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We discuss the thermodynamic phases and storage capacity of models which are extensions of
the Hopfield-Little model of associative memory, generalized to allow for arbitrary polynomial
Hamiltonians. The storage capacity increases as an exponential function of the highest power ap-
pearing in the polynomial Hamiltonian. We include the eA'ects of replica symmetry breaking in

our computations.
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where F is an arbitrary polynomial of degree p,
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There are several reasons for considering this generaliza-

The Hopfield-Little model is a network exhibiting as-
sociative memory based on the Hamiltonian
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where the S; are N dynamical variables taking on the
values + 1 and the g,

" (with (P = 4 1) are M fixed pat-
terns which are the memories being stored. This Hamil-
tonian exhibits associative memory because an arbitrary
starting configuration S; in the neighborhood of a given
pattern, say g, will, if it is allowed to relax to a local
minimum of H, evolve to a final state very close to S; =g
provided that M is not too large. The storage capacity
and thermodymamic properties of this model have been
studied in detail by Amit, Gutfreund, and Sompolinsky.
At T=O they find that for M &0.14N memory patterns
can be recovered with an accuracy better than 97%. At
higher M or high temperature there is a transition to a
spin-glass state in which memory patterns cannot be
recovered.

Note that Eq. (1) can be written in the equivalent form
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In this Rapid Communication we discuss the storage
capacity and thermodynamic phases of a generalization of
this Hamiltonian to

tion. First, the storage capacity of such a network in-
creases dramatically from the value M & a,N with
a, =0.14 reported by Amit, Gutfreund, and Sompolinsky
to M & a, (p)NP '. (Of course, this dramatic increase in
storage capacity is accompanied by an equally dramatic
increase in the number and complexity of the couplings
between the S;.) In addition, work on p-spin models of
spin glasses analogous to our generalized networks indi-
cates that the structure of the model, in particular the role
of replica symmetry breaking and the nature of the spin-
glass transition, is quite diA'erent for p & 2 than it is for
p =2. We find similar eff'ects here. Finally, in the limit of
large p we can obtain exact analytic results. Of particular
interest is a special case of (3),

M

&2p!N~ ' p-it, ~t,~

(5)

which we analyze extensively for p = 3 and for p ~. In
this analysis, we compute for the first time the eAects of
replica symmetry breaking on this model.

We are interested in determining the overlap of a
configuration S; with one of the stored patterns which we
arbitrarily take to be g,

N
m = —g (s;)t ),„...„.

N .
1

Here the angle bracket ( ) represents a thermodynamic
average while the angle bracket ()q„,„,h represents a
quenched average over the stored patterns gf In order t.o
distinguish g from all the other patterns we apply an
external field aligned with g and then take the limit as
this field goes to zero. We perform the quenched average
over patterns using the replica method. In the mean-field
approximation, valid for large N, the free energy depends
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on m and on the mean fields,

lV

q.~
= —z (s )(s,'))q....t,

i=1
(7)

this case, the free energy at temperature T= I/P is given
by

f=(p —1)A~m~+ [r(1 —q) —G(q)]
and

M 1V N

r, r,
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p=2 i l j=l
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The indices a and b label the n replicas which have been
introduced. At the end of the calculation we take the lim-
it n 0. The case p=2 involves a somewhat diAerent
calculation and has already been discussed in Ref. 2. Our
formulas are valid only for p & 2. We begin by consider-
ing the replica symmetric ansatz q, b

=q and r,b
=r. In

I

p J Dz in[2coshP(darz+pA m~ ')]1
p (9)
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The function G(q) in the general case of Eq. (3) is given
by

where we have written M =aN ' and we use the nota-
tion

P min(k, k ')

G(q) =g AkA -'li+( —i)"+'] g -'[i+( —i)"+'] ' ' '' ' (i — )
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where by definition

n!!=n (n —2) (n —4). . . (1 ), n & 0,
and

I

which we find q =1 and
l/2

m =erf
2ap!
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n!!:—1, n~0. The other case is a 0 which gives q =m and

For a Hamiltonian of the form (5), expression (11)
simplifies greatly to

m =tanh
v'2p!

mP (is)

G(q) =-,' (1 —q~) . (i4)
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Equations (9) and (11) show an interesting feature of the
general model (3). Terms involving correlations with the
correct memory state, i.e., terms involving m depend only
on the leading term k =p in the Hamiltonian (3). Howev-
er, terms involving the noise q coming from the other
memories gf with p~l, depend on the coefficients Aq for
all k. This raises the interesting possibility of choosing the
nonleading coe%cients Ak for k & p in such a way that the
noise is minimized. We will not explore this possibility
further here, but instead we focus attention on the simpler
case (5) where the free energy per spin is given by (9) and
(i4).

The free energy (9) with (14) leads to the following
equations determining m and q,

All results in the replica symmetric case are obtained
from Eqs. (15)-(1S).

We begin by considering the limit a 0 described by
Eq. (1S). For p=3 we find that solutions with nonzero
m &0.807 exist for T &0.504. For larger T values m=0.
We can analyze the limit of large p in Eq. (1S) explicitly
and we find memory states with m & 1 —(2/p) for

T( (i9)
Jp!e lnp

Thus, we see that although the large p models of Eq. (5)
allow a large number of memory states they require lower
temperatures for memory recovery to take place.

