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Reentrant nematic and multiple smectic-A liquid crystals: Intrachain flexibility constraints
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A recent new microscopic, molecular statistical-physics theory for the intrachain constraints on
the n-alkyl tail-chain flexibility for molecules composed of rigid rodlike cores and n-alkyl tail
chains in the smectic-A&, smectic-Ad, and nematic (including reentrant nematic) liquid-crystal
phases and the isotropic liquid phase is used to calculate relative stabilities as well as various ther-
modynamic and molecular ordering properties (including odd-even effects) for these phases. The
molecules can interact via these site-site intermolecular interactions: hard (steric) repulsions, vari-
ous Lennard-Jones (LJ) potentials for soft repulsions and London dispersion attractions, and/or
dipolar forces (dipole-dipole and dipole —induced-dipole). The theoretical results in this paper are
in significantly better agreement with experiment than are results in earlier papers using older,
more approximate theories. The effects of varying pressure, tail-chain flexibility, and intermolecu-
lar interactions on the relative stabilities of the multiple smectic-3 phases and the reentrant
nematic phase are presented. These relative phase stabilities are sensitive to subtle changes in

these variables. Predictions and accompanying physical explanations are also made for various
systems that have not yet been chemically synthesized and/or studied experimentally.

INTRODUCTION

The partial orientational (and also, in some cases, the
partial positional) ordering of molecules that is charac-
teristic of liquid crystals (LC s) occurs frequently in nat-
ural and synthetic materials. (See, for example, Ref. 1

for a summary of some of these natural and synthetic
systems that have LC ordering, as well as for a discus-
sion of some of the reasons —ranging from very basic
physics considerations to very practical applications-
for our interest in LC systems. )

LC's are formed by molecules with highly anisotropic
shapes, with these shapes frequently changing as a func-
tion of temperature and density. The general purpose of
the theory and calculated results in this paper is to iden-
tify (predict and explain) the individual components of
molecular structure and packing that determine the rela-
tive stabilities of the partial orientational and partial po-
sitional ordering of the molecules in different LC phases.

New results are reported in this paper for one recent
new theory' that is a major extension of theories for
smectic-A (S„)and reentrant nematic (N) phases first re-
ported by this author in 1980 (see Ref. 2). (A reentrant
phase occurs when a phase appears in one temperature
range, disappears in a lower-temperature range, and then
reenters or reappears in an even-lower-temperature
range. )

In particular in this paper here, we take a much
closer, much more exact look at the effect of the mole-
cule tail-chain flexibility on the stability of multiple S~
and N LC phases (including reentrant phases) than in
previous papers. More specifically, the purpose of
this paper is to present results for a recent new theory'

of describing the intrachain constraints on the flexibility
of n-alkyl (hydrocarbon) tail chains in LC molecules and
how these intrachain constraints affect the LC ordering
in N (including low-temperature X—including reentrant
N) and multiple S„phases.

An example of a reasonably typical LC molecule
structure ' is

H3C —(CHq) +0—6—N =N—ef—0+(CH2) —CH3.

5 indicates a para-substituted benzene ring; y,y'-0 —20;
y and y' may be equal or unequal. +0—6—N=N—
6—0+ is the rigid core, and H3C—(CHz) —and—(CH2) ~ —CH3 are the semiflexible tail chains. The
overlap of ~ orbitals in the aromatic, double, and triple
bonds in the core section of a LC molecule leads to the
rigidity of the core. In the S~ and N LC phases and the
isotropic liquid (I) phase, there is essentially free rota-
tion of the molecule about the core long axis, thereby
giving an effective rodlike, cylindrical shape to the
core. ' " The n-alkyl tail chains are partially flexible
(semiflexible) since it costs a finite, but easily achievable,
net energy E to make a trans-gauche rotation about any
carbon-carbon bond between —CH2 —(methylene) or—CH3 (methyl) units in a given tail-chain.

It is emphasized that there is an appreciable fraction
of gauche bonds in n-alkyl tail chains in LC and isotro-
pic liquid phases. When each chain is in an all-trans
state (which in a plane is represented by a zigzag line for
each chain), the chains have frozen into the crystalline
solid state. Thus, the explicit treatment of the tail-chain
flexibility in molecules with n-alkyl tails is essential to
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differentiate real LC (especially real smectic) phases from
crystalline solid phases.

Our purpose of focusing in this paper on new results
for a recent new method' of describing these intrachain
constraints on the tail-chain flexibility is prompted by
the following reasons. References 4 and 5 have shown
that differences in the steric (hard-repulsive) packing of
rigid cores and semiflexible tails —as a function of tail-
chain flexibility as a function of temperature —can stabi-
lize S„[including smectic-A, (S„) and smectic-Az

1

(Sz )] and low-temperature N (including reentrant N} LC
d

phases. It is not necessary to invoke dipolar forces (or
even attractive forces of any kind) to have these phases.

The steric system results can be understood as follows.
In the S„phases, the differences in the steric packing of
the rigid rodlike cores and the semiAexible tail chains
are large enough that the oriented molecules positionally
align such that cores tend to pack with cores and tails
tend to pack with tails. The semiAexible tails bend and
twist well around each other, but do not pack as well
with the oriented rigid cores.

As T decreases, the tails stiffen somewhat (become less
flexible), thus decreasing the packing differences between
cores and tails. The need for segregated packing of
cores with cores and tails with tails (as in a S„phase)
decreases and is overcome by the entropy of unsegregat-
ed packing, leading to a low TN phase-. [The existence
of low TN (speci-fically, reentrant N) phases is well es-
tablished experimentally (see, for example, Refs. 12—18).]

These theoretical results in Refs. 4 —6 thus explained,
for the first time, the following experimental observa-
tions: With two or three exceptions, ' ' virtually all
molecules that form S~ —in fact, that form any kind of
smectic (i.e., layered) —LC phases have one or more
pendant semiAexible tail chains. ' ' Furthermore, as
the tail chains are shortened, the smectic phases disap-
pear 7 8 20

In these experimental cases, the cores (and hence, any
dipoles in the cores) are not sufficient (without the non-
polar tails) to stabilize the smectic phases. The
semiflexible tail chains provide enough entropy (disor-
der) to keep the cores from crystallizing totally, thus al-
lowing the existence of the partial positional order in
smectic phases.

In Ref. 1, two new microscopic, molecular statistical-
physics theories (an exact theory and a simpler, but ac-
curate approximate theory) for the intrachain constraints
on the n-alkyl tail-chain flexibility in the Sz, S„,and

1 d

N LC phases and in the I liquid phase were derived.
The new approximate method for calculating these intra-
chain constraints on the tail-chain Aexibility was shown
to be remarkably accurate when compared with the ex-
act method. Also, the new approximate method was
shown' to be computationally much faster than the exact
method.

