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We study the node-avoiding (NALF) and path-avoiding (PALF) extensions of the Lévy flights in
one dimension both numerically and analytically. The asymptotic behavior of the PALF is deter-
mined exactly while that of NALF has been available from the mapping to a spin model. Monte
Carlo results for both types of self-avoiding Lévy flights are used to study the convergence toward
the asymptotic behavior. We find very large corrections to asymptotic scaling in NALF for a wide
range of the Lévy index u and also, surprisingly, that the moments of the end-to-end distance of
the NALF are greater than those of the PALF when they both exist. Based on these observations
we conclude that the morphology of the NALF is far more complex than that of the PALF or the
random Lévy flights, and that the NALF and PALF are certainly in different universality classes

in one dimension.

I. INTRODUCTION

Some time ago Mandelbrot! discussed certain random
walks which do not have a fixed step size but rather are
associated with a variable step size / distributed accord-
ing to a probability distribution of the type

P() o ] 174, (1.1

with > 0. These walks are called Lévy flights since P (I)
is a distribution of Lévy type,” and for O<u <2 they
were found to have trajectories strikingly different from
those of ordinary random walks. In particular, the mean
step size of such walks is infinite and the trace of the
sit}es visited by the walk forms a set of fractal dimension

Recently, some variants of the original Lévy flight
have been proposed and discussed in relation to a wide
range of physical phenomena such as chaos and tur-
bulence,* adsorption of polymer chains on a surface,’
and pattern recognition.® In this paper, we study the
theoretical aspects of some self-avoiding extensions’ of
the Lévy flight, which are possibly relevant to the latter
two physical problems listed. The two types of self-
avoiding Lévy flights proposed earlier’ are classified ac-
cording to the severity of the constraints imposed on the
walks: a node-avoiding Lévy flight (NALF) is a Lévy
flight which does not visit the same site (or node) more
than once, while a path-avoiding Lévy flight (PALF)
does not have any overlapping or intersecting step (or
path) in addition to the node-avoiding constraint (see
Fig. 1). These Lévy flights are defined algorithmically as
usual with the constraints used to remove particular
walks from the ensemble of the random Lévy flights.

Since the mean step size is infinite for both types of
Lévy flights, the xth moments of the end-to-end dis-
tance, (Rf ), of the N-step Lévy flights are also infinite
for most values of x. Thus, we will choose to consider
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the “zeroth moment” (InRy ) in most of what follows.
If we assume for large N that

_Al

(RFYV/*=AN*(1—BN "' - -+), (1.2)

for all 0 <x <xg, then it is clear that the x —0 limit
gives

4

(InRy)=vInN+InA—BN "'4 -, (1.3)

We will be particularly interested in the leading Flory
exponent v and the first correction exponent A; in this

(a)

o—— (b)

FIG. 1. An example of (a) a random Lévy flight which
would be excluded by the node-avoiding constraint; and (b) one
which would survive the node-avoiding constraint but would
be excluded by the path-avoiding constraint.
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equation. If, on the other hand, the leading correction is
logarithmic, i.e., if

(RE)V/*=ANY(InN)®+ - - -, (1.4)

then the zeroth moment will be of the form

(InRy)=vIn[N(InN)®]+Ind+ ---, (1.5)

and we will be interested in v and ©.

In this paper we study the simplest case of one dimen-
sion, treating the asymptotic properties of the PALF
problem analytically and both the NALF and the PALF
problems by Monte Carlo simulations for various N and
u on a rather extensive scale. These problems are in-
teresting already in one spatial dimension for a number
of reasons. For the NALF, we expect interesting cross-
overs among the classical Lévy flight, self-avoiding Lévy
flight, and short-range self-avoiding walk regimes al-
ready in d =1 according to a mapping to a model of
magnetic phase transitions obtained in Ref. 7. Also,
some of the results of this reference have been disputed
recently using Monte Carlo simulations.® In addition,
simple real-space renormalization calculations® appear to
suggest the two problems NALF and PALF to be in the
same universality class (at least in two dimensions) and,
as it turns out, the asymptotic properties of the PALF
problem can be solved exactly in one dimension.

