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Maximal symmetry group of the time-dependent Schrodinger equation: Atoms and molecules
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Lie's method of extended-group theory has been used to obtain explicit forms of the generators and
the structure constants of the maximal symmetry group of point transformations for the nonrelativis-
tic Schrodinger equation. For atoms and molecules this symmetry group is an infinite-parameter Lie
group with an infinite-parameter invariant subgroup. The corresponding factor group is a 14-
parameter Lie group containing a proper subgroup locally isomorphic to SO(4), the orthogonal group
in four dimensions.

I. INTRODUCTION

Fock' showed that the orthogonal group in four dimen-
sions, O(4), is the dynamical symmetry group of the hy-
drogen atom and this symmetry explained the "acciden-
tal" degeneracy of hydrogen spectra. Bargmann pointed
out that this larger group appears since the Runge-Lenz
vector, in addition to the angular momentum, is required
for a complete description of the classical orbits in the
Coulomb problem. The symmetry group involved in
these studies of the linear integrals of the system is the
group of contact transformations. '

There is a parallel line of study investigating the sym-
metry group of point transformations for physical sys-
tems. Wulfman and Wybourne showed that the symme-
try group of point transformations for the classical one-
dimensional harmonic oscillator is the eight-parameter
noncompact Cartan group A2. Leach solved a similar
problem for the classical N-dimensional harmonic oscilla-
tor. Winternitz and his co-workers ' investigated both
linear and nonlinear Schrodinger equations. Vinet' con-
sidered linear hyperbolic equations in two dimensions;
Kalnins, Miller, and Boyer"' investigated the time-
dependent Schrodinger equation for free particles.

We have restricted our investigation to the classic prob-
lem of nuclei and electrons interacting through a
Coulomb potential. For many-electron atoms the usual
practice is to start with the wave functions of single-
electron ions and to construct linear combinations of
Slater determinants. Our object is to find out the maxi-
mal symmetry group of point transformations for the
many-electron atom so that this symmetry can be incor-
porated in the construction of the many-electron wave
function. The role of O(4) for a many-electron atom has
previously been investigated by many authors. ' ' In
molecular quantum chemistry, the basis is the molecular-
ion system. As the wave functions of many-electron
atoms are built from those of single-electron ions, so the
wave functions of a molecule are built from those of the
corresponding molecular ion in the Hund-Mulliken
scheme. ' Wulfman ' ' considered O(5), the orthogonal
group in five dimensions, as the dynamical noninvariance
group for a one-electron system containing any number of
fixed nuclei. Our investigation shows that for both atoms
and molecules the maximal symmetry group of point

transformations is an infinite-parameter Lie group G with
an infinite-parameter invariant subgroup G, so that the
factor group G=G/G is a 14-parameter Lie group con-
taining a proper subgroup locally isomorphic to SO(4).
This is a generator-rich group structure for the system.
Even if we neglect G „which corresponds to a change in
the wave function only without any change in the time
and space coordinates, the factor group G is larger than
the Schrodinger kinematic group consisting of the Galile-
an and gauge transformations.

In Sec. II we have used Lie's method of extended-group
theory to obtain the partial differential equations
satisfied by the vectors of the generators of the maximal
symmetry group of point transformations of the time-
dependent Schrodinger equation. In Sec. III we have
solved these sets of equations for the system of nuclei and
electrons in their mutual Coulomb field and obtained ex-
plicit expressions for the generators of the maximal sym-
metry group of point transformations and the correspond-
ing structure constants.

It is again pointed out that the symmetry group investi-
gated here is the group of point transformations in the
space of wave-function and space-time coordinates and
not that of contact transformations.

