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Approximating distributions from moments
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A method based upon Pearson-type approximations from statistics is developed for approximat-
ing a symmetric probability density function from its moments. The extended Fokker-Planck
equation for non-Markov processes is shown to be the underlying foundation for the approxima-
tions. The approximation is shown to be exact for the beta probability density function. The ap-
plicability of the general method is illustrated by numerous pithy examples from linear and non-
linear filtering of both Markov and non-Markov dichotomous noise. New approximations are
given for the probability density function in two cases in which exact solutions are unavailable,
those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the ran-
dom telegraph signal. The approximate results are compared with previously published Monte
Carlo simulations in these two cases.

I. INTRODUCTION

The problem of approximating a probability density
function from a finite number of its moments is an old
one dating back to the last century. ' Some of the ear-
liest works in this area are the classic investigations of
K. Pearson, well known in mathematical statistics. Over
the years, Pearson's work has been the subject of criti-
cism partly because of its supposed ad hoc nature —this
criticism being leveled in spite of the generality of
Pearson's results in that his system contained many of
the best-known continuous distributions. An attempt to
extend Pearson's ideas was made in the voluminous pa-
per by Hansmann in 1934 (Ref. 2) (this work was evi-
dently done under Pearson's tutelage as is evidenced by
the acknowledgment at the end of the paper). However,
extremely little use has been made of Hansmann's re-
sults. In part, this is because Hansm ann failed to
correctly solve his differential equation in all cases, and
his error went undetected for over 50 years. ' In this
paper, we provide a more solid foundation for these
Pcarson-type approximations based upon extended
Fokker-Planck equations for non-Markov processes. We
also make further extensions along the lines begun by
Hansmann. Our approximate method is shown to be ex-
act for a certain class of probability density functions
and some limitations of the method are explored. The
method is first validated by some known examples from
linear and nonlinear filtering of Markov and non-
Markov dichotomous noise, and then applied to further
examples in which analytic results are not available.

Many different techniques for approximating a proba-
bility density function from its moments have been pro-
posed and some studied in great detail. ' These include
quadratures, orthogonal polynomial expansions, Edge-
worth and Gram-Charlier —type series, Fisher-
Cornish —type expansion, continued fraction expansions,
and the use of modified moments. No method appears
to work well in all cases and the most common two ways
in which they fail are that the approximations are either

negative over some domains or that they contain ex-
traneous oscillations. In addition, sometimes knowledge
of the moments seems to be necessary to inordinately
high degrees of precision. No attempt is made here to
give any review of existing techniques except for general
comments such as those just made. One attractive
feature of the method to be presented here is that it
gives relatively simple expressions for the approximating
probability densities. Also, it is easy to see by inspection
whether or not the approximation ever becomes nega-
tive.

Symmetric probability densities are treated in most of
the work but indications are given as to how to make ex-
tensions to the asymmetric case. The treatments are
somewhat simpler in the symmetric case and this was
the route taken by Hansmann. We also restrict atten-
tion to densities which exist over finite intervals.

The details of our method are presented in Sec. II
which begins with the extended Fokker-Planck equation
for non-Markov processes. The original Pcarson,
Hansmann, and later Pearson-type approximations are
then shown to follow directly as approximations made in
the Fokker-Planck equation itself. The approximations
are noted to be exact for certain probability density
functions and cases in which the approximations may
not work well are discussed. Sec. III contains examples
taken from known probability density functions which
arise in first-order linear and nonlinear systems driven by
Markov and non-Markov dichotomous noise. Further
examples from physical problems in which the probabili-
ty density functions are unknown are considered in Sec.
IV, and extensions to the asymmetric case are discussed
in Sec. V. The final sections summarize and discuss the
results.

All of the probability density functions to be encoun-
tered vanish outside their intervals of definition and, as a
matter of convenience, this mill not be explicitly stated
each time an expression for a density function is given.
p(y) will denote the probability density function of the
dynamical variable y (t), P(y) will be used to indicate an
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approximation to p(y), and f (t) will be reserved for the
probability density function of the intervals between
transitions of the dichotomous noise.

