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It is shown by calculations on several model systems of physical importance that exponential
time-dependent perturbation theory (the Magnus expansion and similar expansions) does not con-
verge in the Schrodinger representation for time intervals larger than the natural period of the sys-
tem. This result has serious implications for the application of exponential perturbation theory in
the Schrodinger representation to scattering and adiabatic turn-on problems. It is argued that this
result also applies generally to more realistic systems.

The Magnus expansion,' ~* and some of its more ac-

cessible modern counterparts,” have been applied to a
wide range of problems in time-dependent quantum
mechanics in recent years.® The expansions provide a
prescription for calculating the time-development opera-
tor, U(7)=U(7,0), for a mechanical system as the ex-

ponential of an anti-Hermitian operator. In other
words, given the Schrodinger equation,

iU O=H (DU (1), (1)
then

U(r)=e'", ()
where A4 is expanded as a sum of terms

A+ A+ A3+ - -, each of which is anti-Hermitian,
and A, is first order in H(¢), A, is second order, and so
on. These expansions are generally regarded as a partic-
ularly elegant way to do time-dependent perturbation
theory, in part because they can be truncated at any or-
der to give an approximate time-development operator
which is still unitary. Also, the approximate time-
development operator so obtained, with its finite-order
exponent, will contain contributions from all orders.
These features give the method the potential of provid-
ing many new and interesting approximations.

A more extensive utilization of exponential perturba-
tion theory has been hampered by two problems. The

first and, until recently, the most severe problem has
been the extreme complexity of the expansion terms
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above second order. Traditional derivations are very
difficult and the different derivations lead to forms for
the various terms, as time-ordered multiple integrals of
nested commutators, which are not at all transparent
and which differ from each other. Furthermore, the
different appearing terms are not obviously equivalent.
(For example, Milfeld and Wyatt’ have suggested that
the form of the third term presented by Pechukas and
Light? is incorrect and have given an alternate form for
that term.)

The complexity problem has recently been solved by
the discovery of a new and much simplified derivation,
much in the spirit of a cumulant expansion.® The form
of the terms is simple enough that they can be written
by inspection to arbitrary order. In addition, the rela-
tionship of the new expansion to previous versions is
straightforward. (For example, it was shown that the
Milfeld and Wyatt form for the third term is equivalent
to that of Pechukas and Light.)

The other problem, which is now being addressed
more actively,? in part because of the new ability to
generate expansion terms to arbitrary order, is the ques-
tion of convergence.'®~ 12 Until recently very little was
known about the convergence of exponential perturba-
tion theory. Magnus’s convergence criterion for his
original version of the expansion is stated in terms of the
eigenvalues of the exponent itself. Namely, if ia;(t) are
the eigenvalues of A4 (¢) at some time ¢, then the expan-
sion which calculates 4 at some time ¢ 48 in the neigh-
borhood of ¢ converges, provided none of the |a; —ay |
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equals an integral multiple of 2. This convergence cri-
terion, in terms of the eigenvalues of the operator A4 it-
self, does not lend itself readily to consideration of actual
calculational procedures since convergence must be test-
ed after each infinitesimal transit along the interval [0,7].

Recent progress has been made in understanding the
convergence of exponential perturbation theory by per-
forming actual calculations, to hitherto unheard of or-
ders, on physically interesting model systems.'>!'* The
model systems treated to date in the attempt to under-
stand the convergence properties of exponential pertur-
bation theory have been simple models with a periodic
Hamiltonian. These include several versions of the har-
monically driven two-level system (including one model
which has a known closed-form exponential time-
development operator in the rotating-frame representa-
tion), the harmonically driven harmonic oscillator
(which has a known closed-form solution in the interac-
tion representation®), and an NMR multiple-pulse mod-
el. All of these models were treated in the Schrodinger
representation and other representations, as appropriate.
They all have a characteristic natural frequency wy,. The
conclusions based on calculations on these models were,
first, that the convergence properties are highly repre-
sentation dependent. Models which have closed-form
exponential time-development operators in some other
representation give expansions in the Schrodinger repre-
sentation which diverge for the interesting ranges of the
parameters. Second, the models all give the convergence
criterion in the Schrodinger representation as

®>awg, (3)

where o is the driving frequency. (This, of course,
severely limits the utility of the method in the
Schrodinger representation, particularly for discussions
of resonance or multiphoton processes.)

This latter result has recently been reaffirmed and gen-
eralized for the harmonically driven two-level system by
Maricq® using an elegant treatment reminiscent of the
Feynman-Vernon-Hellwarth formulation.!>  Maricq’s
criterion reduces to Eq. (3) in appropriate limits.

It is not immediately clear how a convergence cri-
terion derived for harmonically driven systems should be
extended to systems with a nonharmonic time depen-
dence (for example, some scattering models, and models
with an adiabatic turn on). Taking the reciprocal of
both sides of Eq. (3) to arrive at

TLTo (4)

where [0,7] is the time interval over which the system is
to evolve and 7, is the natural period of the system, is
suggestive but needs independent justification. In order
to pursue this question we have applied the techniques
of Ref. 14 to a series of models of the form

H=H,+Bf)V, (5)

where Hy and V are time-independent operators in the
Schrodinger representation, 3 is a coupling constant, and
f (1) is a simple, nonharmonic function of time which
provides the time dependence of the model. The models
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included were the nonharmonically driven two-level sys-
tem, with

H,=(#w,/2)0, (6)
and
V=o,, (7)

where o, and o, are the usual Pauli spin matrices; and
the nonharmonically driven harmonic oscillator with

Hy=%w'a (6')
and
V=a —i—aJr , (8)

where a ' and a are the usual harmonic-oscillator raising
and lowering operators. We have used the simplest pos-
sible forms for the driving function, namely, f(z)=t¢,
f(t)=t? and f(t)=t>, and linear combinations of these
on the time interval [0,7] to calculate the exponent in ex-
ponential perturbation theory to first order in 8 and
infinite order in H. (It is well known that, in the
Schrédinger representation, the expansion must be taken
to infinite order in H to get all of the first-order contri-
bution of B. If the first order in 3 terms diverges, then
the expansion is not useful at higher orders of B. Also,
it was shown in Ref. 14, through high-order calculations
on harmonically driven systems, that the 3° terms lead
to the same convergence criteria as the 3 terms.)

