions do not vanish identically at this
configuration. A discussion for more general cases will be
given in Sec. III C 1. Figure 2 illustrates that the effect of
(23) on the frame is equivalent to a rotation by ~ about

S =r3 2(r1+r2) . (19d)

B. Symmetry properties of rotational components

Let us analyze the behavior of wave function (1) at the
symmetric configuration. The angular function may be
cast into a form revealing rotational components explicit-
ly,

(25)

I
4M" (r0) = g 4g" (r0 ')D$M(Q),

Q= —L

where

+M" (ro) =
Il Iz I3 I. lz

(20)

(20')

FIG. 2. Diagram showing the effect of the transposition (23)
on the body frame and the position vectors rl, rz, and r3. To the
right, the unpermuted vectors; 0 and mean that S, is out of
and into the plane, respectively. The plane does not necessarily
contain the nucleus.
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the y axis followed by a rotation by —2n/3 about the new
z axis. On the other hand, the transformed vectors r~, r2,
and r3 may be rejected with respect to the plane of the
electrons to recover their original relationship with the
body frame. Hence Operator D$LM'(Q) +Q"(~ ')

TABLE II. Symmetry properties of the rotor function and
body-frame wave function under reflection with respect to the
plane and permutations.

D(L) (Q) ( 1 )L +g l(2ng/3)D(L) (Q ) (24)

and

4g" (to ')~m( —1 )g@g"(to ') . (25)

Table II summarizes the symmetry properties of these
functions for all the permutations. Substituting the re-
sults of Tables I and II into (1), we can readily rewrite the
antisymmetrized basis function at the symmetric
configuration in terms of the rotor and internal functions.
We have

e

(123)
(123)

(12)

(23)

(31)

Reflection with

respect to plane

&QQ

e t'(2'/3)Qg
QQ'

6QQ'
—t (2'/3 )Qg

( —1)L+QS «
( 1 )L + Q t'(2n/3)Qg —QQ'

1 )L ~ Q —i(2n. /3)Qg —QQ

1

~( —1)Q

~( —1)Q

~( —1)Q

I) 12131,L )2S)2
Cl)t2l3 Q ( —1) Ptll(, iti3" (r&, r2, r3) ~ Q D gQ (Q) 1+2cos

P Q

@g(to ')X'(1,2, 3) for S=—,',

gD g( (Q) 1— @g(to ')X'(1,2, 3)+i3/3sin 4g(to')L'(1, 2, 3) for S=—,', Sl2 = 1, (26)

g DgM"+(Q) . —i3/3sin
Q

2tr +g(co')X'(1, 2, 3)+ 1 —cos
2+0

4g(co')X (1,2, 3) for S=—,', Sl2=0,

where 2) =sr( —1) and

D gQ (Q)=DgM(Q)+2)D' g'M(Q) . (27)

Equations (26) and (27) play a key role in interpreting the
energy-level structure in Sec. III C below.

Let us also note the relationship

@ 'g (to ') =2)( —1)g 4g" (to ')

C. Moleculelike modes of triply excited states

1. Rearrangement of energy levels
into rovibrational manifolds

We now regroup the levels of Fig. l into manifolds.
Each manifold consists of states whose wave functions
have a similar nodal pattern. Let us now show that such

which follows from the properties of the 3j symbols where
denotes the "complex conjugation. " Accordingly, the

two rotational components Q and —Q of an eigenstate are
energetically degenerate. We employ a label T=

t Q ~

in
what follows. This quantity T is not an a priori good
quantum number, but its close connection with the nodal
structure of an eigenfunction at the symmetric
configuration makes a particular T component stand out.
Thus T is expected to be an approximately good quantum
number [a similar connection was noted in Ref. 1(a) for
doubly excited states]. This is evidenced in the energy-
level structure that we now discuss.