II. GENERAL FORMULATION

A. Extended Fokker-Planck equation

in which the conditional moments A (y) and B(y) are
defined as

A (y) = lim E[y (t +e)—y (t)
~
y (t)],1

p ~V
(2)

B(y)= lim E[[y(—t+@)—y(t)I ~y(t)] .
e p

When v=1, this reduces to the classical Fokker-Planck
equation; however, the classical equation degenerates to
0=0 in some cases [because A (y) and B(y) are each
zero] (Ref. 10) and it is sometimes necessary to use v & 1.
It can be shown that there exists only one value of v for
which (1) is nondegenerate. In three cases, those of the
RC filter and first-order nonlinear systems driven by di-
chotomous Markov noise' ' and the filter-limiter-61ter
driven by white Gaussian noise, ' it is found that v=2 is
the necessary choice.

The first integral of (1) is

d
dy

[B(y)p(y)] —2A (y)p(V)=K,

where ~ is a constant. Upon integrating this equation
over the range of y and noting, from (2), that
E [A (y)]=0 if the limit and expectation can be inter-
changed, we find

B (y,„)p(y,„) B(y;„)p(y;„)—
ymax y min

In general, a stationary random process y (t), not
necessarily Markov, has a marginal probability density
function p (y ) which satisfies the vth order -extended
Fokker-Planck equation'

1 d
2 , [B (y)p (y)] — [~ (y)p (y)]=0,

B. Pearson-type differential equations

The above equation can further be put into the form

dp (y)
p(y) dy H(y) ' (7)

where y =E [y] and

(y —y )B (y)
2A (y) B'(y)—

If H(y) were expanded in a power series

H(y)=ho+h, y+hzy +

1 d y

p dy Cp+C2y
(10a)

(Pearson, 1895),

and only a finite number of terms kept, we would expect
that the resulting solution to (7) would be an approxima-
tion to p (y) which would get better and better as more
terms are retained. This is the justification for Pearson's
approach (and has been noted as such previously for
Markov processes ). When powers up to the second are
retained, (7) is then of the form assumed by Pearson in
his classic work. As these arguments show, the extended
Fokker-Planck equation for non-Markov processes pro-
vides a solid foundation for Pearson's approach in the
general case.

Hansmann extended Pearson's work in the symmetric
case by approximating H (y) by a fourth-order polynomi-
al; however, he did not correctly solve the ensuing
differential equation in all cases. We will further extend
Pearson's ideas in the symmetric case by approximating
H(y) by higher-order polynomials. In general, we note,
the Fokker-Planck conditional moments A (y) and B(y)
are unknown [if they were known, we could just solve
the Fokker-Planck equation for p (y)] and so the func-
tion H(y) is not known. Pearson's great insight was not
only in formulating his differential equation but also in
constructing a scheme for determining the coeKcients in
the approximating polynomial in terms of the moments
p„=E[y "]. The types of approximations with which we
shall be concerned in the symmetric case will satisfy
equations such as

It seems plausible to suppose that a=0 for any random
process; however, we have been unable to prove this in
general. We can say that ~=0 for any statistically sym-
metric process since the numerator on the right-hand
side of (5) is then identically zero. For certain first-order
nonlinear systems driven by dichotomous non-Markov
noise, it has been shown' '' that B(y)p(y) when evalu-
ated at the level y =I is proportional to the average
number of crossings of y (t) with the level y =l. In these
cases, which can be asymmetric, B (y)p (y) must vanish
at the extreme values y;„and y,„and we again have
K=0. We conjecture K=O (without loss of generality in
the symmetric case) and write (4) as

d [B(y)p (y)] —2A (y)p (y) =0 .
dy

1dp y

p "y cp+c2y +c4y

(Hansmann, 1934),

p dy (y',„—y')(co+c2y')

1dp y

p dy cp+c2y +c4y +c6y

y

p dy (y,„—y )(co+czy +c4V )

( lob)

(10c)

(10d)