In Sec. II, we present the exact results for PALF in
one dimension, and in Sec. III we summarize the expect-
ed behavior of the NALF on the basis of the mapping to
a spin model’ and discuss the relationship between the
NALF and PALF that can be surmised from these and
other arguments. One very surprising suggestion that
arises from these discussions will be the possibility that
the moments of the end-to-end distance of the NALF
are larger than those of the PALF when they both exist
and are finite. The Monte Carlo results are presented in
Sec. IV and they evidently confirm this suggestion. The
numerical results also show signs of very strong correc-
tions to scaling and, when they are taken into account,
the data can be regarded as consistent with the results
implied by the spin mapping. A brief summary is given
in Sec. V. The details of the calculations of Secs. II and
IV are given in Appendixes A and B, respectively.

II. PATH-AVOIDING LEVY FLIGHT
IN ONE DIMENSION

In one dimension, path-avoiding Lévy flights (PALF)
are relatively simple because each segment of the walk is
extended in the same direction with no overlaps. This
contrasts with the node-avoiding Lévy flights (NALF)
which, even in one dimension, have much backtracking
and many overlaps in general. The PALF in one dimen-
sion may also be quite different from those in higher di-
mensions because in one dimension their end-to-end dis-
tance is the simple sum of the lengths of each step. This
makes it possible to evaluate the mean ‘“‘zeroth moment”
of the end-to-end distance, {InRy ), explicitly even in
the long-range regime and to obtain the Flory exponent
v and the leading correction exponents.

Let us consider, without loss of generality, a continu-
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ous distribution of the step-size / where the probability
for the step size [ is given by P(I)=p /I**! with a lower
cutoff at /=1. Further denote the step size sequence of

an N-step PALF in one dimension by {/;} with
i=1,2,3,...,N. Then we have
<1nRN>:<ln(l1+lz+ e +IN)>
——f {exp(—1)
—<CXp[—I(11+12+ +IN)])}€1’I
_f fexp(—t)—[I(t,u)]V}dt (2.1
where we have defined
_ « exp(—1t) ——tl)
Hopy=p [~ =0 (2.2)

The integral I(¢,u) is positive and finite for all u >0,
and, furthermore, it is exponentially small for large ¢.
Thus, all large contributions to {(InRy ) for large N
come from the region of small . This means that we
need to consider the behavior of I for small ¢ only.

Furthermore, we note that, if 4 > 1, then the step-size
average ([ ) is finite and the law of large numbers ap-
plies (we are grateful to J. W. Halley and B. D. Hughes
for this observation). Thus in this case we have

(Ry)/N—const (u>1), (2.3)

as N — « and, trivially, v=1. This calls for the exam-
ination of the integral I (¢,uu) for O <p <1 and u > 1 sepa-
rately to obtain the leading and correction behavior for
the former region and the correction behavior for the
latter region. We need also to examine I (¢,u) carefully
to obtain the behavior at the boundary of the two re-
gions: u=1. The details of such an analysis are given in
Appendix A and here we present the results.

(i) O<p<1. First, for the region O<pu <1,
that

we find

<1nRN>=#i1nN+A1—BIN*A‘+~--, (2.4)
which identifies the Flory exponent v=1/u and the
leading correction exponent A; is the smaller of 1 and
(1/u—1). The leading exponent is identical to that of
the random Lévy flights. The two leading correction
terms cross at u=1, where the correction exponent is
A, =1 (not logarithmic).

(ii) u=1. For the boundary, u=1, between the long-

and short-range regions of the problem, we obtain

(InRy)=In(NInN)+ A, + - - 2.5)

Therefore, at u=1, the leading correction to v=1 is a
multiplicative, logarithmic one with the power of loga-
rithm being 1. The logarithmic nature of the correction
could have been anticipated from the fact that the
correction exponent A, in the region (i) goes to zero as
u—1—.

(iii) w>1. As we have seen from the law of large
numbers, the leading behavior of PALF for p > 1 is short
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ranged, or put another way, v=1. The correction be-
havior, as in

‘Al

(InRy)=InN+A3;—B;N "' -+, (2.6)

depends on u, and we find that A\=pu—1 if 1<u<?2
while A;=1 if u>2. At the boundary u=2, the two
correction terms are both like N ~! and they cross. This
is similar to what happens at p=1 discussed for region
(i). Although the change in the leading correction be-
havior is not insignificant, the difference is not compara-
ble either to what happens to this system at u=1 or to a
random (non-excluded volume) Lévy flights at u=2.