an arrangement of levels reveals that each manifold
resembles a rotational manifold of a molecule with the
D3~ symmetry. Since the energy levels shown in Fig. 1

include states in which bending vibrational modes are ex-
cited, we discuss the level structure manifold by manifold.
We start with the manifold whose members are in the vi-
brational ground state. The angular eigenfunctions of all
the members of this manifold should be nodeless at the
D3h symmetric configuration. Equation (26) applies lead-
ing to the following conditions:

vr( —1)'=+,
for T=O,

(29a)

(29b)

and

T=0(mod3) for S=—', —
,

T:1,2 (mod3) for—S = —,
'

(29c)

Condition (29a) means that the internal function 4g" (to ')
has an antinode at the plane of the three electrons con-
taining the nucleus since its sign is unchanged under
reflection with respect to the plane (cf. Table II). Condi-
tion (29b) assures that the rotor function defined by (27) is
nonvanishing when T =0. As argued for deducing (24),
each permutation induces a rotation of the body frame
about the z axis by a multiple of 120'=2~/3 rad, thus
leading to the trigonometric functions in (26) after sum-
ming over all permutations. These trigonometric func-
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FIG. 3. Levels of Fig. 1 regrouped into moleculelike rotational manifolds. First group for states without nodes in the wave func-
tions. Second group for states with nodes when the nucleus is on the plane of the three electrons. Third group for states correspond-
ing to the doubly degenerate bending mode. Level order of high angular momentum states may not be reliable.

tions interfere destructively unless condition (29c) is met.
Gathering the low-lying levels in Fig. 1 which are con-
sistent with (29) leads to a new energy-level pattern of the
first group shown in Fig. 3. Here the horizontal axis is la-
beled by T and the vertical axis by the absolute energy in
atomic units relative to the triple ionization limit. This
level grouping is similar to the (J,K) grouping of rotation-
al energy levels of a symmetric top except for the fact that
there is a rapid truncation in both L and T owing to the
constraint of the quantum shell. As illustrated in Fig.
4(a), each state in this manifold pertains to the zero-point
fluctuation of the electronic orbits about the equilibrium
configuration.

To illustrate the moleculelike behavior further, we also
display the rotational energy levels of other manifolds in
Fig. 3. The second group consists of the first excited
bending vibrational states; the center of charge of the
three electrons vibrates with a quantum of energy. The
internal wave function 4&g" (ia ') has the odd parity
~( —1) = —1 under reflection with respect to the plane.
The eigenfunction of a state thus vanishes identically
whenever the nucleus lies on the plane.

The discussion of the third manifold motivates to em-

ploy the concept of the D3h point group. Let us discuss
the D3h symbols. There are six species: A'], A2, E', A'~',

A q', and E". The single prime and double prime separate
two classes of representation. The single prime pertains
to a representation invariant under O-q, namely the
reflection with respect to the plane of the three electrons,
and the double prime to a representation which changes
sign under o.q. This parity is given by vr( —1) . The
symbol A indicates a one-dimensional representation: A ~

is totally symmetric (like the S=—', spin function) and A2

totally antisymmetric. The symbol E indicates a two-
dimensional representation (like the S= —,

' spin function).
The full wave function must be totally antisymmetric,
that is either of type Az or A2'. The multiplication rule
of these symmetry species is straightforward
A) X A) = A2X A2= A]& A) X A2= A2& A] XE= A2XE
=E, and EXE=E+Aq+ A~. The D3~ classification of
rotational states results from the inspection of Table II.
The rotational states are one dimensional, A type, if T=O
(mod 3) and two-dimensional, E type, if T+0 (mod 3).