(10e)
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As we will presently see, when the domain of the y(t)
process is known to be ( —y,„,y,„) it will be necessary
to assume forms like (10c) and (10e) in which the bound-
ary is a root of the denominator polynomial. When the
boundary is unknown or infinite, the forms (10a), (10b),
and (10d) are more appropriate but may lead to approxi-
mations which have probability mass outside the actual
ranges of the variables. In the examples to follow in
later sections, we will confine most, but not all, of our
attention to the sixth-order polynomial approximation of
type (10e); however, for some of the theory to be given
in the remainder of this section it will be more con-
venient to use the general form

I d V

p
(ymax y ) g C2ny

n=0

C. Polynomial coefticients in Pearson-type
approximations (Refs. 1 and 2)

" y'-+'y'„—y' c,„y'" ~dy

= J'," y'-"P(y)dy (12)

Integrating the left-hand side by parts and assuming that
the approximation P(y) has the same moments as the
true p (y), i.e.,

&maxp„= y "p y dy, (13)

gives

Expressions for the unknown coefficients, the c's, can
be obtained in the following way. Clearing fractions in
(11), multiplying both sides by y +', and integrating
over y leads to

n=p ~max

N &max

3" +'(3'..—3') y c .3'P"(y)
N

C2n(2n+2m P2m +2
n=p

(14)

in which

kk (k + 1)3 maxVk (k +3)I k+2 (15)

Consequently,

C= — P (19)

The integrated terms in (14) vanish at the end points.
They would also vanish if p(y) were zero at the end
points. In either case, it is necessary that these terms
vanish for Pearson's method to work. Setting the in-
tegrated terms to zero then leads to the system of simul-
taneous equations in the c's,

N

42n +2m 2n P2m +2~
n=0

is the desired expression for the c's. Note that all the
moments p2, p4, . . . , p4N+2 are required to determine
co, c2, . . . , c2N. In the sixth-order polynomial case
(10e), this means that all even moments up to p, &0 are re-
quired to determine c0,c2, and c4,' pue moments are
necessary to determine three coefficients.

For the sixth-order polynomial approximation (10e),
the solution to the simultaneous equations for the c's is

co= [(k6 k448)P2+(42k—8 4446)P4+—(k4 42(6)P6]—

~ C= —P
where

Cp

C2

C2N

I

P2

(20a)

C2 = [(f2(8—$4/6)@2+(g4 —$0/8)P4+($0(6 —(2/4)P6]
1 2

(20b)

C4 = [(g4 —$2/6)P2+ ($0/6 —$2/4)P4+(g2 —(0/4)P6]

(20c)

where

404408+2k2k4k6 K4 KOC6 k2k8 (20d)

P2N+2

ko 4
02 k4

(2N 42N+2

(2N

42N+ 2

44N

D. The Pearson-type approximations

Once the c's are known, it is straightforward to solve
the resulting Pearson differential equation. However,
the character of the solution is strongly dependent upon
the nature of the roots of the denominator polynomial.
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1 d y

P dy c4(a' y—')(b' y—')(y',„—y') (21)

Formally the solution can be found by partial fraction
expansion of the right-hand side and doing so leads to

P(v)-& Ia' —v'I

in which

(22)

To be specific, we consider only (10e), which can be
rewritten as

It is easily verified that the absolute-value signs are
correct in (22) (indeed, this was what Hansmann failed
to notice ). Now, the roots need not lie in the interval
(O,y,„), and so, when a and b are real, we have the
following three possibilities for the complete solution
(without loss of generality, we take a & b ):

(i) Neither a nor b in (O,y,„),
P(y)=It Ia' —y'I

ly I
&y,„. (24)

—1 1

(b2 a2)(y2 a2)

—1 1

2c4 (a b )(y „b)—
—1 1

2C4 (a' —y', „)(b'—y',„)

(23a)

(23b)

(23c)

(ii) One of a or b in (O,y,„),say a,
&i(a' —y') (b' —y') (y',„—y')

P V g (
2 2)A(b2 2)S( 2 2)C

« lv I
&v ..