Therefore, the new approximate theory was used in
Ref. 1 to calculate thermodynamic and molecular order-
ing properties (including odd-even effects in these prop-
erties) for S„,S„,N, and I phases for a system of mol-

1 d

ecules composed of rigid rodlike cores and pendant

semiflexible (n-alkyl) tail chains, with cores and tails in-
teracting via various site-site Lennard-Jones potentials
(but with no dipolar forces). [Odd-even effects are alter-
nations in the magnitudes of thermodynamic and molec-
ular ordering properties (or in the increments between
values of these properties) as the number of —CH2-
and —CH3 groups in a given n-alkyl tail chain in a mol-
ecule varies from odd to even. ]

The N phase was found to be somewhat more stable
with respect to the S~ phases (particularly at higher
temperatures) when using the new approximate flexibili-
ty theory in Ref. 1 than when using the old, more ap-
proximate flexibility theory of earlier papers. The
improved stability of the N phase with respect to the Sz
phases in Ref. 1 was shown to be in better general agree-
ment with experiment than were the results of Ref. 6.

The thermodynamic and molecular ordering proper-
ties calculated for these phases for this system in Ref. 1

were shown to be in good agreement with experiment.
Reference 1 appears to have given the first theoretical
treatment of odd-even effects in multiple S„phases (S„
and S„phases).

d

This paper here uses the new approximate theory of
Ref. 1 to calculate —for the first time —thermodynamic
and molecular ordering properties (including odd-even
effects) for S„,S„,N, and I phases for a system of

1 d

molecules composed of rigid rodlike cores and pendant
semiflexible (n-alkyl) tail chains, with the molecules in-
teracting via site-site (segmental) hard (infinitely large)
repulsions only or via segmental intermolecular dipolar
forces (dipole-dipole forces and dipole —induced-dipole
forces) as well as segmental Lennard-Jones potentials
[for soft (finite) repulsions and London dispersion attrac-
tions]. This paper here also uses the new approximate
theory of Ref. 1 to calculate —for the first time —results
for low-temperature N (including reentrant N) phases.

There are no ad hoc or arbitrarily adjustable parame-
ters in this theory. All input variables are taken from
experimental data for atoms or small chemical groups
such as benzene rings and methylene groups; all other
variables are calculated by the theoretical equations and
are found to be reasonable when compared with experi-
mental data for LC's. We do not use parameters to fit
our calculated results to experimental LC data, since
such fitting would obfuscate the identification of the in-
dividual components of molecular structure (including
details of the intrachain constraints on the tail-chain
flexibility) and packing that determine the relative stabil-
ities of the partial orientational and partial positional or-
dering of the molecules in different LC phases.

THEORY

General partition function

The theory' that we use here is a localized' mean-
field (LMF) theory for a system of unbranched multisite
molecules, where each molecule is composed of a rigid
rodlike core and two pendant semiAexible tail chains,
one on each end of the core. By 1ocalized MF theory in'

this paper, we mean that we have a specific average
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neighborhood (of other molecular sites and empty space)
in a given direction k around a given molecular site in a
given local region in the system. ' ' These local regions
are determined by the actual packing of the molecules in
the system.

By multisite, we emphasize that each molecule in this
theory is divided into a series of connected sites. The
various sites correspond to various atoms or small
groups of atoms (such as a benzene ring or a —CH2-
group).

We use here a simple-cubic lattice theory. ' Each mol-
ecule has a total of m connected impenetrable cubic seg-
ments (sites), each of unit dimension. The total volume
of the system includes these impenetrable molecular seg-
ments, as well as unoccupied (empty) space or volume.

We have used' combinatorial lattice statistics (after
the manner of Ref. 3 and references therein) to describe
mathematically how the molecules physically pack to-
gether under different conditions of pressure. tempera-
ture, orientational and positional orderings of the mole-
cules, and particular chemical structures of the mole-
cules (including various site-site intermolecular interac-
tions). We stress that a unique feature of the theory of
this paper and Ref. 1 (and of the theories of Refs. 3 —6
and 21) is that there are no ad hoc or arbitrarily adjust-
able parameters in these theories.

In particular, the couplings between the orientational
and positional orderings of the molecules, the density
and temperature of the system, and the specific chemical
structure of the molecules arises naturally from the in-
termolecular and intramolecular packing of the mole-
cules in these theories. We do not have to guess at the
forms of these couplings, or guess at ad hoc coupling
constants, or assume artificially simplified forms for
these couplings.

For the following five major reasons, we have particu-
lar confidence in the practical application of the lattice
theory of this paper to LC molecules.

(1) The orientations of any molecule (in fact, the orien-
tation of any segment or bond between segments in any
molecule) can be decomposed into its x, y, and z com-
ponents and mapped directly onto a simple-cubic lattice.
(This decomposition of orientations into their x, y, and z
components is analogous to normal coordinate analysis
in, for example, molecular spectroscopy. ) This decompo-
sition and mapping onto a simple-cubic lattice allows us
to treat —in a geometrically transparent and mathemati-
cally tractable manner —details of molecule chemical
structure, including features that are essential in deter-
mining the LC ordering of real molecules. A significant
number of these features (such as the fiexibility of tail
chains attached to rodlike cores in LC phases) have not
been amenable to treatment by continuum theories.

(2) In the lattice theory of this paper (see below) and
Ref. 1 as well as in the lattice theories of Refs. 3 —6 and
21, the Gibbs free energy of the system is minimized
with respect to the individual x, y, and z components of
the orientations of the long axes of the rigid cores of the
molecules.

(3) In the lattice theory of this paper (see below) and
Ref. 1 as well as in the lattice theories of Refs. 3 —6 and

21, the thermodynamic limit is taken (that is, the num-
ber of lattice sites M in the system and the number of
molecules X in the system each go to infinity), and thus
the thermodynamic and molecular ordering variables in
the system assume a continuum of allowed values.

(4) The generalized combinatorial statistics (see Ref. 3)
used to derive' the analytic partition function [Eq. (1)
below] in this paper have been found to be quite accurate
when compared with Monte Carlo computer simula-
tions in at least one limiting case presently amenable to
such simulations. (See discussion in Ref. 3.)