II. LIE'S METHOD OF EXTENDED-GROUP THEORY

In this section we describe Lie's method of extended-
group theory and develop it in a form suitable for the
time-dependent Schrodinger equation. We consider a set
of partial differential equations

(q, '0;r)=0, a= i, . . . , p, (l)
in s dependent variables 4'",k=1, . . . , s, and n indepen-
dent variables q', i = 1, . . . , n. Here r denotes the highest
order of partial derivatives of %' 's. We first construct a
space of all variables and derivatives q', %', and
where

with

Here j s are non-negative integers. If
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X=gg'(q, +)BIBq'++PI, (q, %')BIB+" (3)

X'"'=X++ g pk(q, P, PJ)BIB'PJ .
k(1& ~J~ &r)

Here

(4)

is the generator in the product space (q, %), then the rth
extension of X is given by

and P:

gq=g,' =g'q =Pqq ——0 (for all so. ),
a, g,""+a„g,=0 [for all ( scr)&(n v)],

u, (g' —2g )+gg"'Ba, IBq"'+g'Ba, /dt =0,
n, v

—ig +2a, g, q,
—ga„g, „=0 (for all so.),

n, v

(12a)

(12b)

(12c)

(12d)

+ X'P(~, )k' iP, —uP —u'Pl/, ' —P ) P—gP Bu/Bq' +pa, P, , =0 .
S)O S& CT

4, =8+ /Bq', (Ji)= (j&,
—. . . ,j; ~,j;+ l, j; „.. . ,j„),

(6)

D = QD,", D; =a/aq'+g
i=1

The system of partial differential equations (1) has the
maximal symmetry group G with the generators L, if

e,'„Ia/ae,' .

X'"'6 (q, %;r)=0, a=i, . . . , p . (8)

In Eqs. (3)—(8) q', 'P, and VJ's are to be considered as in-
dependent variables. On the left-hand side of Eq. (8) we
use Eq. (1) and separately equate to zero the coefficients of
the different powers and their products of the partial
derivatives of 0, thus obtaining a set of partial
differential equations for g's and P's. Their solutions give
us the most general form of X and hence the maximal
symmetry group G.

We now apply this method to the time-dependent
Schrodinger equation

i P, +pa, g—%, , —u+=0 . (9)

s, o. s, o

and

y"" a/ae, .„.,
(so ~nv)

X "h=iP'+ ga, P' ' gP 'PBu/—Bq' uP—
S, O' S, O

+yg'~, ...aa, /at+ yP.ye„„„,aa„/aq" =0 .

Here the independent variables are time t and space vari-
ables q', o. and other Greek variables in general denoting
the three Cartesian components, and s denoting either the
particles or other identification of the space coordinates.
Lower suffixes to g, P, and P will denote the correspond-
ing partial derivatives. Here a, and v are functions of q s
only. Taking X of the form

X =g'(q, t, P)BIBt+gg' (q, t, +)BIBq' +P(q, t, +)BIB+,
S,o

(10)
we get

X~'I =X+y'a/W, +yy" a/W, .+ y "a/a~„
S, O'

+yy'-a/ae„. +yy" "a/a~, ...

=b' (t)+gb,' (t)q' +a, g gb„' (t)q" . (15)
(n&s) v

Equations (12a) and (12b) now give

b,' (t) =b(t), b,', (t)+b,'"(t)=0, for o~v,
hence,

b;, (t)=pe .~b;~(t),

and

b„' (t)+b,""(t)=0 for all s&n . (16)

Here, e ~ are the permutation symbols. We can now
write

=bo (t)+b(t)q' +pe ~b& (t)q"
V, k

+a, g gb„' (t)q"' —a, g gb," (t)q"" . (17)
(n &s) v (n )s) v

From Eqs. (12d), (13), and (17) we now get

1—2ia, =g't =[ho (t)]'+b'(t)q' +pe, q[b ~
(t)]'q'

Bg V) k

+a, g g[b„' (t)]'q"
(n &s) v

(12e)
In obtaining these equations we have replaced all 4', and
its derivatives in X' '6 by the corresponding space deriva-
tives of 4 and 4 itself according to Eq. (9). Thus only 4
and its space derivatives occur in Eq. (11) and these are
taken to be independent variables.

Equation (12a) immediately gives us

g':—g'(t), g'—:P (q, t),
(13)

P=C'(q, t)+ PC'(q, t) .