For T=O, they are of type A~ for L even and of type Aq
for l. odd [Eq. (24)]. Returning to the first two rotational
manifolds of Fig. 3, we note that the first manifold per-
tains to the one dimensional totally symmetric vibrational
state A ~ and the second one to the one dimensional total-
ly antisymmetric vibrational state A2' [cf. Table II for the
transformation property of 4g" (m ')]. The third manifold

(c)

FICx. 4. Graphic representation of molecular bending vibra-
tional modes. The electrons are placed on a sphere; the interac-
tion potential is harmonic and the nucleus is assumed to be mas-
sive. (a) A ~ manifold of Fig. 3: The electronic orbits perform
zero-point fluctuations about the equilibrium configuration. (b)
A 2' manifold: The electrons and the nucleus move in phase. (c)
F' manifold: A pair of degenerate vibrational modes. To the
left, two electrons move in phase, the third one being stationary.
To the right, the third one moves in phase with the other two
moving out of phase.
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p(l f r2 r3 co )= f ~
%~zt(r&, r2, rs)

~

dQ (30)

We set the radial distances rj, r2, and rq to r given by
(12). Here the amplitudes of the Coulomb radial func-
tions are roughly the same. In accordance with our mod-
el, we evaluate (30) assuming that the radial amplitudes
are identical. The maximum probability is normalized to
unity for each state. Figs. 5(a) and 5(b) are for the
representative states of the three manifolds, namely the
P', S', and S' states. For both figures, the positions of

two electrons are fixed at r2 ——( 90', 120 ) and
rs=(90', —120'). In Fig. 5(a) r~=(8, 0') with 0'&0&90',
that is electron 1 is placed on the plane which bisects the

however pertains to the two-dimensional representation
E', doubly degenerate vibrational state, as may be verified
using the Dq~ multiplication rule. This multiplication
leads to states labeled E, A2 and A~ for T+0 (mod 3).
A state labeled A~ would normally form a E doublet'
with a state labeled A2. However, 2 ~ states are not feasi-
ble in this manifold since there is no totally antisymmetric
spin function. The K doubling is not explicitly shown in
this manifold. On the other hand, an Aq state and an E
state appear as a doublet. This phenomenon is equivalent
to the l type doubling in molecular physics caused by the
coupling between the rotational and vibrational motion.
In the present model the relative level order of l type dou-
blets is opposite to that of XH~.

The fourth manifold is isornorphic to the first one.
Beyond this, states are too scarce for identifying meaning-
ful rotational manifolds. Nonetheless, the rest of the
states are arranged in a manner suggestive of the rotation-
al manifold of the E" vibrational state. A S' state would
be the lowest member of the A2 vibrational state though
no S' states are formed in the N=3 shell. A &'-type vi-
brational states should also manifest themselves in higher
quantum shells.

Figure 4 illustrates the vibrational normal modes of the
three particles interacting by a harmonic potential on a
sphere, (a) being the equilibrium configuration (the nu-
cleus is assumed to be massive). The 3 2' vibrational state
corresponds to (b) out-of-phase motion of the nucleus and
the three electrons. The E' vibrational state corresponds
to the superposition of a pair of degenerate motions (c).
On the left, a pair of electrons move in phase, the third
one being stationary. On the right, the third electron
moves in phase with respect to the other two electrons
moving out of phase. If the radial degrees of freedom are
relaxed, there appear all together six normal
vibrations. ' '"' One of the three additional modes is the
symmetric stretching mode (A ~) and the other two are
degenerate vibrational modes (E'). One of the degenerate
modes corresponds to the in-phase radial motion of two
electrons with the third moving out of phase and the oth-
er corresponds to the out-of-phase motion of two electrons
with the third approximately stationary [see Fig. 63 of
Ref. 17(b), Vol. II].

Let us supplement the discussion by displaying certain
sectional views of the probability density distribution (con-
ditional probability distribution plots) integrated over all
orientations of the body frame. It is defined for each
triply excited state by

1.0 1.0

(b)

0.5 0.5

f4
o
E

0.0
O

's'
00~

O0 0

FIG. 5. Conditional probability distribution plots Eq. (30) for
the representative states P', S', and S', of the three manifolds
of Fig. 3. The position of electron 1 is parametrized by the polar
angles (0,$); the positions of the other electrons are fixed to be
r~=(90', 120'} and rq=(90', —120'}. (a} for rl=(0, 0 ), (b) for
r( = (90',P).

