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Kink-antikink dissociation and annihilation: A collective-coordinate description
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We examine the general kink-antikink (bion) collision process in the driven damped sine-

Gordon equation. A collective-coordinate method is used to study several aspects of the bion dis-
sociation and annihilation. Thresholds for the driving term are numerically obtained in both
cases. The limitations and reliability of our reducing approach are discussed.

INTRODUCTION

In a recent paper, ' a collective-coordinate method was
used to investigate the sine-Gordon (SG) breather
decomposition into a kink-antikink pair under the action
of a constant homogeneous force c. Critical values for
this force were analytically obtained and their depen-
dence on the initial phase P of the breather was success-
fully compared to previous predictions (see Refs. 2 and
3). Yet, limitations occurred in the case P=~/2, due to
a broadening of the c. region between decomposition and
breatherlike modes. In this case, a number of large-
amplitude nonlinear waves are produced, thus making
the simple ansatz used in Ref. 1 irrelevant.

In the present paper, we examine the general case of a
bion (here we call either a breather or a kink-antikink
pair a bion) under the inhuence of a driving force and
damping. As transitions between breather and kink-
antikink states are envisaged, we no longer assume the
energy parameter k to be constant in time (see Ref. 1).
A two-degree-of-freedom system is derived that allows a
quantitative dynamical description of various kink-
antikink collision processes.

The problem of power balance in a driven damped SG
system is considered and we are able to determine the
threshold driving term c,h below which a kink-antikink
pair annihilates. We compare our results with numerical
ones and theoretical predictions presented in Ref. 4. We
emphasize that the perturbational method used there
leads to results in much better agreement with ours
when the velocity dependence of the energy loss is not
neglected in the determination of the annihilation
threshold.

In order to compare results obtained through a direct
numerical integration of the perturbed SG equation with
those our reduced system of ordinary differential equa-
tions (ODE's) yields, we present a simple equivalence
transformation. It relates the collective coordinates with
the spatial derivative of the field at points where the
latter meets an extremum.

The collective-coordinate transformation we propose
here gives a quite reliable dynamical representation of a
perturbed bion in terms of interacting particles which
are the kink and the antikink with modified shapes.

I. COLLECTIVE-COORDINATE
TRANSFORMATION

EVEN IN THE NON-HAMILTONIAN CASE

1 = —,'@,——,'&0, —( 1 —cosN)+ EN . (2)

Now assume that

N=N(x, Ia;(t)I ), (3)

where the family of coordinates Ia;(t)I includes all the
time dependence of the field.

The Lagrange equation for the coordinate a; reads

aL
aa;

d aL
dt aa;,

(4a)

where L is the total Lagrangian,

L= » Nx, a, t dx.
Hence, the left-hand side of Eq. (4a) also reads

~+- ~ aI ae al
dx +ae aa, ae„aa,

(4b)

a» + a a» a+
+ ae, aa, at ae, aa„

(4c)

Then, using the following identity:

ac
aa;, aa;

and provided that

ae
ae„aa,

a» ae
aa;

(4e)

the expression in formula (4c) becomes

First consider the perturbed SG equation

4« —N„„+sin+ =F[4] .

For the moment make F [4&]= E. The corresponding La-
grangian density for the field N is
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+ oo Bl B Bl

Be Bt Be,
B Bl BN

Bx BN Ba;

f+"dx B Bl B Bl BC

Bx BN Ba;

Therefore, Eq. (4a) is equivalent to

(4f)

(5)

(respectively, of the kink component) with respect to the
center of symmetry of the whole profile. The number k
characterizes the shape of both components. For the
sake of simplicity, we shall replace the product ky by Y
in the forthcoming calculations.

Now consider the ansatz function

Note that the expression between large parentheses in
formula (4fl is identically zero for any solution of Eq. (1).
In fact, when F [N]=e, for instance, Eq. (5) exactly
amounts to projecting the perturbed SG equation (1) [ap-
plied to the ansatz function (3)] onto BN/Ba;.

In a non-Hamiltonian case, such as F [@]=E—a4„
one is naturally led to extend Eq. (5) by projecting Eq.
(1) onto the "mode" BN/Ba;. This mode carries the
change of the ansatz function N due to a small variation
of the coordinate a;.

We recall the following algebraic identity (see Ref. 1):

4(x, Y(t), k(t))=4tan- sinh Y(t)
cosh k t x

(7)

BA

BY,

BA

and substitute this ansatz for the field in Eq. (1) with
F[4]=E—a4, .

