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Transition of spectral statistics due to overlap of quantum resonance zones
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The quasienergy spacing statistics of a particle in an infinite square well perturbed by a mono-
chromatic external field is studied below and above nonlinear quantum resonance overlap. It is
found that at small enough perturbations the quasienergies are accurately given by those obtained
from a single resonance, integrable Hamiltonian. The quasienergy spacing distribution undergoes
a transition from Poissonian toward Wigner-like behavior when quantum resonance zones overlap,
indicating the destruction of a quantum local constant of motion.

In classical nonintegrable Hamiltonian systems, the de-
struction of a local constant of motion, i.e., the destruction
of Kolmogorv-Arnold-Moser (KAM) tori, and the subse-
quent onset of global chaos occurs when nonlinear reso-
nance zones overlap in phase space. ' In this article, we
will show that, in a quantum system, the destruction of a
quantum local constant of motion (and its associated
quantum number) occurs when quantum nonlinear reso-
nances overlap.

Let us consider a conservative system with two degrees
of freedom. If the system is integrable, each energy level
can be labeled by two independent quantum numbers. A
pure sequence of energy levels is composed of those levels
with one of the two quantum numbers the same. The
overall spectrum is then a mixed sequence, a superposi-
tion of many pure sequences. Mehta has proved that the
spacing distribution of a mixed sequence is a Poissonian in
the limit when the mixed sequence is composed of an
infinite number of pure sequences, whatever the underly-
ing distribution for the pure sequence, based on the as-
sumption that all the pure sequences are uncorrelated. If
the system is nonintegrable, the energy is the only global
constant of motion, and the overall spectrum is a pure se-
quence. Extensive work on the spectral statistics of nuclei
has shown that a pure sequence exhibits level repulsion
leading to a Gaussian orthogonal ensemble (GOE) distri-
bution of nearest-neighbor spacings. Thus, for the two
types of systems, one expects to see distinct spectral

I

characteristics. Conversely, the spacing distribution al-
lows us to determine the existence or absence of an addi-
tional constant of motion.

Nonlinear quantum resonance zones were first shown to
exist by Berman and co-workers for a model system in-
volving two quantum nonlinear resonances. We have
shown the existence of external-field-induced quantum
resonance zones for a model describing a particle in an
infinite square well driven by a monochromatic external
field. We shall examine what happens to the spectrum of
this system with and without quantum resonance overlap.
This system has a time-periodic Hamiltonian. We must
study its quasienergy spectrum, because the system can
be viewed as a conservative Hamiltonian system with two
degrees of freedom and the quasienergy corresponds to the
total energy in this two-degree-of-freedom system.
Therefore we can apply the technique of spectral statistics
to quasienergies.

For the model we are considering, the Hamiltonian in-
side the walls (at x =0 and x =2a) is H p /2m+X(x—a)cos(coot ), where P is the momentum operator, m is
the mass of the particle, x is the position operator, A, is the
amplitude of the external field, coo is the angular frequen-
cy of the external field, and j is the time. The wave func-
tion vanishes at the walls. In the angle representation, the
Schrodinger equation for the state

~
y(t)) that describes

this system is

.~ B(y~ tlr(t)& ~ B'(y~ y(t)&
Bt

4ak 1
, [cos(Ny —coot)+cos(Ntit+ coot))(tit i y(t)),

where 0 =Ittr /Sma, with the conditions ( —
p~ y(t)) = —(p~ tir(t)) and (p+2tr~ tlt(t)) (p~ tlr(t)). In the action

representation, the Schrodinger equation becomes

ih (j;I ~
tlt(t)&=j'hn(j I

~
tlt(t)& —

2
cos(coot) g 2 ((j N I

~
y(t))+(j+N;I —

~
tlt(t))),

dj 7t' a=i.~d N'

with ( j;I ~ tit(t)) = —(j;I—~
tlt(t)), where ~j;I) is an eigenstate of the unperturbed action operator, I = —i hB/ B&, and j

is an integer.

Each of the cosine traveling potential wells in Eq. (I) gives rise to a nonlinear quantum resonance zone in action space.
The centers of the zones are located at j = ~ coo/2ND. The width of each zone has also been estimated. For small
enough k and high enough coo, the resonance zones are well separated. If, the initial population ti.e., (j;I ~

1lr(0))] for
j &0 is nonzero only within or near a given zone, No, and far away from any other zone, then one can show that
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(j;I ~
y(t ) ) for j)0 [the populations for j(0 are always understood to follow the condition ( j—;I

~
qr(t ) )