(5) The lattice theories of Refs. 3 —6 (and references
therein) —which form the starting point for the new
theory of this paper and Ref. 1—have a well-
documented and extremely successful record in uniquely
predicting new phenomena and explaining both existing
phenomena (trends, as well as qualitative and quantita-
tive variables) for multisite molecules in LC phases.
These lattice theories have been especially effective in re-
lating these predictions and explanations directly to the
chemical structures of real LC molecules. These
theoretical results have been found to be in good agree-
ment with existing and later experimental data. (See
Refs. 3 —6 and 21, as well as the review articles of Refs.
23 and 24 and references therein. )

Therefore in this paper and in Ref. 1, the
configurational partition function Q (derived from the
combinatorial lattice statistics) is given by

Q =0 exp[ EJ l(ke T)—],
where 6=0( T,p, vo, r, f,E~,P2„,k) and EI EI ( T p, vo, ——
r, f,Ez,P2„,k,a, E„,E«, pD~~, pD&, a„a,), where ks is the
Boltzmann constant, and where the molecular and ther-
modynamic variables in Eq. (1) are defined as follows.

T is the absolute temperature.
p is the average density of the system (average fraction

of lattice sites occupied by molecular segments);
0(p(1.

vo is the volume of one lattice site (i.e., hard-repulsive
volume of one molecular segment).

r and f are the number of rigid segments and
semiAexible segments, respectively, in a molecule.

E~ is the energy of a gauche rotational state (relative
to the trans state) of a carbon-carbon bond between
methylene or methyl groups in n-alkyl chains.

P2, is the average orientational order of the molecular
cores [given by Pz„——((3cos 0 —1) ) /2, where 8 is the
angle between the core long axis and the preferred axis
of orientation for the cores (here, axis z)]; 0 & P~„& 1.

A, is the average fraction' of one-dimensional (1D)
positional alignment of the centers of mass of the mole-
cules whose cores are oriented parallel to the preferred
axis for core orientation; 0 & A, & l. [k in this theory is a
real number defined' in terms of the literal physical
packing of the centers of mass of the oriented molecules
and thus, in terms of the physical packing of the core
and tail parts of the oriented molecules. More
specifically, A, is actually the average fraction of the
length of a z-axis-oriented molecule that is in register
with (positionally aligns with) —in excess of alignments
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from random positional packing —the lengths of z-axis-
oriented neighboring molecules in the x and y directions,
such that cores tend to pack with cores and tails tend to
pack with tails for these oriented molecules. (As will be
shown later in this paper, A. is thus a reduced ratio be-
tween the average layer thickness and the average
effective molecule length at a given T in a S„phase. )]

a is the average separation distance between segment
centers at the zero of energy in the Lennard-Jones (12,6)
pair potential for any two segments in different mole-
cules.

E„and c„are the absolute values of the minimum of
energy between two core segments and between two tail
segments, respectively, in the Lennard-Jones potential.

pD~~ and pD~ are the longitudinal and transverse, re-
spectively, dipole moments for the molecule (here, for
the core).

and

—C, lnC1 )C/6/(2p)] —Cz (2)

Er /N = (p/9) g [(QI3/g/1 )+ (Q14/Q1z ) ]/C, 6
1=R,F

where

(3)

a, and u, are the average polarizabilities for a core
segment and a tail segment, respectively.

Equations (1)—(18), (36)—(38), (41), (43), and (45) in
this paper are derived in Refs. 3 —6. Equations (19)—(35),
(39)—(40), (42), and (44) are derived in Ref. l.

In Eq. (1) for the partition function,

(InQ)/N = g [(Q&,lng&1+2Q&zlng&z
1=R,F

Q&1
——1 —[p/(3CI6)] [(1+2Pz„)[(r—1)+qAC~]+(1+2Pz„Pz, )f],

Q&z
——1 —[p/(3C&6)][(1 Pz„)(r ——1)+(1 Pz„Pz, )—f —q(1+2Pz„)AC~],

Q13 ( 1 Pz„) [ W—3 +(r —2) co„&+2(r —2)A &cu„+ A &co«]

+(1 Pz, )(1+—2Pz„) I (B,+ q ABz )[2(r —2)co„+A &co«] I + I [(1+2Pz„)(B&+q ABz )] co«/2]

QI4 ——(1 Pz„) [
W'—3+B1[2(r—2)co„+A1co«]+B1co«]

+(1 Pz„)(1+2Pz„)—(2I(r —2) (1+qA )co„r+(r —2)[(1+qA) A1+(A, +qA A z)]co„

+ A, ( A1+qA A z)co« I +B1[2(r—2)(1+qA )co„+(A1+qkAz)co«])

+(1+2Pz„) I [(r —2)(1+qA, )] co„+2(r —2)(1+ql, )(A, +qkAz)cu„+(A, +qA, A ) zzc/I«

CI ——1 —p,
Cz ——I[(1+2Pz, )ln(1+2Pz„)+2(1 Pz„)ln(1 P—z„)]/3}+— g [In[p/(3C&6)]] /2

1=R,F

C3 =r —1+Pz,f,
C4=r —[(1+2Pz, )f l3],
C, = ( 1 Pz, )f /3, —

C&6
——m +q [(1+2Pz„)A(r f) l3], —

W3 ——(r —2) co, l~l+2(r —2) A &co„+A &co„,

A~ ——2+x [f(2+Pz;)/3],

B~ ——1+x [2f (1 Pz; )/3] . —

(4)

(5)

(6)

(8)

(9)

(10)

(12)

(13)

(14)

(15)

(16)

In Eqs. (15) and (16) x =+. 1 if /=1; x = —1 if /=2. If
1 =R in Eqs. (2)—(16) above, then q =+1; if I =F, then

q = —1.
In the above equations,

m =(r+f); (17)

is the number of molecules in the system; R and I'
refer to potentially core-rich local regions and potential-
ly tail-rich local regions, respectively, in the system; and
P2, is the average tail intramolecular orientational order
(i.e., a measure of the average stiffness of the tails) where
by a~alogy to P2„

Pz, —((3 cos 1t/
—1) ) l2= 1 —3u (18)

2u = +2u fr
. r

(19)

where fz is the number of semitlexible segments
( —CHz —or —CH& groups) in tail chain y of the mol-

and 1J'/ is the angle between a given tail bond and the
long axis of the core of the molecule to which the tail
bond is attached. 0 &P„(1.