In the case that we shall consider, all a, 's are constants
and we now obtain the general form of g's and P for this
special case. From Eq. (12c) we get

g =g,'/2=b(t) . (14)

From Eqs. (12a), (12b), and (14) it can be shown that
g,
'" „,=0 for all lA, scr, and nv. Thus

s, o' S, o n, v

—a, g g[b," (t)]'q "

Equating the coefficients of different partial derivatives
and their products and powers separately to zero we get
the following set of partial diff'erential equations for g's

(n )s) v

Here the prime indicates differentiation with respect to t.
It thus follows that
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—2ia, C'(q&t)=[ho (r)]'q' +b'(r)(q' ) /2+pe i[bi (r)]'q
v, A,

+& X X[b:-(r)]'q"q" a. —g g[b,":(r)]'q' q" +f' (q&q', r) . (19)
(n &s) v {n &s) v

Differentiating Eq. (19) with respect to q' (a&o ) and
comparing it with Eq. (18), with cr being replaced by a
(the coefficient of q ), we get b'(t)=[b', (t)]'=0, i.e.,
b (t)=b, a constant, and b', (t)=b', , a constant. A simi-
lar procedure will give us b„'„(t)=b„'„aconstant for all
5&n, and

C '(q, t) =c, (t) + g(i /2a, )[b o (t) ]'q'

with n =n, +g, n, The K's are not, however, all in-
dependent.

The final form of the vectors of the generators are thus

=bo (t)+bq' +pe ibi~q'
v, A

C (q, t)=g g [n!/n, !Q(n, )!]K( In, I, n, )(t) '

n, In, S& O'

S, O

From Eq. (14) we obtain g'=bo+2bt.
We now turn to the term independent of 'I& in Eq. (12):

iC, +g, a, C, , —vC =0. Since we are searching for a
Lie group structure whose velocity vectors are analytic
functions of q's and t, we expand C (q, t) in powers of q's
and t,

{n &s) v

g'= ho+ 2bt,

p =C'(q, r)+% C '(q, r),

{n &s) v

with

C'(q, t) =c,(t)+g(i /2a, )[bo (t)]'q'
S, O

+a, g gb„' q"'—a, g gb," q"',

(21a)

xQ(q' )"
S,O

(20) iBC'(q, r)IBt —2bv —gg' Bv/Bq' =0,
S, O

(n +1)!In,.'Q(n, ). (t) 'fPq' )
' iK(In, I, n, +1)+(n +2)gaiK(nI~+2, In, ]',n, )

n, In, S&O S, O'

n!!n,.'Qn, ! (t) 'Q(q' )
' K(In, ),n, )=0, (21b)

n, In, S&O' S&O

where n =n, +g, n, The p. rime within the paren-
theses in the E in the last equation means that the su%x
lk is shown separately and not in the set within the curly
brackets. The last two equations have been derived from
Eq. (12e) by equating the terms linear in &p and indepen-
dent of 4 to zero. Equating to zero the coeScients of
diAerent powers of q' and t in the last equation, we get
relations between the K's. In Sec. III we apply this pro-
cedure to the particular form of v under consideration.

III. ATOMS AND MOLECULES

We consider a Coulombic system of X, electrons of
mass m and charge e with the k, th electron

k,(k, = 1, . . . , N, ) at the position q
' and T types of nuclei

I

a, =A/2m, a„=A/2M„,

v= g' Z„Z,e /2fi~q "—q
n, k„,s, k,

Z„e /iii
~ q

" —q
'

~

n, k„,k,

+ g'e !2A'
~ q

' —q
'

~

k, k

(22)

Equation (21a) becomes in this case

I

with the k„ th nucleus (k„=1, . . . , X„) of mass M„and
atomic number Z„of the nth type (n =1, . . . , T) at the

nk„
position q

" . %'ith this notation the time-dependent
Schrodinger equation (9) has the parameters

=bo ' (r)+bq ' +pe, ,qb, '
q

' +a, g grab„k'~ " +a, g gb, &'„q
v& k (n &s) k„v {k„&k,) v

—a, g gb, ~" q
" a, g grab,

" "q—" a, yy. b,„' q
'—

{k„&k, ) v {n &s) k„v k, v

I I I=bo' (r)+bq ' +pe~ zb i' q
' +a, g gb„i'. & " +a, g gb„l q

' —a, g gb&' q
'

7 n, k„v {k &k ) v {k &k ) v

g'= b, +2br, p =C'(q, r )++C '(q, r),
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with

