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We examine the general kink-antikink (bion) collision process in the driven damped sine-
Gordon equation. A collective-coordinate method is used to study several aspects of the bion dis-
sociation and annihilation. Thresholds for the driving term are numerically obtained in both
cases. The limitations and reliability of our reducing approach are discussed.

INTRODUCTION

In a recent paper,' a collective-coordinate method was
used to investigate the sine-Gordon (SG) breather
decomposition into a kink-antikink pair under the action
of a constant homogeneous force €. Critical values for
this force were analytically obtained and their depen-
dence on the initial phase ¢ of the breather was success-
fully compared to previous predictions (see Refs. 2 and
3). Yet, limitations occurred in the case ¢ ~7 /2, due to
a broadening of the € region between decomposition and
breatherlike modes. In this case, a number of large-
amplitude nonlinear waves are produced, thus making
the simple ansatz used in Ref. 1 irrelevant.

In the present paper, we examine the general case of a
bion (here we call either a breather or a kink-antikink
pair a bion) under the influence of a driving force and
damping. As transitions between breather and kink-
antikink states are envisaged, we no longer assume the
energy parameter kK to be constant in time (see Ref. 1).
A two-degree-of-freedom system is derived that allows a
quantitative dynamical description of various kink-
antikink collision processes.

The problem of power balance in a driven damped SG
system is considered and we are able to determine the
threshold driving term &, below which a kink-antikink
pair annihilates. We compare our results with numerical
ones and theoretical predictions presented in Ref. 4. We
emphasize that the perturbational method used there
leads to results in much better agreement with ours
when the velocity dependence of the energy loss is not
neglected in the determination of the annihilation
threshold.

In order to compare results obtained through a direct
numerical integration of the perturbed SG equation with
those our reduced system of ordinary differential equa-
tions (ODE’s) yields, we present a simple equivalence
transformation. It relates the collective coordinates with
the spatial derivative of the field at points where the
latter meets an extremum.

The collective-coordinate transformation we propose
here gives a quite reliable dynamical representation of a
perturbed bion in terms of interacting particles which
are the kink and the antikink with modified shapes.

I. COLLECTIVE-COORDINATE
TRANSFORMATION
EVEN IN THE NON-HAMILTONIAN CASE

First consider the perturbed SG equation
P, —P,, +sin®P=F[PD]. (1)

For the moment make F[®]=g. The corresponding La-
grangian density for the field ® is

[ =107 —1d —(1—cos®)+ed . (2)
Now assume that
P=>P(x, {a;(1)}]), (3)

where the family of coordinates {a;(z)} includes all the
time dependence of the field.
The Lagrange equation for the coordinate a; reads

oL d oL
aa[ - dt aa,«, =0 ’ (4a)
where L is the total Lagrangian,
L= "7 1[®(x, {a,()])]dx . (4b)
Hence, the left-hand side of Eq. (4a) also reads
+o0 dl 3P 3l 9P,
d —_
J Tax5g 3a, T o®, oa,

N 3l 9®, 3 | a1 9P,
3P, da;, ot

3t | ad, da,

J . (40)

Then, using the following identity:

P, 3o
3a, ~ da, (4d)
and provided that
al o al 9P
9% _ o= =0, 4e)
3D, o, T, 3 i 3 (e

the expression in formula (4c) becomes
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a3 a3

9. 3 P
30  3r d®, dx ad,

aa[ ‘

(4f)

f+°°dx

— ©

Therefore, Eq. (4a) is equivalent to

f+°°dx

— ®©

B8 3 3 3 al

_ 98 a9 3 _,
3 ~ ot od, ox 0,

da;,

(5)

Note that the expression between large parentheses in
formula (4f) is identically zero for any solution of Eq. (1).
In fact, when F[®]=¢, for instance, Eq. (5) exactly
amounts to projecting the perturbed SG equation (1) [ap-
plied to the ansatz function (3)] onto 3® /da;.