IIl. NODE-AVOIDING LEVY FLIGHTS
IN ONE DIMENSION

First, we review the implications of a mapping of
NALF to a spin model given in Ref. 7. In the general
d-dimensional case, this mapping considers an n-vector
spin model with spins s; of length V'n situated at each
site of a d-dimensional hypercubic lattice with the fer-
romagnetic Hamiltonian,

—BH: 2 Kijsisj’
(i, ))

(3.1)

between pairs of spins s; and s; which are displaced from
each other in one of the orthogonal directions of the lat-
tice. The coupling K;; is of a long-range character, fal-
ling off with a power law

K=K /r}*, (3.2)

where r;; is the distance between the spins. Then, the
correspondence is that the two-spin correlation functions
can be represented in the limit of n —0 as the weighted
sum (or the generating function) of the number of
NALF’s between sites i and j in the high-temperature ex-
pansion.” The spin model is then directly relevant to the
NALF problem on hypercubic lattices with the step-size
distribution given by Eq. (1.1), and in particular, in
d =1, to our present problem.

If we allow all pairs of spins to interact with the cou-

pling

K=K /ri*H, (3.3)

then we still get the correspondence to NALF described
by Eq. (1.1) which, however, allows steps to be in direc-
tions other than the coordinate directions. We assert
that the latter model should be in the same universality
class (i.e., described by the same critical exponents in the
asymptotic limit of large number of steps N) as the origi-
nal NALF with steps in orthogonal directions only,
since both models are asymptotically d dimensional.
The spin model defined by Eq. (3.3) can be transformed
using standard techniques to a continuum, field-theoretic
model of Fisher et al.!'° and of Sak,!' and their renor-
malization group solutions should then be applicable to
our NALF problem.

The results of the spin model imply that the upper
marginal dimension d, is 2u up to u=2, and that for
any 0 <d <4 there are three distinct regimes: (a) classi-

cal Lévy flight (CLF) (u <d /2), (b) node-avoiding Lévy
flight (NALF) (d /2 <p <o), and (c) self-avoiding walk
(SAW) (1> o) regimes. Fisher et al.!® gave expansions
for the exponents y (for susceptibility), v (for scaling the
correlation function), and 7 in powers of e=2u—d, to
the second order in €. The result for  was further con-
jectured to be valid to all orders in €; i.e., n=2—pu.

In addition, Sak'! later used an expansion about the
point u=2, d =4 to argue that the boundary between re-
gions (b) NALF and (c) SAW occurs at

Ho=2—"TsawW> (3.4)

where 7ngaw is the value of 7 in the corresponding
short-ranged model. Although this result was obtained
near the point where e=0 and 75,w=0, the relationship
(3.4) was conjectured to be valid to all orders in € and
thus even far from the point about which the expansion
was made. While no one has raised objections to the
boundary between (a) and (b), this second boundary at p,
has been the object of a controversy.®

Thus, the main spin model predictions”!%!! of NALF
for d =1 are as follows.

@u<t: v=1/u,y=1,1=2—pu;
(@) p=13: logarithmic correction with ©=1 [cf.
Eq. (1.4)];

b) Lap<l: v:i[1+(1/4,u)e+0(62)], (conjecture)
Y=pnv, n=2—p.

Also, A1:§[1+(1/4/,L)6+O(62)].

(') p=1: A logarithmic correction similar to (a’) is
expected if Sak’s calculations!! can be extended away
from d =4 since they suggest for 4 < 1 a leading correc-
tion exponent A, which goes to zero as p—1—.

u>1: v=1y=1,n9=1.