Then, by a mere projection of Eq. (1) onto M&/BY and
BN/Bk, one gets (after some lengthy calculations) the
following reduced system of coupled nonlinear QDE's:

4 tan 'exp[k (x +y)]+4 tan 'exp[ —k (x —y)] —2m.

r

sinhky=4 tan
coshkx

P, +aP = BA
BY

(8a)

which expresses the sum of a kink and an antikink
profile as a bion profile. In this formula, y (respectively,
—y) is the relative position of the antikink component

A=8 Y, 2Y
sinh2Y

k, 2 k,—16YY, + — (~ +4Y ) 1.+ +8Y2 8k
k 3 k sinh2 Y

2Y
sinh2 Y

8——tanhY 1+ + Y
2Y

k sinh2 Y (8b)

Though the choice of Y was advisable to derive the
above system, we shall return to the more "physical"
coordinate y in the interpretation of further results.

II. A. SIMPLE NUMERICAL DIAGNOSIS

8kx p,
2Y

sinh2Y
(8c)

For the type of perturbation we consider here (i.e.,
F [@]= s —aN, ), the solution N of Eq. (1) remains
symmetrical about its center of mass as long as
N(x =+ oo )=N(x = —oo ). This is actually the case if
one starts with a bion as an initial condition. Let us
denote xp the position of the center of mass. Ascribing
the role of a new degree of freedom to xp would amount
to adding the following extra term in the expression of A
[see formula (8b)]:

R, +oR = =0 .BA

Bxp

Therefore, we decide to set xp and xp, both equal to zero
at t=0 since the dynamical behavior of xp is obviously
of no interest from a physical point of view. From those
considerations we shall only be interested in the part of
the solution which is on the left-hand side of the center
position x =0.

Then two quantities are easily obtained through a
handy post-treatment of the results issued from a numer-
ical simulation of Eq. (1). Namely, those of the ex-
tremum value of the x derivative of the field and the
value of its corresponding position on the negative x
axis.

Concerning the ansatz function in formula (7), those
quantities are also readily obtained and read

%'e would also have two additional equations in system
(8a), namely, with

z ——2k tanhY, (9a)

and

BA

Bx.,
(8d)

X = —k 'arg sinh(cosh Y) . (9b)

Thus we have provided ourselves with a practical way
of diagnosing the validity of system (8a), (8b) by compar-
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III. BION DISSOCIATION

t with the problem of the breather decom-
1 I h hn to study in Ref. . n isposition we bega o y . is

assume that we have no p gdam in (i.e., a= . s
'

itial conditions are those given y an ex
e recall the form of a breatherbreather taken at t =0. We reca e

in its cen er-o-t -of-mass reference frame:

(1 2 )i/2

N~ ——4 tan —1

COg

sin(cost +$)
cosll[( 1 —cdii ) x]2 [/2 (10)

d the ansatz given in formu a.a,7) at t=0,Equating Nz an t e an
we get

of N and X result-h ctive determinations o
db E. 1,. (1),from the complete system governe y q. 1,ing either from t e corn

b d b the system withor from the reduced-mced-model descri e y
(8a) (8b). Thea finite number o gf de rees of freedom a,
ose here willtive-coordinate description we propose

as both determinations coincidethen be relevant as long as ot e e
in a physically acceptable way.

2 1/2k (t =0)= (1 —cos )

k, (t =0)=0,
k

sinh[Y(t =0)]= sing,
Cc)g

Y, (t =0)cosh[Y(t =0)]=k cosP .

t when =it/2) the system of( p
's (8a), (8b) gives results which correspon ra

ur revious predictions conce
h' h the breather breaks upvalue c„ofthe force above w ic e

into a kink-antikink pair.
/2 a newinitial hase P is close to ir, ap

arises. Large-amp itu e inphenomenon
appear in the numeric g . . nal inte ration o q. . n

t c is extremely sensitive to any swe showed that c« is ex
/2 and we ar-ion of when the latter is near ~, an

d henomenon might beat the above-mentione p engued that n, th integration, una-due to this fact. Inn eed, during e
d of "blur-l errors contribute to a in ovoidable numerical err

kee s of the initialin the memory the system keeps o ering in e
h stem goes on hesitatings a conse uence, t e sys em
s: Either the breather disso-between two possible futures: it er e
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or it enters a stationary mode (see Re . ).Ref. 2&. Hence,ciates or i en
rmination ofa physical uncertainty appears in the determ

rameter c. w ere e syh th s stem (8) becomes inadequate.
sli htlThis region ies e w1 between a value of the force slig t y

~ ~

smaller than c„an ah „d that of c itself. We qualitative y
found that this region of uncertainty broadens as co& gets
closer to unity. In fact, when co& & 1 we are in the non-
linear Sc ro ingerS h "d' regime in which a complicate cou-
pling process in ervt rvenes between the extende ac-

ef. 5).groun and d the small-amplitude breather (see Re .