18090

2. Details of the rotational structure

A main difference between the three-electron system
and an XY~ molecule should be noted. As is well known,
the rotational energy of a prolate (cigar-shaped) molecule
increases with T for a fixed I while that of an oblate
(pancake-shaped) molecule decreases with T for a fixed L.
We notice that the level structure obtained by our model
calculation resembles that of a prolate molecule for small
L but that of an oblate molecule for larger L (L & 3 in the
present case). The prolate moleculelike level structure
shown in the first group of Fig. 3 disagrees with the
energy-level structure obtained by diagonalizing the rigid
bender Hamiltonian,

HRn =— (I & + I&+ I & ) — + V, ,1 1 2 2 2 3Z
r r

(31)

The lowest manifold of this model is similar to that of an
oblate molecule in an electronically symmetric state (not
shown).

What causes the low-lying triply excited states to exhib-
it a prolate rotational level structure? To answer this
question let us consider Fig. 6 displaying the conditional
probability distributions of the rotational series F', F',
F', and F' of the first group of Fig. 3. The setting for

this figure is the same as for Fig. 5. The angular positions
of the second and the third electrons are set to
r2=(90, 120') and rs=(90, —120'), respectively. Figure
6(a) is a sectional view at r~ =(0,/=0') with 0 &0&90';

rp3 axis, while in Fig. 5(b) it is placed on the plane con-
taining the nucleus r~ =(90',P) with 0'& P & 180'. In-
cidentally, the labels 1, 2, and 3 for the electrons are
merely for the sake of discussion and inconsequential be-
cause of the antisymmetry of the wave function. The P'
state shows a very sharp concentration at the equilibrium
configuration (0,$)=(90',0'). The S' states has zero
probability of being at 6I=90'. The S' state has zero
probability at (0,$)=(90,0'). On the 0=90' plane, the
maximum occurs fairly close to /=0, and on the /=0'
plane the probability maximizes at 0=30'. These section-
al views are all in accord with the earlier discussion of
molecular modes.
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FIG. 6. Sectional views of the conditional probability densi-

ties of the rotational series F', F', F', and F' of the first
group in Fig. 3. As in Fig. 5, r2 = {90,180') and
r3=(90, —180'). (a) for r~ =(0,0'); (b) for r~ =(90',P).

Fig. 6(b) at r~=(0=90', P) with 0'&P(180'. In Fig. 6(a)
the maxima at 0=90' means that indeed the three elec-
trons tend to be on the plane containing the nucleus. Fig-
ure 6(b) shows that on this plane electron 1 prefers the po-
sition which makes the three-electron system look like an
equilateral triangle, hence like a coplanar oblate molecule.
What about the relative energy ordering? Figure 6(b)
shows that in the F' state electron 1 has a negligibly
small amplitude near the position of the other two elec-
trons, /=+120', hence it is natural that its energy is the
lowest amongst the four states. The observed energy or-
dering follows from averaging V, , over all the possible
relative positions of the three electrons. However, the an-

TABLE III. Comparison of our result with the previously calculated or observed energy levels. Ex-
perimental and some theoretical levels tabulated originally in eV are converted into a.u. by Eq. (18). Our
levels are shifted by 0.1+0.02 a.u. with respect to those of Refs. 32 and 34, except for 'S'. A single as-
terisk indicates that model may overestimate the effect of virtual orbitals in these states. Double asterisks
indicate that these values are obtained by the adiabatic hyperspherical method of Refs. 7 and 36. Uncer-
tainty is estimated from the nonadiabatic correction term.