= —(j;I ~
y(t))], to a good approximation, is given by (j I ~X( (t)) for j)0. (j;I ~ X( (t)) satisfies the following equa-

tion:

n even

for all integer j, and n =0. In the angle representation Eq. (3) can be written as

a(y~X('(t)) a'(q~X("'(t))
l6 = —hn

Bt tip 2

1Vp+ n 4
, , cos(Ny —coot)(y i X( '(t)),

N Npodd N
n even

Np+n

t It j(;I iX( (t)) =J Ii A(J;I iX( (t)) g [(J N I iX( (t))e +(j+N I iX( (t))e ]
dt N

(3)

(4)

with the condition (p+2tr
~
X( (t)) =(p

~
X(1(t)). For

n =0, Eqs. (3) and (4) describe the behavior of a single
isolated nonlinear quantum resonance zone. For larger X,
when zones N =Np and N =Np+ 2 overlap but zones
N =Np and N =Np —2 do not, generally all N & Np+2
zones will have overlapped with their neighboring zones
and they will also be connected with the zones on the neg-
ative j side. The most accurate approximation must then
maintain all those terms. Computationally, this is not
possible. Fortunately, due to the factor 1/N in the equa-
tions, the dominant contributions come from terms with
small N. For the purpose of determining whether a quan-
tum local constant of motion exists, it is sufficient to keep
only the two largest zones which overlap [take n =2 in

Eqs. (3) and (4)l.
Let us consider Eq. (4) for the single resonance approx-

imation (n =0). Based on our previous work, to ether
with periodicity conditions (P ~XP (t)) =(y+2tr

I X "«»
and the theory of quasienergy states, the eigenfunctions
of the quasienergy Hamiltonian P=H(t) —i@a/a—t are
found to be

8 (Jpt, t) =U, (8(p, t))exp i.coo + (vJ/2+l)t
J 2ANp

~here

8 = (Npg copE)/2, vJ
= (2j —coo/ANo)/No

and j and I are any integers. U . satisfies a Mathieu
equation

dzU, ,(8)/d8 + aJU, , (8) +2pcos(28) U, . (8) =0

with p =8ak/Ii Atr No, and must be of the form of a Flo-
quet solution, namely, U,, (8) =exp(ivJ8)QJ(8) and

QJ(8) =QJ(8+tr). For each j, there is a corresponding
characteristic exponent, v~, and therefore a corresponding
az. The corresponding quasienergy is

2

8 t
=—Noa h n — + +l hcoo . (5)

ACOp j
4 2 40N02 No

This describes the complete quasienerg spectrum. The
corresponding quasienergy state is (P ~X (t)) =WJt(g, t)
x exp( —i CJt t/fi ). This proves that the quasienergy spec-
trum is discrete for a system satisfying Eq. (4) with n =0.

We are interested in the eAect of resonance overlap.
We must construct a wave function which is dominantly
composed of quasienergy states which are responsible for

I

the resonance zones. The quasienergy spectrum is then
the Fourier spectrum of the wave function (for 6 =1).
Therefore we compute the spectrum numerically by ini-
tially populating a single level inside the resonance zone
and obtain solutions to Eq. (3) over a long period of time.
We then compute the discrete Fourier transform of
the resulting (P =0

~

X(" (t)). Due to the condition
( j;I ~ y(t))—= —(j;I

~
y(t)), it contains the same spec-

trum as (&=0
~ y(t)) when we retain in Eq. (1) the ap-

propriate resonances. In terms of atomic units (see Ref.
6), we choose a =10, m =1, and aio is chosen to corre-
spond to a resonance transition between

~
150;I) and

~
151;I) for specific computations. Thus we are probing

the full quantum domain.
We have computed the quasienergy spectra for Np =1

for both the single resonance case (n =0) and the double
resonance case (n =2) with the same initial condition.
The single resonance case is classically integrable and the
double resonance case is classically nonintegrable. At
p =25 (which corresponds to k = 0.03805), we obtain
identical power spectra for both cases. The spectra form
clusters of discrete peaks. For each peak, there is a corre-
sponding peak in the adjacent clusters at a distance of cop.

The peak locations are found to be in complete agreement
with Eq. (5), to six significant figures. Due to a relatively
small number of quasienergy states involved, we did not
attempt to obtain its spacing distribution. At higher X, we
have computed the Fourier spectra for X small enough
that no overlap occurs (X =4), and for X above overlap
(X =9, 15) (the overlap occurs near k =7,) for three
diA'erent input data windows, t C [8.192,2105.344],
[2105.344,4202.496], and [8.192,4202.496]. The interval
[8.192,4202.496] corresponds to about 2479 oscillations of
the external field. The spectra are discrete to within nu-

merical accuracy. For these spectra, we compute spacing
distributions and then compare them with a theoretical
distribution to measure the degree of spectral repulsion.
For the theoretical distribution, we will use the Brody dis-
tribution,