In a non-Hamiltonian case, such as F[®]=e—a®,,
one is naturally led to extend Eq. (5) by projecting Eq.
(1) onto the “mode” 9®/da;. This mode carries the
change of the ansatz function ® due to a small variation
of the coordinate a;.

We recall the following algebraic identity (see Ref. 1):

4tan~'exp[k (x +y)]+4tan"lexp[ —k (x —y)]—27

sinhky

=4 tan~!
an coshkx

, (6)

which expresses the sum of a kink and an antikink
profile as a bion profile. In this formula, y (respectively,
—y) is the relative position of the antikink component

Y} 2Y k. 2 k}
A:S“ — L .._._'_. 2 2
k |'sinnzy | TV gt T (T H4YY
8 2Y 41
— —tanh?Y |1 a7
ko + sinh2Y k Y.

Though the choice of Y was advisable to derive the
above system, we shall return to the more ‘“physical”
coordinate y in the interpretation of further results.

II. A SIMPLE NUMERICAL DIAGNOSIS

For the type of perturbation we consider here (i.e.,
F[®P]=e—ad,), the solution & of Eq. (1) remains
symmetrical about its center of mass as long as
P(x =+ 0 )=P(x = — o0 ). This is actually the case if
one starts with a bion as an initial condition. Let us
denote x, the position of the center of mass. Ascribing
the role of a new degree of freedom to x, would amount
to adding the following extra term in the expression of A
[see formula (8b)]:

2Y

8kx3
X o sinh2Y

1—

. (8¢)

We would also have two additional equations in system
(8a), namely,
oA

R =
ath

and
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(respectively, of the kink component) with respect to the
center of symmetry of the whole profile. The number k
characterizes the shape of both components. For the
sake of simplicity, we shall replace the product ky by Y
in the forthcoming calculations.

Now consider the ansatz function

sinhY (¢)

— -1 (=227
d(x,Y(1),k(t))=4tan cosh [k (1)x]

, )

and substitute this ansatz for the field in Eq. (1) with
F[®]=e—ad,.

Then, by a mere projection of Eq. (1) onto 09 /3Y and
dd /dk, one gets (after some lengthy calculations) the
following reduced system of coupled nonlinear ODE’s:

dA
P= ,
9Y,
dA
Q= ok, ’
A (8a)
P,+aP=—a—Y ,
JA
0 +a =3k’
where
) 2| ) ¢
]+sinh2Y +8Y Sk{l sinh2Y’
(8b)
|
R,+aR=—aA=
axo

Therefore, we decide to set x, and x,, both equal to zero
at t=0 since the dynamical behavior of x, is obviously
of no interest from a physical point of view. From those
considerations we shall only be interested in the part of
the solution which is on the left-hand side of the center
position x=0.

Then two quantities are easily obtained through a
handy post-treatment of the results issued from a numer-
ical simulation of Eq. (1). Namely, those of the ex-
tremum value of the x derivative of the field and the
value of its corresponding position on the negative x
axis.

Concerning the ansatz function in formula (7), those
quantities are also readily obtained and read

(DX max:(bx [ x=X =2k tanhY » (9a)
with
X = —k ~'argsinh(coshY) . (9b)

Thus we have provided ourselves with a practical way
of diagnosing the validity of system (8a),(8b) by compar-
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ing the respective determinations of ®y ., and X result-
ing either from the complete system governed by Eq. (1),
or from the reduced-model described by the system with
a finite number of degrees of freedom (8a),(8b). The
collective-coordinate description we propose here will
then be relevant as long as both determinations coincide
in a physically acceptable way.