2po

4pe

2De

Present work

—0.682

—0.680

—0.659

Earlier theoretical works

—0.798
—0.798g

—0.8278'
—0.79852
—0.8006"
—0.8179'
—0.795+0.006'

—0.7931"
—0.790+0.008'**

—0.761
—0.757g

—0.7594'
—0.75602
—0.7598"
—0.7892'

Experiment

—0.805+0.004'
—0.8113
—0.801+0.004'
—0.8113'
—0.8032
—0.8028+0.002"
—0.80»
—0.8006+0.001"

—0.765+0.004'
—0.7705
—0.761+0.004'
—0.7690'
—0.7635+0.001
—0.7627+0.002"
—0.761"
—0.7609+0.001"

2p8

4S0

2D0

—0.627
—0.625

—0.592

—0.7226"
—0.7221q
—0.726+0.005'**

2p0

2S e'

2pe

'Reference 19.
Refernce 20.

'Reference 21.
"Reference 22.
'Reference 23.
'Reference 24.
gReference 25.

—0.579

—0.576

—0.573

—0.6826"
—0.6940'
—0.7234"
—0.7157'

"Reference 26.
'Reference 27.
"Reference 28.
"Reference 29.
'Reference 30.

Reference 31.

—0.720'

"Reference 32.
'Reference 33 ~

Reference 34.
qReference 35.
'Reference 7.
'Reference 36.



520 S. WATANABE AND C. D. LIN 36

gular correlations of electrons 2 and 3 being not
displayed, this restricted set of sectional views is
insufhcient to account satisfactorily for the F', F', and
F' states. In any event, the prolate moleculelike behavior

of the low L rotational levels may be attributed to the de-
tails of the electron correlations rather than to the shape
of the system. Because ours is a model calculation, it
remains to be seen whether it represents fine details of the
real atomic spectra faithfully. Should the real spectrum
resemble that of a prolate or oblate molecule? This can be
answered only with the aid of more rigorous calculations
or extensive experimental data. Let us note in passing
that like a molecule the three electrons tend to concen-
trate more toward the same plane as T increases except
for the F' state [Fig. 6(a)]. Note also that the volume
element associated with the probability density distribu-
tion is proportional to d cos8i2 d cos023 d cos03i. The
nonnegligible density of the F' state at /=120 gets com-
pensated for by the vanishing volume element.

In our model the rotational constant originates entirely
from the electron-electron interaction term V, , This
point leads to the following observation. Using the energy
difference of the two rotational states P' and D' of the
first manifold, we can estimate the gyroradius 8,

' 1/2
L (L + 1 ) L'(L '+ 1—) =43 a.u. ,2hz

(32)

which is much greater than the root-mean-square size of
the system &3r =11 a.u. Such an overestimate was also
found in a similar analysis for doubly excited states of
two-electron atoms. "' Since the rotational splitting in
our model is not due to the kinetic energy term as in a
molecule, this value of R has nothing to do with the size
of the state.

IV. COMPARISON WITH KNOWN RESULTS
FOR THE N=2 SHELL (REFS. 19—36)

The ¹ 3 shell manifolds used for demonstration have
been, except for this work, neither computed theoretically
nor observed experimentally. Their study remains as a
future task. Some states of the N=2 shell are known,
however, from other calculations and experiments. The
results of our model calculation and others are summa-
rized in Table EEI. In comparison with the works of Nes-
bet and Chung, our energies are consistently O. 1+0.02
a.u. higher except for the S' state of the third manifold
where the difference is bigger. The relative energy spac-
ings are fairly well-reproduced. Consequently we may at-
tribute the energy differences of the known states largely
to angular correlations, or equivalently, to the rovibration-
al motion of the electronic orbits. The near constant ener-

gy shift is likely a result of underestimating the radial
correlation energy. The exceptional behavior of the S'
state could be due to the particularly strong radial correl-
tion in this state. Figure 7 maps the three manifolds of
levels in a manner akin to Fig. 3. Only the three different
manifolds are identifiable from the clusters. No I-type
doublets are seen.

