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Reversible-growth model: Cluster-cluster aggregation with finite binding energies
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A reversible-growth model is built by modifying the cluster-cluster aggregation model with a
finite interparticle attraction energy —E. When E is oo, the aggregation is described by the ordi-
nary cluster-cluster aggregation model. Within our model, particles as well as clusters are per-
forming Brownian motion according to the rate 1/~z, and the unbinding takes place according to
(1/~z )e, where hE is the energy change due to the unbinding, T is the room temperature,
and ~& is the time constant associated with the unbinding. The Boltzmann constant is taken to be
unity. By changing E and ~~/~~, we are able to change the aggregation behavior over a wide
range from ramified clusters to compact ones. Moreover, due to a finite E, ramified aggregates
may become compact at a later time. We show that the initially fractal aggregates can remain
fractal objects during restructuring while the fractal dimension D increases with time. At large E,
D can stay at some value that is larger than the value of the cluster-cluster aggregation model and
can remain unchanged for a long time. At a given time, D increases drastically with decreasing E
from the value of the cluster-cluster aggregation model when E & 3T. The curve of the estimated
sedimentation density versus E resembles that of D versus E and agrees with the experiments.

I. INTRODUCTION

Under suitable conditions, fine colloidal particles ( —50
0
A ——1 pm in diameter) can form aggregates of a fairly
large size (up to several thousand particles). Extensive
light-, x-ray-, and neutron-scattering experiments'
showed that these aggregates are fractal objects and that
the fractal dimension D varies with the experimental
condition, D= 1.75 (Refs. 2, 4, and 6) when the clusters
grow rapidly and D=2.02 —2.12 (Refs. 1, 3, and 5) when
the growth is slow. Furthermore, when light scattering
measurements were taken repeatedly in a temporal se-
quence, it was found that aggregates with an initially
lower D (1.75) can restructure to a higher D [2.08 —2. 1

(Ref. 4), 2.4 (Ref. 6)] at a later time. This signifies that
the growth processes involve some reversibility. Some
critical questions then arise. How do the structures of
these aggregates change with time? Do these aggregates
remain fractal objects during restructuring? If so, how
does the fractal dimension D change with time?

The cluster-cluster aggregation (CCA) model ' which
yields D=1.78 (1.4) for d=3 (d=2), where d is the Eu-
clidean dimension, seems to agree with the colloidal ag-
gregates of rapid growth. When the CCA model is
modified with a sticking probability p and when p is ap-
proaching zero, it produces clusters of D=2.0 (1.55) for
d =3 (d =2) and is often compared with the aggregates
from slow processes. Although Ref. 9 gives a fractal di-
mension close to that of the colloidal aggregates by slow
growth, it cannot account for the restructuring observed
in the experiments because of its irreversible nature.
Kolb et a1. ' have considered a reversible growth model
by modifying the CCA model with random bond break-
ing which yielded D=2.03 (1.57) for d=3 (d=2) at dy-
namic equilibrium; however, they did not observe the
change of D with time.

The purpose of this study is (1) to construct a more
realistic reversible growth model which involves the
rearrangement of particles from energetic consideration
rather than random bond breaking and (2) to investigate
the restructuring of aggregates with computer simula-
tions. The direct observation of the colloidal clustering
under an optical microscope" showed that under weakly
attractive conditions, a particle can join and leave a clus-
ter repeatedly and that a particle with fewer bonds is
more active than one with more bonds. Furthermore,
the compaction of a colloidal sediment can occur upon
the decrease of the interparticle attraction. ' These ob-
servations plus other Aocculation studies' suggest that
the interparticle attractions play an important role in ag-
gregation.

II. MODEL

Since the CCA model seems able to describe the col-
loidal clusters grown from the rapid processes, we build
our model by combining the CCA model with a finite
nearest-neighbor attraction energy —F.. The unbinding
process is simulated with the Monte Carlo method. For
convenience, the calculations are performed for d=2.
The procedure is as follows. Initially X' particles are
placed randomly in an M &(M square lattice with period-
ic boundary conditions. The particles and the clusters
are performing Brownian motion (random walk). After
each time interval ~z, all particles and clusters move one
lattice constant. For simplicity, we assume all clusters
to have the same mobility since this does not change the
scaling properties. ' When two clusters collide they
stick together, forming a larger cluster and then move
on as a whole. Moreover, because of its thermal motion
a particle can unbind from it neighbors according to the
rate (1/rz )e, where rtt is the time constant associ-
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ated with the unbinding process, T is the room tempera-
ture, and AE is the energy change due to the unbinding.
The Boltzmann constant is taken to be unity. We as-
sume EE=nE where n is the number of neighbors of
that particle, one to three in the case of a square lattice.
Particles with four neighbors are not allowed to unbind
in this case. In practice, the unbinding transition of
every particle is examined after each time interval v.z
with a probability e + . If e " is larger than a
random number, the transition is accepted or otherwise
rejected. When the unbinding is accepted, the particle
moves one lattice constant in one of the rest of the 4 —n