III. BION DISSOCIATION

Let us start with the problem of the breather decom-
position we began to study in Ref. 1. In this chapter we
assume that we have no damping (i.e., a=0). As in Ref.
1, the initial conditions are those given by an exact
breather taken at t=0. We recall the form of a breather
in its center-of-mass reference frame:

(1—w})'? sin(wgt +¢)
®y=4tan"! B u 3 4?/2 . (10)
®p cosh[(1—wp) “x]

Equating @5 and the ansatz given in formula (7) at t=0,
we get

(a)

qj)(mclx ot 4

-1
+—
n

<)
]
[S3S
a1
<)
o
<)
©
o

100

t
i

T

k(t=0)=(1—w%)"?,

k,(t=0)=0,

. k .

sinh[ Y (z =0)]=——sin¢ ,
wp

Y,(t =0)cosh[Y (¢ =0)]=k cos¢ .

In all cases (except when ¢~m/2) the system of
ODE’s (8a),(8b) gives results which correspond rather
well to our previous predictions concerning the critical
value g, of the force above which the breather breaks up
into a kink-antikink pair.

When the initial phase ¢ is close to 7/2, a new
phenomenon arises. Large-amplitude inhomogeneities
appear in the numerical integration of Eq. (1). In Ref. 1
we showed that e is extremely sensitive to any small
variation of ¢ when the latter is near 7/2, and we ar-
gued that the above-mentioned phenomenon might be
due to this fact. Indeed, during the integration, una-
voidable numerical errors contribute to a kind of “blur-
ring” in the memory the system keeps of the initial
phase. As a consequence, the system goes on hesitating
between two possible futures: Either the breather disso-
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FIG. 1. A comparison between Eq. (1) and system (8). Two time sequences for ®x .« and X in the case of a driven breather.
¢=m/2, wp=0.3, e=0.01. (a) Results from Eq. (1) obtained by only regarding the part of the solution which lies on the negative x
axis. (b) The corresponding results from system (8) obtained through formulas (9a) and (9b).
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ciates or it enters a stationary mode (see Ref. 2). Hence,
a physical uncertainty appears in the determination of
€., that produces a more or less broad region in the pa-
rameter € where the system (8) becomes inadequate.
This region lies between a value of the force slightly
smaller than e, and that of e itself. We qualitatively
found that this region of uncertainty broadens as wp gets
closer to unity. In fact, when wy <1, we are in the non-
linear Schrodinger regime in which a complicated cou-
pling process intervenes between the extended back-
ground and the small-amplitude breather (see Ref. 5).

In Fig. 1 we compare Eq. (1) with system (8a),(8b) in
the case of an initial breather with ¢ =m/2, for a value
of the driving term &€ much smaller than e (wp,7/2).
The agreement is undisputable. Nevertheless, the real
aim of this paper is not only to corroborate the predic-
tions we gave in Ref. 1. Indeed, we next examine the
more involved case of a kink-antikink pair in the pres-
ence of a driving term plus damping.
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TABLE I. A sample of g, values corresponding to four
values of a lying under 0.1: (a) From the determination ac-
counting for the u_ dependence of AH. (b) g4,=(2a)*/? from
Ref. 4. (c) From the determination obtained by multiple runs
of system (8), scanning in ¢ for each value of a.

€ (a) (b) (c)
a
0.002 3.287x10°* 2.530x10°* 3.15x 1074
0.01 3.487x107° 2.828%107? 3.25x1073
0.03 1.744 1072 1.470 1072 1.55x 1072
0.1 10.40x 1072 8.944 1072 8.35x 1072

0.9
<

0.8

FIG. 2. Typical time sequences from system (8) intended to the determination of €. Here we have a=0.1. y and k are plotted
vs time. (a) e=0.083 <¢,,. y decreases down to zero as k goes under unity: annihilation. (b) £=0.084> ¢,;,. The kink-antikink is
restored after collision. The shift in y due to the collision is obvious. k eventually returns to its original value corresponding to the

Lorentz factor y=(1—u )~/
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IV. KINK-ANTIKINK ANNIHILATION

In Ref. 4, a perturbational method is used to deter-
mine the threshold driving term below which a kink and
an antikink annihilate each other on the infinite line.
Before going further into our investigations, let us briefly
summarize this method.