By comparing these predictions with the PALF re-
sults, we note that, while both in the classical region (a)
and the short-range region (c) the leading exponents are
the same, the NALF predictions for v and y are singular
at the boundaries u=1 (a’) and p=1 (b’) but those for
PALF are singular only at the latter boundary. In par-
ticular, for the NALF,

dv —_2 (NALF), (3.5)
du n=0.5+

while for the PALF,
dv —_4 (PALF). (3.6)
du |, _os,

This implies that v is larger for the NALF than for the
PALF as pu approaches | from above, and therefore
(InRy ) is larger for the NALF there. Since PALF is
fully extended while NALF contains overlaps, this pre-
diction was quite unexpected. Yet, as will be seen below,

this is indeed the correct sense of inequality in all re-
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gions of u according to our own Monte Carlo simula-
tions.

Let us consider the following argument which at-
tempts to establish (InRy)parp> {InRy)nyaLp (con-
trary to the above observations). For large N, the distri-
bution of the step size for any given walk of N steps
should be essentially as in Eq. (1.1) with probability one.
For PALF, the InRy for the given walk is just the sum
of these step sizes. For NALF, In Ry is smaller because
some of these same step sizes must occur with a minus
sign. The only way to reconcile this type of argument
and the opposite prediction from Egs. (3.5) and (3.6)
(and also from the numerical results) appears to be that
the ensemble of N-step NALF is an extremely unusual
one. It must be that the only surviving NALF’s are
those with the distribution of step sizes within each walk
not like that of Eq. (1.1), but those that would occur
with zero probability if steps were generated with proba-
bility as in Eq. (1.1) with no constraints.

A physical picture might be as follows: since PALF
grows along one direction, every walk contains many
short steps as expected from Eq. (1.1). On the other
hand, as NALF chooses the direction of each step ran-
domly, allowing back-tracking, many of the walks with
the natural distribution as in Eq. (1.1) are rejected from
the ensemble and the surviving ones are those that con-
tain sufficiently long steps to avoid the multiple occupan-
cy of the same sites. This leads to larger moments of the
end-to-end distance when they are finite. We take note
that, if this is the case, then the surviving ensemble of
the NALF’s generated algorithmically in this way do not
necessarily follow the Lévy distribution Eq. (1.1). Thus
we may expect the NALF problem to be a rather
difficult mathematical one, even in one dimension.

IV. MONTE CARLO SIMULATIONS

We have studied the one-dimensional NALF in the re-
gion of +<u <2 by Monte Carlo simulations using an
extension of a standard enrichment method.!? In addi-
tion, we have also performed some simulations of the
PALF in one dimension in order to obtain the conver-
gence behavior toward the asymptotic limits given in
Sec. II. In contrast to Ref. 8, which evidently allowed
step-size increment of one lattice constant, we use step
sizes / corresponding to an integer power of a chosen
size b (we use b =2 lattice constants) with the (initial)
probability for / =5b" given by

a—1
a

4.1)

p(h)= 2 a "8 ,n,
n=0 ’
where the index u of the Lévy flight is related to a and b
by

a=>b*. (4.2)

In practice, the step size must be cut off at some finite
value, which may possibly cause some problems. This
point is discussed in Appendix B together with other de-
tails of the simulations.

For the NALF, an attempt is made to generate each
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step with equal probability in each direction and with a
step size chosen according to Eq. (4.1). If such a step
would result in the violation of the node-avoiding con-
straint, then the current stage of the walk is discarded
and a fresh attempt is made to generate the stage, as in
the standard enrichment technique. Although we have
also used simple sampling without enrichment, there is
too much attrition for this problem for simple sampling
to give useful statistics. For the PALF, we simply grow
the walk in a fixed, chosen direction with the step size
chosen according to (4.1). Thus for the latter problem,
there is no attrition.

We have generated NALF’s for several different
values of u between 1 and 2, and calculated (InR ) for
N of up to 300. The number of walks used range from
6.1x10* to 1.15% 10° for each p. Our results on v are
expressed in terms of its effective value up to N steps,
denoted by vy, defined as

2N exp({InRy))

YNy =

N_1
exp({InR;))+exp({InRy))+2 T exp({InR;))
i=2

— 1L (4.3)

It is easy to show that, given the power-law correction-
to-scaling behavior of (InRy) as in Eq. (1.3), the
coefficient B in (1.3) is related to C in the asymptotic be-
havior of vy,

4

szv—{—CN_ + e, (4.4)
by
——-—BAX(VH) (4.5)
T ov—A+1 '

For the case of logarithmic correction (1.5), vy must
behave as
(S) o
=v+ +
v InN * (v41)(InN)?