P (S) =(1+q)PS'texp( —PS'+'t),
where

P = [r[(2+q)/(1+q)]/D['+~,
D is the local average spacing, q is the Brody parameter, 5
is the nearest neighbor spacing defined in the range
S E [0,~). It interpolates between the Poisson distribu-
tion (q =0) and the Wigner distribution (q =1) (the
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Wigner distribution is only very slightly different from the
GOE distribution). The Brody parameter measures the
degree of spectral repulsion in the spectrum. We first
eliminate the edges of spectra to obtain "good spectra. "'
They are then unfolded with cubic splines to remove the
secular behavior. " Because of the finite resolving power
of the discrete Fourier transform together with the unfold-
ing procedure, at the edge of small spacings, there are
generally less spacings than one could detect with infinite
resolving power. We have determined that the spacing
distribution for y (y, =4rr/(TD';„) cannot be obtained
accurately (y is the unfolded spacing, T is the length of in-

put data window, and D';„ is the minimum of local aver-
age spacing in the original spectrum). Therefore the spac-
ing distributions are computed starting from y, . To take
into account this factor, we must construct a truncated
distribution ' from the Brody distribution. We define the
corresponding truncated distribution as

Pq (S) —=P~ (S)/„Pq (S)dS, S & [S„~),
where S, is the minimum spacing to be observed. We ob-

tain, after a change of variable y =S/D', the following
truncated Brody distribution:

P~ (y ) =A '+'(1+q) B(q)y'

&&exp[ —A '+'a(q)(y, '+' y'+—')],
where 8 =D'/D, B(q) = {I [(2+q)/(1+q)]] '+~, and

y C [y„~]. D(D') is the average spacing over the range
(0,~)([S„~)). The computed distributions are then
fitted with the truncated Brody distribution by a nonlinear
least-square method to obtain the best fit parameters, A
and q. For larger S, the distribution changes qualitatively
as q changes from 0 to 1 so that even for larger S we ob-
tain considerable information about the value of q.

Figure 1 presents the results for X, =4, 9, and 15 using
the data window t C [2105.344,4202.496]. For the single
resonance approximation, we see that the distributions are
close to the Poisson type for all X's (the q for X=4 is
slightly large; this appears to be due to the smaller num-
ber of spacings involved and the resulting poorer statis-
tics). This is consistent with our expectation, since the
single resonance approximation is integrable. For the
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FIG. l. Spacing distributions from numerical experiments (curve of steps) and best-fit truncated Brody distributions (smooth
curve). The slashed part corresponds to the unobserved region [O,y, ). N, is the total number of spacings involved in the experimental
distribution. The left column is for the single resonance approximation and the right column is for the double resonance approxima-
tion.
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double resonance approximation, the distribution is close
to Poisson type at k =4. As X is increased to 9 and 15, the
distributions are strongly deviated from the Poisson type
and tend toward the Wigner type with large spectral
repulsions. Thus the spectrum in the region of the reso-
nance zones undergoes a change in its characteristic from
a predominantly mixed sequence to a predominately pure
sequence through resonance overlap. Figure 2 gives the
best-fit Brody parameters for the three data windows we
have computed. At longer data windows, the Brody pa-
rameter decreases for the double resonance approximation
at k =9 and 15. This appears to occur because for the ini-
tial condition chosen, the wave function is composed not
only of quasienergy states responsible for the resonance
zones but also of those which are responsible for the non-
resonant region, although with much smaller amplitudes.
When the length of data window is increased, one is seeing
more contributions coming from the nonresonant regions
because of the reduction in leakage in the discrete Fourier
transform. But still, the repulsion in the spectrum is non-
negligible.

In conclusion, at very small l (X = 0.03805) the system
is accurately described by a single resonance Hamiltonian.
At larger A. (X =4), but below resonance overlap, we find
that the spectrum is a predominately mixed sequence.
These facts indicate that at small enough X the quasiener-
gy levels can be labeled by two quantum numbers. This is
a quantum version of KAM theorem' in the sense that
the system behaves like an integrable system at small
enough perturbations. There appear to be two constants
of motion. One is global and the other is local. Classical-
ly, the existence of a local constant of motion forms the
basis of KAM theorem. We have here seen the manifesta-
tion of this phenomenon in a microscopic quantum
domain. At larger perturbations when the resonance
zones overlap, the predominately pure sequence observed
signifies the destruction of the local constant of motion.
This is a quantum manifestation of classical resonance
overlap where the destruction of all the nonresonant tori

(c)

0 1 2

T ( X 2097. 152 )

FIG. 2. The Brody parameter measured vs the total length of
the data window. The x corresponds to the single resonance ap-
proximation and the circle corresponds to the double resonance
approximation, (a) k =4, (b) X=9, (c) k =15.

between the two resonance zones implies the destruction
of the local constant of motion in a large part of phase
space. We hope to present more details of this work in a
forthcoming paper.
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