For the unperturbed case, the kink-antikink solution
of the SG equation is given by

1| 1 sinh[y(u)ut]
D =4t PRI VAL
KK an u cosh[y(u)x] |’ (122)
where y(u) is the Lorentz factor
) =(1—u?)~1?2, (12b)

Including the loss and driving terms, the time rate of
change of the energy H is evaluated as

%—= j:(ﬂb,—a(Df)dx . (13)

Next we assume that @ is the kink-antikink solution
given in formula (12). We note that far from each other
(i.e., in the case of vanishing mutual interaction), the
kink and the antikink reach power-balance velocities
which are opposite in sign and the absolute value of
which is determined by

21-1/2

4a

mE

(14)

u,= t1+
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FIG. 3. Same as in Fig. 1 but for a kink-antikink collision in

Inserting u ,, into the total amount of energy AH dissi- the presence of a force and dissipation. e£=0.016> ¢y,
pated during the collision, yields a=0.03.
2 inh2y)172
+o dH oo (1+u<, sinh”Y) 2Y
AH = —dt =16 — : dy , 15
f—oo dt af~oc ¥ coshY +smh2Y (15
r
which can be analytically evaluated in the limiting case eqn=12a)*"?. (18)

u,=1
AH = —47%a . (16)

Otherwise, for u , <1, the latter integral is easily evalu-
ated by numerical means. Then, the threshold driving
term e, corresponding to annihilation is determined by
equating the initial energy of  the pair
E;=16(1—u? )~'? to the energy loss plus twice the en-
ergy of a kink at rest, i.e.,

16(1—u2 )" "?=AH +16 . (17)

We stress that the authors of Ref. 4 had a priori no
right to discard the u  dependence of AH in the evalua-
tion of €. Their approximate result (which they assert
to be valid for small velocities) reads

By numerically evaluating the integral given in (15),
we solve Eq. (17) and find a second determination of €
which in fact agrees with Eq. (18) only for intermediate
velocities. Then, through a series of numerical integra-
tions of system (8a),(8b) for different values of € and «,
we obtain a third evaluation of the threshold force. In
Fig. 2 we give results obtained through two of these in-
tegrations for € values enclosing €, as precisely as possi-
ble.

Table I shows a comparison of the three above deter-
mination for values of a ranging from 0.002 to O.1.
When o is smaller than 0.1, the results obtained through
scanning with system (8) fit those issued from the exact
solution of Eq. (17) better than those given by formula
(18). Naturally, before using system (8) to evaluate g,
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we checked that it correctly describes the real system for
the values of € and a in question. Figure 3 exhibits a
typical case of an extremely good agreement between the
reduced model and the complete description given by
Eq. (1), in the case of an € value just above the thresh-
old.

The reason for such a good agreement essentially rests
with the important role played by the loss term in
smoothing away any inhomogeneity that would other-
wise grow unimpeded. We noticed that these inhomo-
geneities become all the more important as the corre-
sponding coordinate y gets larger, especially in the ab-
sence of damping. Indeed, if so, the interaction between
the kink and the antikink is negligible in comparison to
the effects of the driving and dissipation terms. The

problem then becomes almost equivalent to that of an
isolated kink (or antikink) in the presence of the hitherto
considered perturbative terms (see for instance Ref. 6).
Thanks to the loss term, the reduced description
proceeding from system (8a),(8b) still remains valid for
long enough times (see Fig. 3).

In a word, we have here elaborated a useful
collective-coordinate transformation in view of a detailed
study of the internal dynamical features displayed by a
perturbed bion. The reliability of the ensued model
proves to be very satisfactory in the case of close or in-
termediate interaction, thus providing a suitable repre-
sentation of bion systems in terms of everlasting kink-
antikink profiles.
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