The total fraction 2u of tail bonds bent out of the
direction of the core long axis of a molecule is given by
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ecule, and 2ur is the total fraction (with u parallel to
each of the two simple-cubic axes) of semiflexible seg-
ment bonds (C—C bonds) bent out of the direction of
the core long axis in tail chain y. Here y = 1 or 2. Also,

f=gf, . (20)

Each semiflexible tail bond has three choices of direc-
tion, which mimic the three choices [trans, gauche (+ ),
gauche ( —)] of rotation (specifically, rotational energy
minima) about carbon-carbon bonds between methylene
(or methyl) groups in the tetrahedral coordination in a
n-alkyl tail chain. A trans tail choice has a Boltzmann
statistical weight of

g, = 1/(1+2A), (21)

and each gauche choice has a Boltzmann statistical
weight of

f2= A/(1+2A),

where

(22)

A=exp[ Es/(k23—T)] . (23)

2ur ——2u1 ——2/2 . (24)

For fr )2 in this paper using the new approximate
method of Ref. 1, 2u in Eq. (19) is given by

2Q r
2 2

Y,, + [(f —2)/2] g Yz,
j=] j= i

even f ) 2 (25)

and

For an all-trans sequence on a simple-cubic lattice, the
long axis of the tail chain is parallel to (literally, an ex-
tension of) the long axis of the core of the molecule. Se-
quences of gauche(+) gauche (+) are energetically very
unfavorable ' and therefore are not allowed' in this
paper.

For fr ——1 in this paper as in Ref. 1, 2u in Eq. (19) is
given by

Y32 ——2( 2/1/2+ 4/1/2+ gz ) /D 3

Y33 6(0102+0102 ) /D 3

(34)

(35)

3

Q)yz COyzjj=1
(36)

where j =1 refers to Lennard-Jones (12,6) interactions,
j =2 refers to dipole —induced-dipole interactions, and
j =3 refers to dipole-dipole interactions;

coy„—4Ey, [(a /a)" —(a /a)']; (37)

Here, c„/k=300 K and c„/k=150 K.
These values are appropriate for benzene and methane
molecules, "respectively, which are reasonable approx-
imations for the chemical species in the core and tail
segments, respectively, of typical LC nondipolar mole-
cules; c,„=(E„s,„)'

Here, a =4&(10 cm, an approximate average value
appropriate for a methane or benzene molecule. " a is
the average separation distance between the centers of
two first-neighbor intermolecular segments and is calcu-
lated here (as in Refs. 1 and 6) from p using

The one-dimensional (1D) positional alignment of the
centers of mass (and thus, of the rigid cores) of the
oriented molecules is the basis of Sz layers. This actual
positional alignment (i.e., segregated packing) of cores
with cores (and thus, of tails with tails) for oriented mol-
ecules in this theory results in a core-rich region (labeled
R) and tail-rich regions (labeled E) in each layer. When
A, =O, these regions have the same segmental composi-
tion (i.e., composition of cores and tails) and there is no
layering. A S~ phase of some kind exists for any value
of A. for which 0&A, &1.

Each ~, is an average intermolecular pair interaction
energy between a y-type segment and a z-type segment,
where y =c or t and z =c or t; c and t indicate core and
tai/, respectively.

~~
and J. indicate segments that are at-

tached to cores that are parallel and perpendicular, re-
spectively, to each other.
co„~~——~r, x ——co„', and

2Q r
3 2

Y„+[(f—3)/2] g Y,,
J =1 j=1

odd f )2.
In Eqs. (25) and (26),

»1=2(&102+Pe)/D1

D1 =$1+4/1/2+ 2g, ,

Y„=2(2g, gz+ gz') /D, ,

Yz1 ——Yzz =2( f1+3$,$2+ 2gz ) /D z,
Dz =3g, +2(5$,$2+ 3/2),

Y31 ——2((1/2+ 3/1/2+ gz ) /D3

D3 ——g, +2(3$,$2+4$,$2+$2),

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

p=mvo/v, v =a [2a +vo~ (m —2)], (38)

where v is the average volume associated with one mole-
cule, and Uo ——2.98&10 cm, as estimated from ex-
perimental measurements of various quantities.

co~,z and co,3 are calculated (after the manner of Refs.
1 and 6) using Eqs. (13.5-3) and (1.3-8), respectively, of
Ref. 27(b) using values of pD~~, pD3, a„and a, estimated
from experimental bond and group dipole
moments " and polarizabilities. 8' ' Here,

pD~~
——5.2D, a,' =a, (r —2) =24&& 10 cm, and

a, =2%10 cm; (r —2) is the number of rigid seg-
ments having core-type interactions. ' ' ' Here, pD~~ and

are values appropriate' for a core with relatively
large dipolar forces, of the order of those in a
cyanobiphenyl-oxy-type core, and cx, is a value appropri-
ate' for a methylene group.

As in Ref. 1 (after the manner of Ref. 6),
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(39)

and

Also,

gp (pD~~+pDJ )~, &[2a'(» —2)']

pDII I 2[a(r —2)] ( I+Xqk, ) I

(40)

(41)

where X= 1 for ai„3~~ in Eq. (7) and X=O for ai,
3~~

in Eq.
(14);

3i (42)

Also, cott2 Mct3 cott3 =
If pDi ——0 (as in Ref. 6 and in this paper here), we are

dealing only with the effect of longitudinal dipoles. The
above equations used for the dipole-dipole interactions
explicitly take into account (1) whether the longitudinal
dipoles (in the cores) are perpendicular (which occurs
when the cores are perpendicular) or (2) whether the lon-
gitudinal dipoles are parallel or antiparallel (opposed)
when the cores are aligned (parallel), as well as the de-
gree of positional alignment of the cores (and thus of the
dipoles).

In this paper, r =4, as estimated' " from experi-
mental data for typical length-to-breadth ratios of the
rigid cores of real LC molecules. Also in this paper,
Ez/k=250 K or 400 K, the approximate lower and
upper limits (as estimated from experimental data) for
the trans-gauche energy difference in typical n-alkyl
chains.

Using the partition function

Various thermodynamic equations are obtained (after
the manner of Refs. 4 and 21) from the partition func-
tion Q, including (1) a pressure-volume-temperature
(PVT) equation of state, and (2) and (3) equations that
minimize the Gibbs free energy G of the system with
respect to P2„and A, , respectively, at constant P and T.
Within the physical constraints 0 &p ( 1, 0 & P2„& 1, and
0& A, & 1, these three specific equations are (in general)
solved simultaneously (via numerical computer iteration)
to obtain the numerical values of p, P2„, and A. in the
various phases of the system at given P and T.