" (4.6)

independent of the overall amplitude A in Eq. (1.4).

Our results shown in Fig. 2 are not very different from
those of Ref. 8 up to the maximum number of steps used
in that reference. However, beyond that maximum
(mostly 50 steps; for some u, 100 steps), all of our results
begin to show apparent decreases in vy, indicating that
corrections to scaling are indeed important in this prob-
lem. At the boundary of the classical Lévy flight and
the NALF regions at u=1, our data can be fitted with a
very sharp logarithmic correction in agreement with the
theoretical prediction”!? discussed in Sec. III, although
the power © of logarithm that best fits the data (indicat-
ed by a solid line in Fig. 2) is about 0.60 in contrast to
the theoretical value of ©=0.5. Since the renormaliza-
tion calculations at the classical boundary e=2u—1=0
must be exact, this discrepancy could be due to the trun-
cation of higher-order terms in Eq. (4.6) and the mixing
from additional higher-order corrections. In any event,
Monte Carlo estimations of logarithmic corrections are
difficult and inaccurate in the best of the cir-
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FIG. 2. The effective exponent vy of Eq. (4.3) is shown
against 1/N from the Monte Carlo simulation of node-avoiding
Lévy flights. Solid lines indicate numerical fits using the
corrections of the form (4.6) with the best-fit values of © as dis-
cussed in the text, and the error bars were obtained from 6-10
batches of data for each u.

cumstances,!> and our data should be taken to corro-
borate the theoretical predictions rather than to give evi-
dence against them.

The other boundary between the NALF and SAW re-
gions occurs at u=1 if Sak’s results'! are correct even in
one dimension. If this is the case, then there will also be
a logarithmic correction at u=1, although the power ©
of logarithm there has not been predicted. Thus,
throughout the region } <u <1, corrections to scaling
are expected to be rather large for the NALF. Our
Monte Carlo data for £=0.7 and 0.8 are found to be
consistent with such strong corrections. The solid line
indicated in Fig. 2 for p=1 shows a possible logarithmic
fit with the numerically fitted exponent of about 6 =2.5.

While this value is large compared with other known
powers of logarithm in critical phenomena, a relatively
large value of © is expected in our case. This is because,
if v for the NALF is larger than 1/u in this region, then
it must come down onto the SAW value of 1 at u=1,
and the steep descent should provide a large discontinui-
ty in the derivative of v with respect to p at this point.
Such discontinuities are known to produce logarithmic
corrections of the type being discussed.

For p>1, the exponents are expected to assume the
usual SAW values. In one dimension, this means
v=y=n=1 with no nonanalytic corrections to scaling
in the sense of renormalization group.!* This implies
that there may be a correction term which is analytic in
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1/N. Our data at u=2 appears to have only such ana-
lytic correction, suggesting that the boundary between
NALF and SAW must indeed satisfy pg < 2.

Thus, so far all our numerical data can be considered
consistent with the theoretical predictions as long as
proper accounts of the rather strong corrections to scal-
ing are taken. While the data are not conclusive in es-
tablishing, e.g., uo=1, or the value of the logarithmic
power O at either boundary, we have not found any evi-
dence that conclusively violates the theoretical predic-
tions. This contrasts sharply with the interpretation
given by Grassberger in a recent Monte Carlo study,'®
which is in fact similar to ours but on a much smaller
scale.