directions at random and the cluster is divided into seg-
ments. The resulting number of segments ranges from
two to four depending on the number of neighbors bond-
ed to that particle and on the configuration of the cluster
before the breakup. For example, the break off of a
double-bonded particle in the neck portion of the cluster
can result in as many as three segments, namely, one
particle and two other parts. Each segment will then
diffuse as an independent cluster and will stick to what-
ever it collides into later on. In our calculations, we do
not allow particles or clusters to rotate. However, we do
not expect the rotations to affect the scaling properties. '

By varying E and r„/rD, we are able to change the
growth behavior over a wide range. The CCA model
corresponds to a special case when E=—oo. The pa-
rameter ~z is the inverse of the unbinding attempt fre-
quency while ~z is related to the diffusivity of the parti-
cles in the solution and is used in normalizing the time
scale. A large ~~/~D may be interpreted as a higher
particle mobility relative to relaxation and is analogous
to the quenching rate in the glass transition.

III. RESVI.TS

~ ~

(c)
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are similar to increasing quenching rate. However, we
will show later that only E affects the restructuring be-
havior of clusters with respect to time.

To investigate the effect of restructuring we use two
different procedures. (1) We start with clusters of vari-
ous sizes N grown from the CCA model at the same
number density and turn on the relaxation. To show the

FICx. 1. Temporal evolution of various aggregation condi-
tions with 212 particles in a 50&50 square lattice (a) E=1.5T
and ~„/~D =0.2, (b) E = 1.5T and ~„/~D =2, and (c) E =3.5 T
and 7 g /vD =2.

We show as examples in Fig. 1 three different aggrega-
tion conditions initiated with the same number densities
but with different values of E and r~/rD. Figure 1(a) is
the case when E=1.5T and r„/rz& ——0.2 in which large
aggregates can hardly be formed. Figure l(b) shows the
case when E=1.5T and rz /~D ——2 where aggregates are
formed but there are still quite a number of particles left
in the fluid phase throughout the simulation. In Fig.
1(c), we show the case when E=3.5T and rz /rD ——2 in
which almost no free particles are left in the solution
and the cluster looks more ramified. Figures 1(a), 1(b),
and 1(c) together show the general trend that cluster size
increases with increasing E and ~~ /~D.

At a given number density, as E decreases, the cluster
size decreases and the fluid phase becomes more favored
due to more e%cient relaxation. In Fig. 2 we show the
saturated cluster size as a function of E for three
different cases. The fact that the logarithm of the clus-
ter size is linear with E for all cases indicates that the
cluster size decreases exponentially with E. This means
that the actual aggregates cannot grow to an infinite size
because of the finite-coupling energy. Meanwhile, it is
worth noting that the cluster size also increases with in-
creasing ~z /~D or particle concentration, both of which
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FIG. 2. N vs E/T, where N denotes the size of the larg-
est cluster, 0 at p =0.051, ~z /~D ——5, 4 at p =0.125,
~~/~D =2, and 0 at p=0.11, ~z/~D ——2 where p denotes the
number density.
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restructuring effect this way is mainly for the ease of
comparison, although it may appear unnatural at the
first sight (there seems to be a sudden change in E from
—oo to some finite value at t=0). What this procedure
really represents are the cases where ~& /~D is large
enough, i.e., the aggregation is much faster than the re-
laxation so that initially the aggregates are not very
different from those of the CCA model. (2) We have
also studied the structural evolution of aggregates during
growth. This can be achieved by choosing smaller
values of ~z/~D so that sufhcient unbinding is taking
place along with cluster growth. We will show later that
the results of the two procedures are quite similar.

For each set of E and rz IrD, N is plotted on a log-log
scale against R in every 100 ~D where R is the max-
irnum radius of a cluster and is defined as

R = —,
' max t!r;=rj! ]

1 &i j (N
(i&j )

In each 1V versus R plot, we include 11—14 data points
in the range 30(X(200—300; each point is the result of
averaging over ten samples. It turns out that the curves
are linear throughout the simulation and the slope of the
lines increases with time. An example done with pro-
cedure (I) is given in Fig. 3. Note that for a given N,
the corresponding R is decreasing with time, indicating
that the clusters are getting denser and denser. Note
that the t =500~D and the t = 10 000~D plots remain
linear while the slope is increasing with time: 1.35 at
t=0, 1.46 at t =500~D, and 1.63 at t=10000~D. This
suggests that the clusters remain fractal during res-

tructunng but that the fractal dimension is increasing
with time.