In Fig. 1 we compare Eq. (1) with system ( a, in
the case of an initial breather wiith ~&=m/2, for a value
of the driving term c much smallerer than E,(co&, ~/2).
The agreement is undisputable. NNevertheless, the real
aim of this paper is not only to corroborate the predic-

R f l. Indeed, we next examine the
in the res-more involved case of a kink-antikink pair in t e pres-

ence of a driving term plus damping.

(b)
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0.1
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10.40 ' 10—'

2.530 X 10-'
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8.944~ 10

3.15 &&
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TABLE I. A sample of c.,h values corresponding to four
values of a ying un erl
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IV. KINK-ANTIKINK ANNIHILATION

In Ref. 4, a perturbational method is used to deter-
mine the threshold driving term below which a kink and
an antikink annihilate each other on the infinite line.
Before going further into our investigations, let us briefIy
summarize this method.

For the unperturbed case, the kink-antikink solution
of the SG equation is given by

1 sinh[) (u)ut]
(12a)

u cosh[y (u)x]

(a)

where y(u) is the Lorentz factor

y(u)=(1 —u ) (12b)

I
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I

120 140
i
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I

180

Including the loss and driving terms, the time rate of
change of the energy H is evaluated as

dH
dt

E+, —a+, dx . (13)

Next we assume that N is the kink-antikink solution
given in formula (12). We note that far from each other
(i.e., in the case of vanishing mutual interaction), the
kink and the antikink reach power-balance velocities
which are opposite in sign and the absolute value of
which is determined by

4o.u„= 1+
2 —1/2

100 120 140 160 180

Inserting u into the total amount of energy AH dissi-

pated during the collision, yields

FICx. 3. Same as in Fig. 1 but for a kink-antikink collision in
the presence of a force and dissipation. c=0.016& c.,h,
a =0.03.

AH= dt =16+
(1+u „sinh P)'~ 2y

u 1+
cosh Y sinh2Y

dY, (15)

which can be analytically evaluated in the limiting case
u =1

oo

AH= —4~+. (16)

16(1—u „) ' =bH +16 . (17)

We stress that the authors of Ref. 4 had a priori no
right to discard the u „dependence of AH in the evalua-
tion of e,h. Their approximate result (which they assert
to be valid for small velocities) reads

Otherwise, for u„&1, the latter integral is easily evalu-

ated by numerical means. Then, the threshold driving
term c.,h corresponding to annihilation is determined by

equating the initial energy of the pair

E; =16(1—u )
' to the energy loss plus twice the en-

ergy of a kink at rest, i.e.,

e,h ——(2a ) (18)

By numerically evaluating the integral given in (15),
we solve Eq. (17) and find a second determination of E,h

which in fact agrees with Eq. (18) only for intermediate
velocities. Then, through a series of numerical integra-
tions of system (8a),(8b) for different values of E and a,
we obtain a third evaluation of the threshold force. In

Fig. 2 we give results obtained through two of these in-

tegrations for c values enclosing c,h as precisely as possi-

ble.
Table I shows a comparison of the three above deter-

mination for values of o, ranging from 0.002 to 0.1.
When a is smaller than 0.1, the results obtained through
scanning with system (8) fit those issued from the exact
solution of Eq. (17) better than those given by formula
(18). Naturally, before using system (8) to evaluate E,h,
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we checked that it correctly describes the real system for
the values of c and o. in question. Figure 3 exhibits a
typical case of an extremely good agreement between the
reduced model and the complete description given by
Eq. (1), in the case of an e value just above the thresh-
old.

The reason for such a good agreement essentially rests
with the important role played by the loss term in
smoothing away any inhomogeneity that would other-
wise grow unimpeded. We noticed that these inhomo-
geneities become all the more important as the corre-
sponding coordinate y gets larger, especially in the ab-
sence of damping. Indeed, if so, the interaction between
the kink and the antikink is negligible in comparison to
the efT'ects of the driving and dissipation terms. The

problem then becomes almost equivalent to that of an
isolated kink (or antikink) in the presence of the hitherto
considered perturbative terms (see for instance Ref. 6).
Thanks to the loss term, the reduced description
proceeding from system (8a), (8b) still remains valid for
long enough times (see Fig. 3).

In a word, we have here elaborated a useful
collective-coordinate transformation in view of a detailed
study of the internal dynamical features displayed by a
perturbed bion. The reliability of the ensued model
proves to be very satisfactory in the case of close or in-
termediate interaction, thus providing a suitable repre-
sentation of bion systems in terms of everlasting kink-
antikink profiles.
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