Specifically, it was suggested that the short-range
SAW behavior begins at uy=2 and that the critical ex-
ponent v agrees better with a Flory-type approximation

__3
p+1’

all the way up to p=2. However, we believe that this is
probably the result of overestimating the value of v by
the use of a simple linear extrapolation of their Monte
Carlo data without properly considering the corrections
to scaling. Although this procedure did appear to give
the correct value v=2 at u=1, we believe this was ac-
cidental: the set of data points used for this linear fit ap-

VE 4.7)

o s P I ,.“-=0.5 ]
1.8 4
n=07
Z ceaettets e e b w A
Y /.d"'_,
14+ ©=08 J
m=1.0
K=125
u=20
.o [———e o |
- n N
80 40 20 3

N

FIG. 3. The effective exponent vy of Eq. (4.3) is shown
against 1/N from the Monte Carlo simulation of path-avoiding
Lévy flights. Solid lines indicate numerical fits using the
corrections of the form (4.4) with the appropriate values of A,
from Sec. II for us41, and the error bars were obtained from
six batches of data set for each u. The fit at u=1 is of the
form (4.6) with the best-fit value of © which is 0.85.
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<In R>NALF
<In >PALF

0.9 B L
0 100 200 300

N

FIG. 4. The ratio of {InRy) for the node-avoiding Lévy
flight to that for the path-avoiding Lévy flight is shown against
N for selected values of p.

pear to be part of an oscillatory trend (or fluctuation),
and the correct fit must be performed with the predicted
logarithmic correction on data using larger number of
steps.

Another interesting result arises from the direct com-
parisons of the numerical results for the NALF with
those of the PALF. Figure 3 shows vy for the PALF as
defined by Eq. (4.1) for various u. The solid lines indi-
cated are the fits obtained using the leading and first
correction exponents obtained analytically in Sec. II ex-
cept at u=1. At p=1, where a logarithmic correction
with © =1 is expected, the best fitted value of © is about
0.85, and this latter value is used in the figure. For the
other values of u, the calculated exponents are used with
the best fit values of the amplitudes. While these are in
principle also calculable, in most cases mixing of correc-
tion terms will mask the correct values in any event.

Comparing Fig. 2 (NALF) with Fig. 3 (PALF), we see
a confirmation of the surprising prediction that the mo-
ments of the end-to-end distance of the NALF are
indeed larger than those of the PALF. This is reflected
in the figures in the way that vy of NALF is for all u
greater than that of PALF in the range of N and u used
in our simulations. More direct comparisons of the size
can be made by looking at {InRy ) itself. The ratio of
this quantity for the two types of Lévy flights is plotted
in Fig. 4 and it again confirms that NALF is larger than
PALF. While we do believe that the leading exponent v
is identical for pu > 1, it may well be that the amplitudes
as defined in Eq. (1.3) do not become identical until
H—> co.

V. SUMMARY

Considering these results, it is clear that the PALF
and NALF are in different universality classes at least in
one dimension, in disagreement with a recent real-space
renormalization study.” Our numerical results for NALF
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are consistent with theoretical expectations in all
respects as long as very large corrections to the asymp-
totic scaling are allowed for, in contradiction to the in-
terpretations given by an earlier numerical work of
Grassberger.® In particular, it seems very likely that the
short-range SAW region for the NALF starts at a value
of u strictly less than 2 [Sak’s prediction would be 1
(Ref. 11)].

It is also clear that NALF is a rather complex object
whose properties are difficult to pin down simply by nu-
merical means. In particular, the moments of its end-
to-end distance distribution, when they exist, appear to
be larger than those of the PALF. The latter result, as
surprising as it seems, is not only numerically obtained,
but also predicted by analytical results.

While the subject of this paper is confined to the sta-
tistical properties of the NALF and PALF in one dimen-
sion, some of the possible applications of these ideas to
physics*> occur in higher physical dimensions. Thus it
is of much interest to investigate if these conclusions ap-
ply also to higher dimensions, particularly on the rela-
tionship between the two types of excluded-volume Lévy
flights. This is left as a promising future work.
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APPENDIX A: SOLUTION OF PALF
IN ONE DIMENSION

In this appendix, we present the calculation of the
Flory exponent v and leading correction behavior for the
end-to-end distance of the path-avoiding Lévy flights in
one dimension. We start from the expression (2.1) for
the mean zeroth moment (InRy) and note that, after
some manipulations involving a change of variables and
integration by parts, we arrive at
1 © € e t
,,L fe y# dy + fs

evé

I=(—pth) e 4
==t y,u—i—l y

>

- o
(A1)

independent of €(>0). Let us now discuss each case
separately:
(i) O<p < 1. In this case, taking the limit of €—0, the

first integral reduces to I'(1—pu), and we have

t eV e ¢
fe y+1dy——

I=—tFD(1—p)—(ut*) lim
y pet

e—0

(A2)

The sum of the last two terms can be expanded in
powers of ¢ for small ¢, and we finally have
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.