In practice' in the following two cases, the calcula-
tions with this theory are much easier and faster if we
choose T instead of another variable as one of the un-
knowns in these calculations. (1) For the S„phases

d

(where 0 & A, & 1), the calculations are much faster if T is
an unknown for a given P and A. . (2) In locating a tran-
sition between two phases 1 and 2 at given P, the calcu-
lations are considerably faster if T is an unknown with
the condition pi ——pz (where p, is the chemical potential
of phase i at the transition).

There are no ad hoc or arbitrarily adjustable parame-
ters in this theory. All input variables are taken from
experimental data for atoms or small chemical groups
such as benzene rings and methylene groups (see earlier);
all other variables are calculated by the theoretical equa-
tions and are found to be reasonable when compared
with experimental data.

By the physical definitions of the various phases,
Pz„——0 in the I phase, and 0 & P2, & 1 in the N and S~
phases. A, =O in the I and N phases.

The S~ and S~ phases are physically defined' by
1 d

the following relations between the layer thickness L and
the molecule length d~. L =dI in the S~ phase and

1

dl &L &2dI in the S~ phase.
d

Physically, the only way to have a S„phase (i.e., to
1

have L =dl ) is to have total 1D positional alignment of
the molecules (i.e., to have A, = 1); therefore, A, = 1 in the
Sz phase. The only way to have a Sz phase (i.e., to

1 d

have dl &L &2dI ) is to have partial, but not total, 1D
positional alignment of the molecules (i.e., to have
0 & A. & 1); therefore, 0 & A, & 1 in the Sz phase.

d

The exact mathematical relation between A. and L in
this theory is determined in the following manner. Since
A, is the average fraction of positional alignment of mole-
cules, (1 —A, ) is the average fraction of positional
disalignment and hence the average fraction of the
length of a given molecule that is out of register with its
neighbors in the S~ plane. Therefore, the layer thick-
ness L in this paper is given' by

L =d~+(1 A. )dl =(—2 A.)di-
d&

——Uo Ir +f [(I+2Pz,. )/3]j+(a —vo ) .

(43)

(44)

In contrast to Refs. 4—6, dI and thus L in Ref. 1 and
this paper are given in the units of vo and also include
the empty space (a —uo ) between the hard-repulsive
ends of two molecules along the z axis. In the S~

1

phase, this empty space is simply the space between the
hard-repulsive ends of two molecules in adjacent layers.
(The phase diagrams, etc. , in Refs. 3 —6 are unchanged,
since they were all actually calculated using the basic
variable A. , rather than the derivative variables L and
dl .)

RESULTS AND DISCUSSION

Some early results using the theory of this paper were
presented by this author in 1985. (See Ref. 31).

Results calculated using the theory of the preceding
"Theory" section are presented in this paper here for the
relative stabilities of S~, S„, and X (including low-

1 d

temperature X, including reentrant N) LC phases and I
liquid phases for three representative classes of systems:
(1) steric systems: all ai, =0 (thus, EI ——0), and the mol-
ecules interact via only hard repulsions; (2) Lennard-
Jones (LJ) systems with no dipolar forces: all

co~, 2
——co, 3 ——0; and (3) LJ systems with dipolar forces, in-

cluding dipole-dipole forces and dipole —induced-dipole
forces. While these three systems differ in intermolecu-
lar interaction energies (i.e., in co, s and thus EI), all
three systems have a finite nonzero intrachain trans-
gauche energy di(ference E~lk (with E /k=250 K or
400 K, as discussed in the preceding section).

In the systems studied in this paper, fi
——4 [where fi

is the number of segments (or —CHz —or —CH3
groups) in tail chain 1 in each molecule in the system].
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Also in this paper, the pressure P=1 atm, except for the
steric systems (in which P & 1 atm). As is well
known, ' ' condensed phases can only exist at higher
pressures and/or lower temperatures in theories or sys-
tems in which the molecules interact only through hard-
repulsive forces than in theories or systems in which the
molecules also interact through attractive forces.

In the particular calculations whose results are shown
in the figures of this paper, these phase transitions were
found to be second order: Sz -N (except as noted), and

d

S„-S~ . In these calculations, these phase transitions
1 d

were found to be weakly first order: iV-I, Sz -I, and

S„-I.
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300—

250-

200-

Improved phase diagrams for all systems
with new approximate flexibility theory

In Figs. 1 —3, the relative stabilities of Sz, Sz, N,
1 d

and I phases are presented as a function of the tempera-
ture T and the number fz of segments (or —CHz —or—CH3 groups) in tail chain 2 for E /k =250 K. P= 198
atm for the steric system in Fig. 1. Figures 2 and 3
show results (at P= 1 atm) for the LJ nondipolar system
and the LJ dipolar system, respectively.

The results in Figs. 1 —3 in this paper calculated using
the new approximate theory for the intrachain con-
straints on the n-alkyl tail-chain flexibility can be com-
pared with the results in Figs. 1 —3 of Ref. 6 using the
old, more approximate theory for tail-chain flexibility.
[In making these comparisons, recall from Eq. (20) that
f=f, + f2 4+ f2 in Figs.——1 —3 in this paper. ]

120

150—

100

f2

FIG. 2. Phase transition temperatures vs the number of seg-
ments in tail chain 2 for the Lennard-Jones nondipolar system
for E~/k=250 K. The symbols and the solid lines are as
defined in Fig. 1.

The first major result is (as expected) that the LC
phases are stable at higher temperatures in Figs. 1 —3 of
Ref. 6 than in the corresponding systems in Figs. 1 —3 of
this paper. This result is due to that fact that the tail
chains are stiffer —i.e., have fewer segments 2u [see Eq.
(19)] bent out of the core long axis of the molecule [see
also Figs. 1(a)—1(c) and accompanying discussion in Ref.

110—
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100— 450—
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400—

350—

80 300 —A1

70— 250—

60

f2

FIG. 1. Phase transition temperatures T (indicated by solid
circles) vs the number fz of segments in tail chain 2 for the
steric system with E~/k=250 K and P=198 atm. The phase
names are abbreviated as isotropic (I), nematic (N), smectic-A

&

(A &), and smectic-Ad (Ad). The solid lines connecting the cir-
cles have been drawn to aid the eye in observing odd-even
eft'ects.
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100
4
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A'l

FIG. 3. Phase transition temperatures vs the number of seg-
ments in tail chain 2 for the Lennard-Jones dipolar system for
E~/k=250 K. The symbols and the solid lines are as defined
in Fig. 1.
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P2I ——P2„P2; . (45)

The second major result seen when comparing the sys-
tems in Figs. 1 —3 in this paper with the corresponding
systems in Figs. 1 —3 in Ref. 6 is that there are odd-even
effects seen in the transition T calculated using the new
approximate flexibility theory of this paper here, while

1]—and thus help stabilize orientational LC ordering of
the cores (i.e., P2„ is larger) at higher temperatures with
the old (less accurate) approximate flexibility theory used
in Ref. 6 than with the new (more accurate) approximate
flexibility theory of Ref. 1 used in this paper.