We then take as the fractal dimension the slope of the
logN versus logR lines by least-square fit. The t =0
plot which represents clusters grown from the CCA
model thus has a fractal dimension D=1.35+0.05, in
agreement with the values obtained in Refs. 7 and 8
within numerical errors. We have also plotted log%
versus logR~ (not shown) where R~ is the radius of gyra-
tion and is defined as

R = g !r,—r
2X

(i+J )

(2)

~ ~

E = l.5T, ~R/~, =0.5

(b)
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Generally, the fractal dimension D obtained from the
logN versus logRg plots are somewhat larger (by about
0.05 on the average) than that of the logN versus logR
plots; however, the difference is comparable with the nu-
merical error bars. The values of D reported in this pa-
per are all based on the N versus R plots.

In Fig. 4 we plot D versus t for various values of E
and rz /rD. In Fig. 4(a) we have chosen a small value of
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FIG. 3. % vs R where X is the cluster size and R is the
maximum radius in units of the lattice constant as defined in
the text.

FIG. 4. D vs t for various cases where D is the fractal di-
mension and t is the time.
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FIG. 5. D vs E for ~& /~D ——5, 0 at t=10000~D and 8, at
t = 5000&D.

rz /rD ——0.5 and used procedure (2). Because of the
small values of ~~/~D and E, the unbinding is taking
place sufficiently along with cluster growth. In fact,
when we stopped monitoring, i.e., at t = 1000~D, the
clusters were still growing. Thus Fig. 4(a) can be regard-
ed as the structural evolution of aggregates during
growth and will be compared with Fig. 4(b) which is ob-
tained by using the same value of E but a different value
of rz /rD and procedure (1). In spite of different pro-
cedures used, the two curves look similar and the only
difference is in the time units. Thus, varying z~/~D
only changes the time scale but not the behavior of D
versus t. When E is increased, the change of D becomes
slower, as is shown in Figs. 4(c)—4(e), which are obtained
by procedure (1). Note that Figs. 4(d) and 4(e) both have
the same value of D which is 1.35 at t=0 because we
start with the same initial clusters for the purpose of
comparison. In Figs. 4(d) and 4(e), D quickly increases
from the CCA value and then saturates at some value D'
while D ' decreases with increasing E: D ' = 1.5 for
E=2.5T, D'=1.42 for E =3T. This indicates that under
suitable conditions aggregates can have a fractal dimen-
sion D that is substantially larger than the CCA value
and D remains unchanged over a long period of time,
which has been observed experimentally.

We plot in Fig. 5 D versus E for ~z /~D ——5 at
t=5000~D and at t =10000~D to show the different res-
tructuring rates at different E. It is clearly shown that
the change of D with time is accelerated when E is de-
creased from 3T. Also note that for a given t, D remains
close to the CCA value at large E but drastically in-
creases from that at around E (3T. If we take D as a
rough measurement of the densities of the agglomerated
solids, we would expect a similarly drastic change in the
density when the interaction energy is varied. Indeed,
this has been observed in flocculated colloids. ' We
show the relation between the zeta potential of the parti-
cles and the sedimentation density in Fig. 6 which is tak-
en from Ref. 12. In a charged colloidal system, the in-
terparticle interaction is the sum of (1) the screened
Coulomb repulsion and (2) the van der Waals attraction.
The screened Coulomb repulsion can be varied over a
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FIG. 6. The variation in the sedimentation density (relative
to the total volume) of the colloidal solids as a function of
(g/g„)' where g, „

is the zeta potential at the critical point. '

The inset is the scanning electron micrograph of particle clus-
ters formed at low g values.

wide range by adjusting the pH, the salt concentration,
and so on, while the van der Waals attraction remains
more or less unchanged. Thus, under certain pH and
salt concentrations, when the screened Coulomb repul-
sion is sufficiently reduced, a net interparticle attractive
potential well can develop. The data points in Fig. 6
were taken under such conditions. The magnitude of the
square of the zeta potential g can serve as a rough mea-

sure of the screen Coulomb repulsion at a fixed salt con-
centration, ' the higher the value of g, the stronger the
Coulomb repulsion. Therefore, in Fig. 6, a smaller value

of g represents a deeper attraction well. It is shown
that at small values of g (larger net attractions) the sedi-

mentation density is very low and that the sedimentation
density increases at larger values of g (smaller net at-
tractions). Note that the sedimentation density does not
change much until the zeta potential reaches some criti-
cal value g„around which the sedimentation density in-

creases by many folds.
In order to estimate the sedimentation density from

our calculations, we assume the sediments to be com-

posed of blobs of some 175 particles and the sedimenta-
tion density is approximated to be 175/(vrR ) where R
is taken from the calculations at 10000~D. This is not
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unreasonable since the aggregates start to settle to the
bottom when they reach a certain size. The results are
plotted in Fig. 7. One can see that the estimation closely
resembles the experimental curve in Fig. 6.