(iii) Both a and b in (O,y,„),

(25)

(a 2 2)A(b 2 2)X( 2 2)C

P(y)= &2(v' —a')"(b' —y') (y'- —v')' « ly I
&b (26)

Finally, if a and b are imaginary, it is readily shown
that the solution can be written as follows:

(iv) a and b imaginary,

2 2
3 max 3

(
I

+ 2+c y4I )1/2

8(C2+2c4y',„), c2+2c4y'
+exp

$ /2 taIl
2 1/2(4cpc4 —c 2 ) (4cpc4 —c 2 )

in which B denotes the beta function and a ~ 0 is a pa-
rameter. The moments of this density are

p2„B(n + —,', a——) . (30)

proximations" give "exact" results no matter hour many
moments are used in the approximations. This family is
the beta distribution given by

2 a —1

(29)

in which

l3 I &3 max (27) It is easy to show from the recursive properties of the
gamma and beta functions and the definition (15), that
for these moments

—1

2(cp+C23 '..+C4V'..)
(28) k2 2(a 1)P2 +2 ' (31)

The E coeScients in these expressions will usually have
to be determined by numerical integration. In the cases
of (24) and (27), we need merely normalize the solutions
to integrate to one. Equations (25) and (26) require the
use of p2 and p2 and p4, respectively, to determine the
constants.

All of the above forms will be illustrated by the exam-
ples to be presented in the following sections.

E. Cases when the approximations are exact

Using this to substitute for the p„s in the right-hand
side of (16) gives

N
2mkn+2mc2„=, m =0, . . . , N

2(a —1)
(32)

By inspection, the solution to this set is

—1
CO= , C2 c4 ' ' =C2N 02(a —1)

(33)

Hence, for all N & 0, the diff'erential equation (11)
reduces to

It is somewhat surprising that there exists a family of
probability density functions for which the Pearson "ap-

1 dp —y

P dy 2(a —1)(1—y') (34)
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which has the solution (29). In the case when y,„ is not
equal to 1, the above argument is easily modified to hold
for the normalized random variable y/y

This is a wondrous and astonishing result. The impli-
cation is that density functions close in shape to one of
the beta family can be extremely well approximated by
these Pearson-type methods. The more the deviation
from the beta density, the more moments we expect to
be needed for a good approximation. In addition, for
small values of a, the beta density is extremely leptokur-
tic and it is well known that some expansions have prob-
lems in convergence in these cases.

F. Negative features of the approximations

Now that we have seen a case when the approxima-
tions are exact, let us look at a case when they fail com-
pletely. This is the uniform density

P(X)=
2

1

2y max

which has moments

2n
y max

P2n=
2

Now, from (15),

(35)

(36)

Zn=0 . (37)

Hence, the system of equations (16) can only be satisfied
by some of the c's being infinite, which is what should
happen. However, the implication is that if the underly-
ing density is very close to uniform, very large and small
numbers may enter into the calculations and accuracy
lost. Hence, the moments may need to be very accurate-
ly known and/or high-precision computing methods em-
ployed.

In Sec. II C it was noted that five even moments were
necessary to determine co, c2, and c4 for the sixth-order
polynomial case (10e). There is no way of going the oth-
er way and getting the moments back from the c's with
the exception of doing the integrals

&maxp„= y "p y dy . (38)

The question is "Is p„=p„ for n =2, 4, . . . , A7" There
seems to be nothing in the theory that guarantees that
these moments be equal in spite of the assumption (13).
If P(y) is close to p (y) then, of course, the moments will
be close. We later give an example that shows unequivo-
cally, however, that the moments are not necessarily the
same.

We cannot expect the Pearson-type approximations to
reproduce any fine structure in the underlying probabili-
ty density function. Even coarse structure that is not in
keeping with a member of the beta family may be
dificult to reproduce without an inordinately high-
degree numerator polynomial. We will later see an ex-
ample of this in which the true density function has mul-
tiple lobes. It is to be noted that our approximations
need not necessarily be positive. The solutions to (24)
and (27) are always positive, but one of the K's in (25) or

(26) could conceivably be negative. This does not hap-
pen in any of the examples to be presented later.

Finally, we will see in some of the examples that the
approximations can contain extraneous zeros or
infinities, which manifest themselves as deep chasms or
sharp spikes in P(y), that are not in the true density
function. However, for all of the cases to be examined,
these anomalies are such that they have a small effect
upon the associated cumulative distribution, and it is the
cumulative distribution that has physical significance
and not the probability density function.