A comparison of Figs. 4 and 5 for the LJ nondipolar
system with f2 5 fu——rther illustrates the result that the
tail chains are stiffer [P2; in Eq. (18) is larger] and that
the LC phases are stable at higher temperatures in the
systems calculated (as in Fig. 4) using the old approxi-
mate flexibility theory of Ref. 6 than in the correspond-
ing systems calculated (as in Fig. 5) using the new ap-
proximate theory in this paper here. Note that P2,- in-
creases with decreasing T [see Eqs. (18)—(35)] and that
P2; for lower T in Fig. 5 is smaller than P2; for higher T
in Fig. 4.

Figures 4 and 5 also show the average values of the
density p, the 1D positional order A, of the molecules,
the intermolecular orientational order P2„of the cores of
the molecules, and the intermolecular orientational order
P2& of the tails of the molecules as a function of T. The
tail intermolecular orientational order P2I is the tail ana-
log of P2„and is given' ' ' by

0.8—

0.6—
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C3 0.4—

;X

X P2~
X
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X'
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there are no odd-even effects generated using the old ap-
proximate flexibility theory of Ref. 6. Although not
shown here in this paper, odd-even effects are seen in the
other thermodynamic and molecular ordering properties
in the three systems in Figs. 1 —3 and 6 in this paper
here. (Some of these odd-even effects in other properties

FICx. 5. Molecular ordering and thermodynamic variables A, ,
P2„P», P2;, and p as a function of temperature in different
phases for f, =5 for the LJ nondipolar system calculated using
the new approximate Aexibility theory of this paper (and Ref.
1) with Eg/k=250 K. The dotted lines are defined as in Fig. 4,
and the phase name abbreviations are as defined in Fig. 1.
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FIG. 4. Molecular ordering and thermodynamic variables k,
P2„P2&, P2;, and p as a function of temperature in different
phases for f2 5 for the LJ nondipolar sys—t—em calculated using
the old approximate Aexibility theory of Ref. 6 with
Eg/k=250 K. The dotted lines denote phase boundaries at
constant T. The phase name abbreviations are as defined in
Fig. 1.

f2

FICx. 6. Phase transition temperatures vs the number of seg-
ments in tail chain 2 for the Lennard-Jones nondipolar system
for Eslk=400 K. (The S„-X transition for f2 ghere is-—
weakly first order. ) The symbols and the solid lines are as
defined in Fig. 1.
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for the LJ nondipolar system in Fig. 2 in this paper here
have been plotted in Figs. 4 —9 of Ref. 1.)

For some transitions in Figs. 1 —3 and 6 in this paper
here, curves drawn through the values for the various
transition temperatures for even f2 (i.e., for tail chain 2
with even numbers of carbon atoms) are higher (at larger
magnitudes) than the curves for odd f2. The reverse
trend is seen for other transitions in these figures in this
paper. Both cases ("evens high" and "odds high") for
transition T are seen experimentally (see, for example,
Refs. 7, 8, 20, and 32), in the same system and in
different systems. There is some tendency in these ex-
perimental systems (as in the results calculated in this
paper here) to see "evens high" for systems with higher
transition T and to see "odds high" for systems with
lower transition T.

In general, the magnitudes of the odd-even effects due
to the intrachain constraints on the tail-chain flexibility
in this paper appear to be a little smaller than the mag-
nitudes of the odd-even effects in experimental measure-
ments in LC systems (see, for example, Refs. 7, 8, 20,
and 32). While this result indicates that intermolecular
constraints on the tail-chain flexibility also make some
contribution to the odd-even effects seen experimentally,
the purpose of this paper here is to isolate and focus on
contributions from intrachain constraints.

[In another paper to be published, the more difficult
problem of treating contributions from intermolecular
constraints on the tail-chain flexibility is addressed in an
explicit manner using (as in this paper here) no ad hoc or
arbitrarily adjustable parameters. Some early results
from this new theory for intermolecular constraints were
presented by this author in 1986 (see Ref. 34).]

The third majar result seen when comparing Figs. 2
and 3 in this paper with the corresponding systems in
Figs. 2 and 3 in Ref. 6 is that the N phase is somewhat
more stable with respect to the S„phases (particularly
at higher temperatures) in the LJ systems (both nondipo-
lar and dipolar systems) when the new approximate flexi-
bility theory is used in this paper here than when the old
approximate flexibility theory is used in Ref. 6. This im-
proved stability of the N phase with respect to the S~
phases in this paper here is in better general agreement
with experiment (see, for example, Refs. 7, 8, and 20)
than are the results of Ref. 6.

The fourth major result seen when comparing the LJ
systems in Figs. 2 and 3 in this paper with the corre-
sponding systems in Figs. 2 and 3 in Ref. 6 is that the
conditions for low TN (including -reentrant N) phases
occur less frequently with the new approximate flexibili-
ty theory of this paper here than with the old approxi-
mate flexibility theory of Ref. 6. This decrease in the
frequency of conditions for low TN (including ree-ntrant
N) phases in this paper here is in better general agree-
ment with experiment (see, for example, Refs. 7, 8, 12-
18, and 20).

In the LJ nondipolar system shown in Fig. 2 of this
paper here, there are no low-T N phases. In the LJ di-
polar system shown in Fig. 3 of this paper here, condi-
tions for a reentrant N phase exist in the phase space be-
tween f2 4and fz ——5, since there i—s—an N phase stable

at lower T than the S~ phases for fz 4——and an N phase
stable at higher T than the S„phases for f2 5.——[While
noninteger values of f2 are not available experimentally
in pure (single-component) LC systems, effective nonin-
teger f2 values are easily achieved experimentally in a
mixture of LC components with different integer values
of fz. In fact, reentrant N phases were first seen experi-
mentally (see Ref. 12) in mixtures of LC components be-
fore these phases were seen in pure LC systems. ]

N reentrance: Varying the pressure, flexibility,
or intermolecular interactions

As seen in Table I, a reentrant N phase can be gen-
erated in the steric system of Fig. 1 by decreasing the
pressure to P= 149 atm and increasing the trans-gauche
energy difference to E /k=400 K. These trends with
decreasing P and increasing E /k in the steric system
here can be understood as follows.