If we take the zero-temperature limit described by Eq.
(17), we find for p =3 that memory recovery with
m & 0.838 occurs for a ~ a, =0.126. In Fig. 1 the dashed
curve shows the percentage of errors, (1 —m)/2, made in
recovering a particular memory configuration as a func-
tion of a, again for p=3 and zero temperature. For
a & a, =0.126 the error rate goes to 50% since there is no
longer any correlation between states of the system and
the memory states. (It should be stressed that the mean-
field calculation we are doing is only sensitive to states
that are stable in the thermodynamic limit. In any simu-
lation, we expect that there will be correlations between
long-lived metastable states and the memory patterns
even for a & a, . This "remnant" magnetization is known
to occur for p =2. ) In the limit of large p we find that at
zero temperature

l/2

There are two cases for which (15) and (16) simplify con-
siderably. One is the zero-temperature limit P ~ for

1 1m&1 ——
p xlnp

(2o)
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FIG. I. The error rate (I —m)/2 as a function of a. The
dashed curve is the replica symmetric result, while the solid
curve includes the eff'ects of replica symmetry breaking.

FIG. 2. The phase diagram for the p 3 model. Below the
line labeled T~ there are metastable and stable states correlated
with the stored patterns and above the line is a spin-glass phase.
Below the line marked Tz the replica symmetric ansatz is unsta-
ble.

provided that

M =aNP e 1

2 lnp 2'
eN (22)

At T=0 the energy of a state with memory overlap m is

i/2 m"p "
exp

a2p&

1 mp- a
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For p =3, the memory recovery state m ~0 has a lower en-
ergy than the spin-glass state with m =0 provided that
a &0.089. When p is very large the recovery state has
lower energy for a ( z/(2p!p).

The number of errors which is made in recovering any
given stored pattern is (1 —m)N/2. For the values of a
we have been considering, this number is infinite for
N despite the fact that the error rate shown in Fig. 1

a~ a, = (21)
2p! lnp

Although a goes to zero for large p the total number of
memory states allowed is large,

1/2

is quite small. If we demand that the total number of er-
rors is finite as N ~, we must require the more
stringent bound

a(
2p I lnN

(24)

Next we consider the system with finite values of both
the parameters T and a. We plot the full phase diagram
for p 3 in Fig. 2. The area under the upper curve
marked T~ in Fig. 2 represents the region in this parame-
ter space where there exist stable or metastable states
correlated with the stored memory patterns. Above this
curve is a spin-glass phase and then at high temperature
an ordinary paramagnetic phase. As shown in Fig. 1, the
transition from the spin-glass state to states with nonzero
m involves a discontinuous jurnp in the value of m.

Up to now we have assumed that the symmetry between
the replicas we have introduced is unbroken. We can
check to see if this assumption is valid by examining the
stability of fluctuations around the replica symmetric
solutions we have found. In order for these solutions to be
stable, we find that we must have

2q

p(p —I )
—aP „Dzcosh P

ap
2 q

(P —1 )/2z + P mP
—1 )0

42p!
(2S)

This is true for the area above the lower curve marked Tg
in Fig. 2. Below this curve the eA'ects of replica symmetry
breaking must be included. Comparing Fig. 2 with the re-
sults of Ref. 2, we see that replica symmetry breaking has
a larger eA'ect for p & 2 than it did for p=2. The impor-
tance of replica symmetry breaking at zero temperature
can be seen by noting that the upper curve in Fig. 2, if ex-
trapolated smoothly down to T=O (where it is no longer
valid due to the instability of the replica symmetric an-
satz), would suggest a value of a, greater than 0.15,

whereas the replica symmetric calculation discussed above
gave a, =0.126. Clearly, replica symmetry-breaking
eH'ects are fairly important, especially at T=O. In view of
this fact, we must include replica symmetry breaking in
our calculations.

We will evaluate here the eff'ects of including a single
level of replica symmetry breaking5 on the p =3 model at
zero temperature. In this approximation the free energy
becomes a function of six variables r ~, ro, q &, qo, x, and m
and for the Hamiltonian (5) it is
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f= m + ir~ ——,
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Variation with respect to q &
and qo gives trivially

r& =pqf 'l2 and ro=pqg 'l2. At T=O, q~ =1 and it is
convenient to replace the variable x with P, =xP. Ex-
pression (26) must then be maximized with respect to P,
and qo and minimized with respect to m to determine the
values of these parameters. The results for p =3 are indi-
cated by the solid curve in Fig. 1. Note that the memory
recovery properties of the model were underestimated by
our earlier replica symmetric calculation (the dashed
curve) and that, as we expected, the value of a, has in-
creased. We find memory recovery states with m & 0.872
provided that a ~ a, =0.135 ~ 0.001.

The calculation we have performed included only the
first level of replica symmetry breaking, but interestingly,
a preliminary investigation indicates that there is a small
region of the phase diagram where it is exact. However,
at zero temperature the single replica symmetry-breaking
scheme we have considered is not stable. It seems likely
that higher orders of replica symmetry breaking will con-
tinue to increase the value of a, .

The powerful technique of introducing replicas for per-
forming quenched averages along with the replica
symmetry-breaking ansatz of Parisi allows us to consider
in detail the properties of models as complicated as those
of Eq. (3). Comparing with the results of Amit, Gut-
freund, and Sompolinsky for p =2, we see that introduc-
ing further nonlinearity into the Hopfield-Little model'
greatly enhances its ability to store memories at the ex-
pense of slightly increasing the recovery error rate. A pre-
liminary analysis indicates that the results for large p
given here for the replica symmetric ansatz remain exact
when replica symmetry breaking is introduced. This and
further issues will be examined more thoroughly in a fu-
ture publication.
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