III. EXAMPLES —KNOWN DENSITIES

All of the examples, both in this section and in Sec.
IV, are taken from realistic, nontrivial physical problems
involving linear and nonlinear filtering of Markov and
non-Markov dichotomous noise. Although the examples
are interesting in themselves, they have been chosen to
demonstrate various aspects of the Pearson-type approx-
imations. The first example shows that the approxima-
tions can be extremely good for a nonbeta probability
density function. The second shows that the approxi-
mate moments P„are not necessarily equal to the exact
p„, and the final example exhibits a family for which the
Pearson-type approximation can work well or not de-
pending upon the value of a parameter in the probability
density function. For the case in which the sixth-degree
polynomial does not do well, the approximations are
compared with those resulting from use of an eighth-
order polynomial.

A. Filtering of nonMarkov dichotomous noise
with gamma interval PDF

f (t)=A,'re ~', r &0 . (39)

It is known' '' that the probability density function of
the output in the case a=A, /p= —,

' is

q =(I+i)/4, ~y ~

&1, (40)

in which zF, is a hypergeometric function. p(y) is U
shaped with (1—y )

'~ ln(1 —y ) infinities near y =El.
The odd moments are zero and the even moments can be
determined recursively from the relation

& 4''(1 —y')" l=, & [(1—y')" 1Sn2+12n +5
(41)

which follows by multiplying the differential equation
[Ref. 18, Eq. (54a); see also Ref. 20] satisfied by p(y) by
(1 —y )" and integrating over ( —1,1). The first five even
moments are

The Langevin equation for this example is

dy (t)
dt +py (t) =px (t),

and x (t) is non-Markov dichotomous noise whose inter-
vals between transitions have the gamma density
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TABLE I ~ Filtering of non-Markov dichotomous noise with

gamma interval density. Comparison of sixth-degree polyno-
mial approximation with exact values. (cp ——0.7228,
c2 ———0.2731, c4 ——0.3537, %=0.2770, @= —0.6223.)

p (y)

3 8n +11
11 (2n+1)(2n+3) (45)

For these moments, the coeScients in the sixth-degree
polynomial approximation (10e) come out to have the
amazingly simple values

0
0.2
0.4
0.6
0.8
0.9
0.95
0.99
0.999

0.2315
0.2386
0.2636
0.3222
0.4880
0.7638
1.204
3.406

14.19

0.2321
0.2388
0.2627
0.3212
0.4910
0.7683
1.199
3.306

13.90

co ———", , c2 ———66, and c4 ———",',
and the Pearson-type approximation is

(49 —264y +429y )'

2( 1 —y )

P2 ———', ——0.6,

297
~ 429y —132

X exp tan
107&3597 &3597

(46)

p4 ———"——0 488

P6=
13X 251
61 x 125

=0.427 934,

3 X 17 X 6563 =0.388 467,
61 X 113x 125

11 220 991
25 x 61x 113x181

For these moments, the sixth-degree polynomial approx-
imation satisfying (10e) comes out to be

P(y) =K y
2

+co+cry +c4y

The reason why this example is important is that, be-
cause of the simple c's, the accuracy in numerically com-
puting K and p„ lies only in the integration routines
used. Table II(a) compares the approximate and exact
probability density functions and Table II(b) compares
the corresponding moments.

As the tables show, both the approximate probability
density and the approximate moments are quite close to
the true values. However, the computations were done
using double precision and the moments do not agree in
the third decimal place. It can only be concluded that
the theory does not guarantee that the approximate and
exact moments be the same. In some examples later, we
shall see even larger differences.

Xexp

Xtan —' c2+ 2c4y

(4COC4 —C 2 )
2 1/2

6'(c~+ 2c4 )

(4coc4 —c2 }
2 1/2

(42)

TABLE II ~ Filtering of non-Markov dichotomous noise
with McFadden interval PDF. (a) Comparison of sixth-degree
polynomial approximation with exact values. (cp =49/4,
c2 ———66, c4 ——429/4, %=0.4929.) (b) Comparison of approxi-
mate and exact moments.