In some T ranges, the flexibility of the tail chains is
large enough and the density p of the system is large
enough that the phases of lowest Czibbs free energy are
the Sz phases in which the molecules positionally align
such that rigid rodlike cores of oriented molecules tend
to pack with other rigid cores while the semiflexible tail
chains tend to pack with other semiflexible tail-chains.
(The semiflexible tail chains bend and twist well around
each other, but do not pack as well with the oriented
rigid cores. )

As T decreases, the tails stiffen somewhat [become less
flexible —see Eqs. (18)—(35)], thus decreasing the pack-

P=198 atm, E /k=250 K
N 65.1 K S„88.0 K

p = 0.789 0.739

91.7K

0.704(I )

0 727(S~ )
1

P=149 atm, E~/k=250 K
N 573 K Sq 636 K

d

P 0.756 0.721(I)
0.737(S~ )

P=198 atm, Eg /k=400 K
N 826K S~ 889 K

d

p= 0 739 0.711(I)
0.725(S )

P= 149 atm, E~ /k =400 K
N 67.5 K Sq 70. 1 K

d

p 0.721 0.711(N)
0.713(S~ )

N 71.5 K
0.696(I)
0.706(N)

TABLE I. Stable phases, transition temperatures, and tran-
sition densities for the steric system for f2 =8 with varying
values of pressure P and trans-gauche energy difference E /k.
The phase names are abbreviated as isotropic (I), nematic (N),
smectic-A, (S„), and smectic-A„(S„). [The S„-X transi-

1 d d

tion (transition to higher-temperature N phase) for P= 149 atm
and E, /k=400 K is weakly first order. ]
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ing differences between cores and tails. The need for
segregated packing of cores with cores and tails with
tails (as in a S„phase) decreases and is overcome by the
entropy of unsegregated packing, leading to a low-T N
phase.

Decreasing P decreases p (see Table I) and decreases
the size of the T range of the S~ phases more than the
size of the T range of the N phase. At smaller p, there is
more volume in the system to accommodate positional
disorder as in the N phase and to accommodate position-
al and orientational disorder as in the I phase. The
phases with increased molecular disorder are stabilized
by the increased entropy associated with this disorder.

As Eg/k increases in the steric system here, the tail
chains become stiffer and thus help stabilize orientation-
al LC ordering of the cores at higher T. The density of
the system is smaller (see Table I) at these higher T, thus
making the size of the T range of the Sz phases decrease
more than the size of the T range of the N phase (see the
density arguments in the preceding paragraph).

In summary, there are S~ phases and a low-T N phase
in the steric system in Fig. 1. As seen in Table I, de-
creasing P and increasing E /k in the steric system of
Fig. 1 decreases the size of the T range of the S„phases,
especially at the higher-T end. This result sets up condi-
tions for the existence of a stable high-T N phase (see
Table I), thus making the low TN phase-a reentrant N
phase. [The existence of low TN (specifical-ly, reentrant
N) phases is well established experimentally (see, for ex-
ample, Refs. 12—18).]

As seen in Fig. 6, conditions favoring reentrant N be-
havior can be generated in the LJ nondipolar system of
Fig. 2 by increasing Eg/k to 400 K. There are S„
phases and a high-T N phase in the LJ nondipolar sys-
tem in Fig. 2. As seen in Fig. 6, conditions for a reen-
trant N phase exist in the phase space between f,= 8

and fz ——9, since there is an N phase stable at higher T
than the S„phases for f2=8 and an N phase stable at
lower T than the S„phases for f2 ——9.

As E /k increases in the LJ nondipolar system, the
tail chains become stiffer [see Eqs. (18)—(35)] and thus
help stabilize orientational LC ordering of the cores at
higher T. Increasing E /k in the LJ nondipolar system
increases p of the system slightly at the same T (compare
Figs. 5 and 7), thus making the size of the T range of the
S~ phases increase more than the size of the T range of
the N phase for f2& 8 in Fig. 6. (Recall the discussion
earlier regarding the relationship between p and the rela-
tive size changes of the T range of the S~ phases and the
T range of the N phase. ) The greater relative increase in
the size of the T range of the S~ phases in Fig. 6 is seen
at the higher-T end of the T range of the Sz phases.

At the lower-T end of the T range in the Sz phases in
Fig. 2, the following phenomena occurs as E /k in-
creases (see Fig. 6) for f2 ——9. Since the tail chains are
stiffer at larger E /k, there is thus less difference be-
tween the packing of the rigid cores and the packing of
the tail chains at lower T. Thus, the need for segregated
packing of cores with cores and tails with tails (as in a
S„phase) decreases and is overcome by the entropy of
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FIG. 7. Molecular ordering and thermodynamic variables k,
P~„P», P2;, and p as a function of temperature in different
phases for f2 5 for the LJ nondipolar syst——em calculated using
the new approximate flexibility theory of this paper (and Ref.
1) with F~/k=400 K. The dotted lines are defined as in Fig. 4,
and the phase name abbreviations are as defined in Fig. 1.

unsegregated packing, leading to a low-T N phase. Be-
tween f2=8 and f2=9 in Fig. 6, the conditions exist for
this low-T N phase to be a reentrant N phase.

A comparison of Figs. 5 and 7 for the LJ nondipolar
system with f& 5 ——further illustrates the result that the
tail chains are stiffer [P2, in Eq. (18) is larger] and thus
that the LC phases are stable at higher temperatures for
E /k=400 K (Fig. 7) than for E /k=250 K (Fig. 5).
(Figures 5 and 7 also show the average values of p, A, ,

P2„, and P2& as a function of T.)
Due primarily to the soft (finite) repulsions (actually to

the net effect of the soft repulsions and the London
dispersion attractions) in the LJ forces, the molecules in-
teract ("feel" ) each other at larger separation distances
in the LJ system than in the steric system. This situa-
tion allows a subtle competition (see Figs. 2 and 6) be-
tween energy and entropy in determining the relative
stabilities of the Sz phases and the N phases at different
T and f2). The differences in the LJ energies between
cores and tails (cf. s„ to E:„) favor the segregated pack-
ing (cores with cores, and tails with tails) of the Sz
phases. The entropy of unsegregated packing (positional
disorder) favors the N phase.

As seen in Figs. 5 and 7 and Table I, the densities in
the S~ and N phases are smaller in the LJ system than
in the steric system due to the fact that the molecules in-
teract ("feel" ) each other at larger separation distances
in the LJ system than in the steric system. This
difference in the magnitude of p between the LJ system
and the steric system leads to the slightly different
response (seen above) in p of the two systems when E /k
is increased.
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In the steric system of Fig. 1, increasing E /k de-
creases p. In contrast, in the LJ nondipolar system of
Fig. 2, increasing Eg/k increases p slightly. As Eg!k in-

creases, the tail chains get stiffer and thus help stabilize
orientational LC ordering of the cores at higher T.