C'(q, t)=c, (t)+i g g[bp " (t)]'q " /2a„
n, k„v

+igg[bo' (t)]'q ' /2a, ,

iBC'(q, t)IBt —g g' ' Bu/Bq
s, k, , o

Schrodinger equation. Thus C has, in general, an infinite
number of independent solutions giving an infinite-
parameter Lie group G . These generators commute
among themselves and thus G is an Abelian subgroup of
G. The relations (25) give us 14 generators for another
subgroup G, which is nonoverlapping with G „:
X = i —+BIBq " +QBIBq '

n, k„ k,

x'= —ia/at, x'=(M, /e)~a/aq,

k, cr

k, o k o
Bu/Bq ' +2bu =0, (23) X"=tX"+Z X' X =~~ ZPXor~eapy

pr

tC, + g,aCZ ~, I~+ a, + C k~ k~
—uC =0 .

Inserting Eq. (22) in Eq. (23) we get the following rela-
tions:

b=0, c', (t)=0, [b, ' (t)]"=[b; (t)]"=0,

bp (t) —bo " (t)=bo (t) —bo (t)

X, = ice—p~ gq "BIBq " +gq ' BIBq '
P y n, k„

where Mz is the total mass of the system,

Mo ——mX, +gM„X„
n

and R is the position of the center of mass of the system,

k o k, cr=bp' (t) bp' ———0,
kv ko kv kv+b,k'. =&.k'. —~,k',

k, v k, v
a, bsk'~ —aebk,' —0, far ke ~ k,',

sks a ke
a, b,k'p ——a, b,k' p, for k„(k, ,

sk, a k a
as bnk„p =ae ~nk„p, fOr n ~ S

(24)

R= QM„q "+mgq '
n, k„ k,

The nonvanishing commutators are

[x",xp] =ice.p,x",
r

[Xp,xpo]=ice„pox ~, [X',X' ]= iX—
r

[X',XP, ]=ige p~x'~,
y

(26)

y r
sk, y k y k a

ge p~(b,
' b t' )+(a, ——a, )b,k'p ——0 .

r

The general solution of Eqs. (24) gives us

b =0, c&(t)=c, =const,

bo (t)=bo (t)=b +c' t, b, ' =b,
ka ka y I

an bnk„p = ae bk'p —+cap~ho, for ke ) ke
r

b~
' b~+(a, /a, —1——)bo,
sksa kea

as bsk„P =ae bsk„P

(25)

[X',Xpp]=ice p
X'~, [X),X) ]=ice p~x[,

y y

[XT,Xo]= gi.e,pXo, [X'o,Xo)=iX prXo .
r r

It is easily seen that G is an invariant subgroup of G so
that G/G„=G.

Physically X denotes space translation of the whole

system, X' denotes time translation, X denotes + scal-

ing, X' corresponds to Galilean transformations, X )

denotes rotation of the whole system, and Xo denotes ro-
tation of the center of mass. In order to make the ex-
istence of the SO(4) group clear, we take the linear com-
binations L =X&, 3 =2Xo —X& and get the nonvanish-

ing commutators

[X',X'P]= i6 px—, [X,LP]=ice p X ~,
=(a, /a, )ge pub p, for k„&k, ,

r
sksa ke a

as ~nk„P =ae ~nk„P

=(a, /a„)ge pzbp, for n &s .

The generators of the symmetry group G are generated
from b's, c&, and C . It is seen that the generators
C 8/B+ are to be determined from the last of Eq. (23)
and no further restriction on C exists other than this last
equation. We note that C satisfies the original

[X,AP]=ice p~x ~,
r

[X',X' ]= iX, [X'—,L P] =i ge p~x'~,
r

[X',AP]=ice p~x'~,
r

[L,LP]=ice p~L~, [L,AP]=ice„p~A ~,
r y

[A, AP)=ice prL~ .
y

(28)
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%'e see that G contains the proper subgroup
H=II. , A~I which is locally isomorphic to SO(4). G
has the invariant subgroup

lV= [X X'X X'
)

so that G /X =H. Thus G is a semidirect product

G=PVQsH. The center of G contains only X . Et is in-
teresting to note that atoms as well as molecules, irrespec-
tive of the number and nature of the constituents, have
the same maximal, symmetry group of point transforma-
tions, provided the constituents interact among themselves
with the inverse square law of forces.
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