The states P' and P' in Fig. 7 follow the energy or-
dering of an oblate molecule in contrast to what was seen

-0.55

-0.60-
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0.65
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FIG. 7. Same as Fig. 3 for N=2 shell of He

in Fig. 3 for the ¹=3shell. This reversal could be due to
the breakdown of treating triply excited states in the ¹ 2
manifold as a symmetric top. It is worth checking by a
more complete calculation whether the order of P' and
P' follows the prediction of Fig. 3 or Fig. 5.

V. SUMMARY AND CONCLUSION

In this paper we have considered whether the molecular
language will help the classification of triply excited states
of atoms. We have proposed a model for the three-
electron atom treating angular correlations adequately but
leaving out radial correlations. By considering that the
total angular momentum of a triply excited state has a
quasi-invariant projection onto the symmetric axis of the
body frame, we have been able to rearrange the energy
levels into different manifolds of bending vibrational exci-
tation, each manifold consisting of rotational levels similar
to those of a symmetric top. How realistic is this model
calculation compared to the actual atomic spectra of triply
excited states? The answer to this question may have to
await a fuller theoretical calculation as well as reliable ex-
perimental studies of a large number of resonances in the
N=3 shell. We believe the present classification scheme
will serve as useful guidance to the eventual understand-
ing of the three-electron dynamics. Examining the details
of and possible deviations from the molecular picture may
similarly require a full analysis of accurate energy levels
and wave functions. We expect from our earlier analysis
of doubly excited states"' that the purity of the T quan-
tum number serves as a measure of the effectiveness of the
classification scheme.

Our analysis here has neglected radial correlations com-
pletely. To incorporate radial correlations, we need two
additional quantum numbers conjugate to the two hy-
perangles in hyperspherical coordinates (which are suited
for describing the additional doubly degenerate stretching
mode). A full treatment should then exhibit excitations in
antisymmetric stretch modes like the "—"states of dou-
bly excited atoms. Many of the states shown in Fig. 3
will autoionize. Nonetheless, the molecular modes should
provide a scheme for classifying hyperspherical channels.
The analysis of the three-electron correlations in re".1
atoms will be a challenging problem for the years to
come.

The present study is limited to the understanding of the



36 CLASSIFICATION SCHEME OF TRIPLY EXCITED STATES. . . 521

e+He~(He )~ He' +e,
He+ hv

(33)

a physical theory of decay involving the temporary forma-
tion of triply excited states will be in good demand. To
the authors' knowledge, there exists no comprehensive
theory regarding this point.

Relevance of the present study is not limited to the
isoelectronics of He . Atoms in which the outer three
electrons are in the same shell are expected to display
correlation effects noticeably. The isoelectronics of Al are
such an example. The well-known D' resonance of Al is
isomorphic to the He ( D') state of the first group of Fig.
3; both are formed by the strong mixing of the sp and
s d configurations. There now exist some theoreti-
cal" and experimental studies on similar systems,
but the order of levels appears to change from one system
to another significantly. Unfortunately, in most atoms
the presence of the inner-shell core complicates the treat-
ment, thus much remains to be clarified. One fact we
wish to point out in this connection is that the resonance
positions of C ( S', D', I") appear in the orderS'( D'( P' from lower to higher. The first two are
sharp Feshbach-type resonances whilst the P' resonance
is shapetype. In our language the former two resonances

stationary states and is thus incapable of calculating exci-
tation probabilities or treating decay processes. In view of
the recent experimental analyses of the optical excitation
functions ' in

belong to the second group of Fig. 3, and the third one to
the third group thereof. In the independent particle
language, however, they all belong to the same
configuration p . Let us note further that the energy or-
der of S', D', and P' is consistent with Hund's rules.
The point is that our present classification scheme en-
riches Hund's rules by permitting to compare different
configurations, including strong mixings.
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