2 3
a2 t°+0(t°).

—1—fET(1 — S P
I=1—t"T(1 #H\l—,u ]t

(A3)

Reexpressing this result in a form suitable to substitute
into Eq. (2.1), we write

() =Io(14a,t" +ayt’ 4+ -+,
where Iog=exp [ —Nt*I'(1—pu)] and {b;} is arranged in
the ascending order (b; <b, < - - - ). Each of the correc-
tion terms in Eq. (A4) then yields an integral of the form

foo (110 d N' b,v/y,

(A4)

(AS)

for large N where c; is the asymptotic power of N con-
tained in a;. The largest correction then derives from
the largest exponent c¢;—b;/u. This is given by
max(1—1/u,—1). Substituting Eq.(A4) into (2.1) with
Eq. (AS5) in mind and carefully dealing with the cancella-
tions of the diverging contributions in each of the two
terms of Eq. (2.1), we finally arrive at the expression

—H (A6)

(lnRN>=ilnN+A1—B1N 4+,
where 4, and B, are independent of N, and in particu-
lar,

Alzi—lnr‘(l——u)+ v, (A7)

Ly
u

where y is the Euler’s constant. From this, we identify
that the leading exponent which gives the analog of the
Flory exponent for this case is

v=1/u, (A8)
and the leading correction exponent is
1/u—1, t<u<il
1= ’ (A9)
1, O<p<y.
(i) u=1. At u=1, we have for small ¢,
o e~V
I=t [ 2 —dy=1+4yt+tInt+0(?). (A10)
oy
Thus,
N
[~ Mdt:fltN’_1[1+0(t)]dt+Do+
€ t €
(A11)

where € is asymptotically small as before and D, is at
most constant for large N. The neglected terms are even
smaller. The behavior of the integral on the right can be
estimated by considering
1 N
I's|[ tNM-l4gt= N ~*x*~ldx,
J Jee

€

(A12)

whose range of integration can be split in three parts to
(Ne,8), (8,1), and (1,N). The value of § is chosen to be
a constant such that Ne<<8 << 1. The contributions

from the second and third ranges are then at most con-
stant for large N, and the contribution from the first

range (Ne,8) for large N is approximately
—In(eN InN)—y. This gives

I'=—In(eNInN)—y+ -+, (A13)
and we conclude that

(InRy)=In(NInN)+ (A14)

(iii) 1 <p <2. Next we consider the case 1 <pu <2. In

this case, we can write
—Ix
e
Itpu)=e '—t [~
" S|

t
—t
" dx =e ————-ﬁ# 1I(t,,u—l),

(A15)

and thus partly reduce the problem to the first case. We
then obtain

I=exp ——th 1+ I“(2—1 Lirpo?) |, (A16)
— #_—
Substituting (A16) into (2.1) then finally yields
(nRy)=InN+A,—B,N'"F4 -+, (A17)
where the constant term is
A,=In |—£— (A18)
u—1
This identifies the Flory exponent of
v=1, (A19)

as expected from the law of large numbers, and the lead-
ing correction exponent is

Ay=p—1. (A20)

(iv) u>2. For u>2, we can apply the transformation
used in (A15) successively until I(z,u) is reduced to a
form involving I(t,A) where O<A=u—k <1 with in-
teger k >2. Thus we obtain

I(tp)=1— #"il t+ 2(#‘“_2) 12403+ 0 (t#),
(A21)
which can be rewritten as
I=exp |— { —2—(;_—1‘u——)t + -
(A22)
Substituting (A22) into (2.1), we obtain
(InRy)=InN+A4—B,N ' -, (A23)

identifying v=1 as expected and the correction exponent
A=1. (A24)

As p—2 limit is taken from either above or below, the
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two leading correction terms N ~! and N'™# cross, and
even though each is associated with a diverging ampli-
tude, these apparent divergences actually cancel each
other and leave one with a simple N ~! correction there.