FIG. 7. Estimated sedimentation density vs E. The sedi-
ments are assumed to be composed of blobs of some N=175
particles and the sedimentation density is approximately to be
X/(mA ) where 8 is as described in the text.

over a wide variety. The restructuring behavior is main-
ly affected by E. %'e show that the aggregates can
remain fractal during restructuring while the fractal di-
mension D is increasing with time. When E is large, the
change of D becomes so slow that D stays at some inter-
mediate value D' and remains unchanged for a long time
while D' decreases with E. In the D versus E plot we
show that D increases drastically from the CCA value at
around E(3T and is getting closer to d as E is de-
creased. We have also estimated the sedimentation den-
sities from our calculations. The estimated sedimenta-
tion density versus E closely resembles the experimental
curve.

In principle, the results we have just shown should
readily apply to a variety of systems, since our model is
quite general. However, the colloids seem to be ideal to
test our results. The reasons are the following. First,
the interaction between the colloidal particles can be
varied easily over a wide range by changing the particle
surface potential (zeta potential), the salt concentration
in the solvent, or the extent of steric interaction when
they are coated with polymeric units. Second, the size
of the collodial particles can also be varied in a wide
range, which is equivalent to changing the particle mo-
bility and is somewhat related to the change of the pa-
rameter of ~z /~D in our model.

Note added in proof. J. Liu, M. Sarikaya, W. Y. Shih,
and I. A. Aksay' have recently been able to grow gold
aggregates of various fractal dimensions ranging from
1.75 to -2.7 by coating gold particles with different
amounts of surfactants charged with a different sign
from that of the gold particles.

ACKNOWLEDGMENTS

IV. SUMMARY

To summarize, we have built a reversible growth mod-
el in which nearest neighbors have a finite attraction en-
ergy —E so that the rearrangement of particles is possi-
ble. By varying E, r~/ro, and the particle concentra-
tion, we are able to change the aggregation condition

The authors would like to thank Wei-Heng Shih for
various discussions. This research was supported by the
U.S. Air Force Office of Scientific Research (AFOSR)
and the Defense Advanced Research Projects Agency
(DARPA) of the U.S. Department of Defense and was
monitored by the AFOSR under Grant Nos. AFOSR-
83-0375 and AFOSR-87-0114.

~D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, Phys. Rev.
Lett. 54, 1416 (1985).

~D. A. Weitz and M. Olivera, Phys. Rev. Lett. 52, 1433 (1984).
D. A. Schaefer, J. E. Martin, P. Wiltzius, and D. S. Cannell,

Phys. Rev. Lett. 52, 2371 (1984).
4C. Aubert and D. S. Cannell, Phys. Rev. 56, 738 (1986).
5J. C. Rarity and P. M. Pusey, in On Growth and Form, edited

by H. E. Stanley and N. Ostrowsky (Nijhoff, Dordrecht,
1986), p. 219.

6P. Dimon, S. K. Sinhar, D. A. Weitz, C. R. Safinya, G. Smith,
W. A. Varady, and H. M. Lindsay, Phys. Rev. 57, 595
(1986).

7P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).
M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51, 1123

(1983).
'

M. Kolb and R. Jullien, J. Phys. (Paris) Lett. 45, L977 (1984).
M. Kolb, R. Botet, R. Jullien and H. J ~ Herrmann, in On
Growth and Form, edited by H. E. Stanley and N. Ostrowsky
(Nijhoof, Dordrecht, 1986), p. 222.
G. Y. Onoda, Phys. Rev. Lett. 55, 226 (1985).

~2I. A. Aksay and R. Kikuchi, Science of Ceramic Chemical
Processinp (Wiley, New York, 1986), p. 513.
J. A. Long, D. W. J. Osmond, and B. Vincent, J. Colloid In-
terface Sci. 42, 545 (1973); C. Cowell and B. Vincent, ibid.
518 (1982).
P. Meakin, in On Growth and Form, edited by H. E. Stanley
and N. Ostrowsky (Nijhoff, Dordrecht, 1986), p. 111.
P. Meakin, Phys. Rev. A 27, 604 (1983).
J. Liu, M. Sarikaya, W. Y. Shih, and I. A. Aksay (unpub-
lished).