At the relatively larger p's of the steric system, the
molecules with stiffer tail chains do not pack as well (as
efficiently) as the molecules did with more flexible tail
chains, and thus p of the system decreases as E /k in-

creases. At the relatively smaller p's of the LJ system,
the increase in the orientational alignment of the cores
with the stiffer tail chains leads to slightly more efficient
packing of the molecules and thus to a slight increase in

p as Eg/k increases.
As seen earlier in Fig. 3 (see the fourth major result in

the preceding section "Improved phase diagrams. . ." of
the discussion), conditions favoring reentrant N behavior
can also be generated in the LJ nondipolar system of
Fig. 2 by adding dipolar forces. This behavior can be
understood as follows.

A comparison of Figs. 5 and 8 for f2 5show th—a—t the
addition of dipolar forces in Fig. 8 to the LJ nondipolar
system of Fig. 5 orients the cores more (i.e., increases
P2„) and pulls the molecules closer together (i.e., in-

creases the density p). This phenomena helps stabilize
orientational LC ordering of the cores at higher T. As
with the LJ nondipolar system, there is a subtle competi-
tion between energy and entropy effects in determining
the relative stabilities of the S~ and N phases in the LJ
dipolar system. (Figures 5 and 8 also show the average
values of A, , P2f, and P2, as a function of T).

For the relatively larger f2 (i.e., f2) 5) in Figs. 2 and
3, the size of the T range of the high-T N phase in-

creases and the size of the T range of the S~ phases de-
crease as dipolar forces are added (in Fig. 3) to the LJ
nondipolar system of Fig. 2. The dipolar forces orient
the cores more, thus allowing the molecules to pack
more efficiently in the N phase in the case with dipolar
forces than in the case with no dipolar forces. While
this effect is also seen in the S„phases, the increase in

packing efficiency is larger for f2) 5 in the N phase
(with its positional disorder) than in the S„phases [in
which from the beginning, the cores are already oriented
more (than in the N phase) due to the 1D positional
alignment of oriented cores with other oriented cores].

For the relatively smaller f2 (i.e., f2 ——4) in Figs. 2 and
3, the increased orientation of the cores due to dipolar
forces is more important in stabilizing the S~ phases at
higher T and in stabilizing a low-T N phase. As T de-
creases, the tails stiffen somewhat, thus decreasing the
packing differences between cores and tails. The need
for segregated packing of cores with cores and tails with
tails (as in a S„phase) decreases and is overcome by the
entropy of unsegregated packing, leading to a low-T N
phase. Between f2 ——4 and f2 5 in Fig. ——3, the condi-
tions exist for this low-T N phase to become a reentrant
N phase.

In summary, this paper has predicted and explained
conditions for reentrant N phases in systems of mole-
cules with two tail chains per molecule, with one tail at
each end of the core. In this section of the discussion,
we have seen how decreasing P, increasing E /k, and/or
adding dipolar forces increases the frequency of oc-
currence of conditions for the existence of reentrant N
phases in the systems studied in this paper. Subtle
changes in these variables can make profound differences
in the relative stabilities of the Sz and reentrant N
phases.

Concluding Remarks
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FIG. 8. Molecular ordering and thermodynamic variables A, ,

P2„P2f, P2;, and p as a function of temperature in different
phases for f2 ——5 for the LJ dipolar system calculated using the
new approximate flexibility theory of this paper (and Ref. 1)
with Eg/k=250 K. The dotted lines are defined as in Fig. 4,
and the phase name abbreviations are as defined in Fig. 1.

In passing, it is worth noting that the magnitudes of
the relative density changes at the first-order transitions
in the LJ nondipolar systems and LJ dipolar systems in
this paper (see, for example, the p changes at the N-I
transitions in Figs. 5, 7, and 8) are in good agreement
with the range of experimental values (see, for example,
Refs. 35 —37). (See Ref. 1 for more illustration and dis-
cussion of this agreement for the LJ nondipolar system
of Fig. 2.) Though not illustrated here, the relative en-
tropy changes at the first-order transitions in the steric
systems, the LJ nondipolar systems, and the LJ dipolar
systems in this paper are in good agreement with the
range of experimental values for these entropy changes.
(See Ref. 1 for some illustration and for more discussion
of this agreement for the LJ nondipolar system of Fig.
2.)

A second point to note in passing is that no multiply
reentrant phases were seen in the particular systems
studied in this paper, and also that preliminary studies
using the theory of this paper for some other particular
systems did not reveal multiply reentrant phases. [A
multiply reentrant phase reappears more than one time
as the temperature is lowered. Multiply reentrant S~
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and N phases are well established experimentally (see,
for example, Refs. 17—18).]

In addition to the primary reasons (discussed in the
"Introduction" section of this paper) for focusing in this
paper (and in Ref. 1) on a new, better theory for the in-
trachain constraints on the tail-chain flexibility in LC
molecules, a secondary reason was to look for possible
multiply reentrant phases in the systems of this paper.
In the old, more approximate theories for the tail-chain
flexibility used in earlier papers, there were cases in
which the chemical potentials of the S~ and N phases as
a function of T approached each other rather closely and
then diverged without actually crossing. One question
at that time was whether a more exact treatment of the
flexibility would lead to the actual crossing of these
chemical potential curves and thus perhaps multiply
reentrant LC phases.

While no multiply reentrant phases were seen in the
particular systems studied thus far with the theory of
this paper here, it is possible that multiply reentrant
phases could exist still in other, as-yet-unexplored sys-
tems that can be described by the theory of this paper
for intrachain constraints on the tail-chain flexibility. In

another paper to be published, new theories for the ad-
ditional efl'ect of intermolecular constraints on the tail-
chain flexibility on reentrant and possible multiply reen-
trant LC phases are explored.

While this paper here deliberately deals with systems
in which each molecule has two tail chains, the theory of
this paper has also been extended to systems in which
each molecule has only one tail chain. In another pa-
per to be published, this new theory for one-tail mole-
cules is applied to reentrant and possible multiply reen-
trant LC phases. Although multiply reentrant phases
have thus far been seen experimentally (see, for example,
Refs. 17 and 18) in systems in which each molecule has
one tail chain and also has a large terminal dipole, we do
not know if these two conditions are required for multi-
ple reentrance or whether other molecular structures can
also lead to multiple reentrance.
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