The results are particularly simple but nevertheless en-
lightening. For the linear driving function, f(t)=t, we
find that, to first order in 3, the expansion terms have
the following form.

For the two-level system,

Aeven n =(—iB/B)N—1)""7(wy7)"~'B,0, , (9a)
Aogan=0 (n>1), (9b)
and for the harmonic oscillator,
Aeyen n=(B/AN—1)""*Pwyr)" " 'B,(a —a), (10a)
Aoga n=0 (n>1). (110b)

The B,, the same for both models, are members of a se-
quence of numbers related to Bernoulli numbers the first
few of which are given in Table I. They have the prop-
erty that the ratio B, ,/B, converges to —1/(27)? in
the limit of large n. Thus the ratio 4, ,,/a, converges
to (wor/2m)?* in the limit of large n, and the expansion
will diverge unless wor/27 < 1, or unless 7 <7, indepen-
dent of the value of the coupling constant [3.

The results for 72, and t3, and linear combinations of
all three are different in detail but lead to the same con-
vergence criterion. For example, for a t? driving term
both even and odd terms occur as follows.

For the two-level system,

Aevenn=(—iﬁ/ﬁ)(—1)"/27'3(007)"_13”0'y (lla)
Aodd R =(i/3/ﬁ)( -1 )(n +1)/ZT3
X ()" "N —2B, o, (n>1) (11b)
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TABLE I. Numerical coefficients of the operators in the
various terms of exponential perturbation theory given in Egs.
(9)-(12).

B,=1/12
B,=—1/720
Be=1/30240

By=—1/1209600
Bio=1/479001 60
B, = —691/130767 436 8000

and for the harmonic oscillators,

A =(B/#)(— 1) wyr)" " 'B,(a —a’), (12a)

Aoga n =B/ —1)" V2530 7)" !

X(—2B, . )Na+a"), (n>1), (12b)

where the B, are the same as above.

Again we see that the ratios of successive coefficients
of the operators in the A4, are the same as in the linear
driving term case. Thus the convergence condition is
still Eq. (4).

For t3, numerical coefficients are not B, and the
coefficients of the odd and even terms do not have the
same simple relationship as in the #* case. Nevertheless,
the ratios of successive coefficients converge to the same
limit —1/(27)? giving the same convergence criterion.
Similar procedures with a driving term consisting of a
linear combination of ¢, 2, and ¢ are more complicated
but they lead to the same convergence criterion (the de-
tails will be reported elsewhere).

We repeat, for emphasis, that these results are in-
dependent of the magnitude of the coupling constant.
This means that the problem is not a failure of perturba-
tion theory due to an excessively strong perturbation,
since the convergence condition holds for arbitrarily
small 3, but rather a fundamental problem with the ex-
ponential expansion itself in the Schrodinger representa-
tion. Here it is important to recall that the convergence
properties of exponential perturbation theory are strong-

ly representation dependent and that there are other rep-
resentations where the exponent is known to converge
for all values of the parameters of the problem. So far
there is no evidence of divergence in the interaction rep-
resentation, although the calculations are sufficiently
difficult that the question is just beginning to be tested.
The new convergence criterion makes it clear that ex-
ponential perturbation theory is unlikely to be useful, in
the Schrodinger representation, for problems where it is
necessary to consider times long with respect to a natu-
ral period. This unfortunately includes a number of
models used in scattering and dynamics, and problems
where a perturbation is turned on slowly over a long
time (adiabatic approximation).

The models treated here are the simplest finite
Hilbert-space model and probably the simplest model
with an infinite Hilbert space. An important question is
whether or not the convergence criterion derived also
applies to not-so-simple systems. That question cannot
be answered definitively yet, but the following argument
is suggestive. Any system may be partitioned into two
subspaces using projection operators P and Q, with
P+Q=1 and P’=P, Q?*=Q, and PQ =QP=0. The
Hamiltonian may be divided into three parts,
H =PHP +QHQ +(PHQ +QHP). The projected ex-
pansions generated strictly within the P and Q defined
subspaces will not interact with each other; however, the
portions of the expansion generated from inclusion of
the “off-diagonal” portions of H will mix the P and Q
subspaces and have components on both. If we select
the P subspace to be two levels which are coupled by the
driving term, then the P space expansion will lead to the
above convergence criterion. In order for the criterion
not to be valid one would have to argue that the contri-
butions to the expansion generated from the PHQ and
QHP portions of the Hamiltonian exactly cancel those
from the P space. Although this is conceivable, it seems
exceedingly unlikely (further tests of this are in progress
for more complicated models). Thus the criterion would
be that the expansion converges only for times smaller
than the smallest natural period of the system, as defined
by direct coupling of states by the driving perturbation.
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