APPENDIX B: MONTE CARLO METHOD

In this appendix, we discuss some details of the nu-
merical methods whose results are discussed in Sec. IV.
We also present the summary of the simulation parame-
ters in Tables I and II. The main simulation method is a
simple extension of the standard enrichment technique'?
whose parameters are also listed in Table I. We will not
discuss the details of this method as they are well
known.

The main point we wish to discuss is the possible
effects of cutting off the maximum step size /,,, in the
ideal distribution of (4.1). In principle it may have a
significant effect on the statistics as the special properties
of Lévy flights are caused by rare but very long steps.
Since we use Fortran integer arithmetic on various com-
puters, the maximum size of an integer word on a partic-
ular machine limits the largest possible step we can al-
low. While we could use floating-point arithmetic in-
stead with some loss of efficiency, eventually a similar
problem would occur there as well and, in addition, we
would then be faced with a round-off error problem in
applying the node-avoiding constraints. This problem is
clearly more significant for smaller y as the probability
of long steps is larger there. On the other hand, for
larger p, even moderately long steps occur with very
small probabilities and the generation and comparison of
the floating point numbers to distinguish one step size
from another becomes a limiting factor. Thus, our simu-
lation faces possible difficulty at both ends of pu.

In practice, we used machines with 32-bit Fortran in-
tegers (Masscomp, Digital Equipment Corporation VAX
11/750 and PDP 11/44) and a machine with 48-bit For-
tran integers (Control Data Corporation Cyber-205) for
the Monte Carlo generation of the node-avoiding Lévy
flights. For the 32-bit case, we used a linear congruen-
tial random number generator (with an offset of one each
time) while for the Cyber-205 computer, we simply used
the built-in generator which is a 48-bit linear-

TABLE II. Summary of data used for path-avoiding Lévy
flights.

u Number of steps Number of walks
2.00 1000 50 000
1.25 1000 100 000
1.00 1000 110 000
0.80 1000 300 000
0.70 1000 300 000
0.50 1000 300 000

congruential one. In the former, the maximum step size
allowed was 2% and in the latter, 2. We generally
truncated all steps which would have step sizes greater
than these according to (4.1) down to the maximum al-
lowed size.

Typically, for the 32-bit case, the accuracy limitation
of the single-precision floating-point numbers is the pri-
mary limiting factor for u>0.75 or so, while the max-
imum word size is the limiting factor for u <0.75 or so.
In the former case, the step-size is effectively cut off
much earlier than the theoretically available maximum;
in either case, we are cutting off the step-size distribu-
tion at a finite value. For the 48-bit case, the border line
value of u for the changeover in the primary cause of
this cutoff moves up to about 1.1.

To test the effect of truncating step sizes, NALF’s
were generated at u=0.5 on Cyber 205 both (a) in the
usual way as described above using 48-bit integers for
the step sizes and single-precision floating-point arith-
metic for the probabilities; and also (b) using double-
precision floating-point arithmetic for the step sizes and
single-precision floating-point arithmetic for the proba-
bilities. The first method (a) gave results that are al-
ready quite comparable with those from the usual
method on 32-bit machines. The second method (b) was
easily capable of keeping track of steps of sizes 2%’ that
were truncated in method (a). The two methods gave
raw data for (InR ) for up to 300 steps that were identi-
cal to at least three digits (and generally much more).
Therefore, we conclude that, even though truncated
steps are individually extremely large, the truncation
does not affect the overall results as far as the zeroth
moment of the end-to-end distance.

TABLE I. The parameters used in the Monte Carlo simulations of the node-avoiding Lévy flights.
The number of walks generated is indicated at the first and last steps, and the number of stages,
length of each stage, and the number of allowed trials per stage refer to the parameters of a standard

enrichment technique (Ref. 12).

u Number of Length of Number of trials Number of walks
stage stage per stage First step Last step
2.00 10 10 449 10 275 365 8 526
1.25 20 10 113 5 134 042 6 096
1.00 30 10 40 57 344 560 11 261
0.80 30 10 16 11 100 384 18 275
0.70 30 10 10 5 085 360 23 209
0.50 30 10 4 6 267 932 115 057
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