This p(y) is compared in Table I with the true p(y)
given by (40). The agreement is to within about l%%uo ex-
cept for y & 0.95. The approximate moments p„,
n =2,4, . . . , 10 agree with the exact values to four de-
cimal places. This example serves to illustrate just how
good the Pearson-type approximation can be.

B. Filtering of non-Markov dichotomous noise
with McFadden interval PDF

The Langevin equation in this example is the same as
that of the previous one but now the intervals of the di-
chotomous noise have the density

0
0.2
0.4
0.6
0.8
0.9
0.95
0.99
0.999
1

(a)

p (y)

0.4773
0.4880
0.4882
0.5018
0.5209
0.5325
0.5388
0.5441
0.5453
0.5455

P(y)

0.4730
0.4738
0.4788
0.5053
0.5319
0.5401
0.5453
0.5547
0.5670

f (t)=3e '(1 —e '), t &0 (43}
(b)

Pn Pn

p(y)=~(7+y'), ~y ~

(1
which has moments

(44)

and P= l. The probability density function of the out-
put has the simple form'

2
4
6
8

10

0.3455
0.2104
0.1515
0.1185
0.0973

0.3494
0.2136
0.1540
0.1204
0.0989
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C. Nonlinear Altering of Markov dichotomous noise

The Langevin equation for this case is

dy (t)
dt

+p siny ( t ) =px ( t ) (47)

quently, we do not bother to give the results in these
cases since the agreement is so good.

For a= —,
' and —,', the approximating densities are each

of the form

f (r)=le ~', t &0 .

The output probability density is known to be'

(48)

2

p(y)= e ' "" ly I
& cr= (49)

2K'(2a) '
2

'
p

and x (t) is the random telegraph signal, i.e., Markov di-
chotomous noise with interval density

p(y)= '

K&(a —y ) (b —y ) (y,„—y )

K2(y' —u') (b' —y') (y',„—y')
a & Iy I

&b

K3(y' —~') (y' —b') (y',„—y')
b & ly I

&y ..
(51)

p(y) =K
2 2

y max

I
cp+c»'+c4y'

I

'"
P(c2+2c4y~,„), cp+2c4y

Q exp 2 1/2 tan
2 1/2(4cpc4 —c 2 ) (4cpc4 —c~ )

(5O)

and the approximate and exact densities and moments
are within percentage points of one another. Conse-

where K& is a modified Bessel function of the second
kind. The nature of p (y) depends strongly upon the pa-
rameter a. When a is large, p (y) is a single bell-shaped
lobe at the origin; for —,

' &a& —,
' it becomes a pair of

lobes; and for very small a it approaches a pair of im-
pulse functions at +~/2. Evidently, the moments p„
cannot be determined in closed form and so they were
calculated from (49) by numerical integration.

For a = 1, 2, and 5 the sixth-order polynomial
Pearson-type approximations all come out to have the
form

and the parameter values for these are listed in Table III
along with the moments p„. This sixth-order Pearson-
type approximation is compared with the actual density
in Fig. 1(a). The approximation does not do well in
reproducing the two-lobe structure of the density func-
tion, but the approximate moments agreed with the true
values to four decimal places.

In order to improve the approximation, an eighth-
order polynomial was used and this resulted in a density
of the form

P(y) —K
b2 y2

I

x(y2 y2) B (52)

which has spikes at y =b and y =y „and zeros at y =a

TABLE III. Nonlinear filtering of Markov dichotomous
noise. Parameters for sixth- and eighth-order Pearson-type ap-
proximations.

(a) Moments

a = I/2

05-

sixth order polynomial
approximation

2
4
6
8

10
12
14

Pn
a=—1

1.11366
1.702 17
2.868 99
5.099 18
9.384 29

a
a

Pn
a=—1

0.659 168
0.728 577
0.952 481
1.364 10
2.073 71
3.291 12
5.398 54

I

o 2

a= I/2

(b)

0.5--

eighth order polynomial

approximation

)~-s (v)
/~

~ $ I

-b
l
I

I

0
I I

7r
C 2

FIG. 1. Probability-density function for nonlinearly filtered
Markov dichotomous noise. (a) Sixth-order polynomial ap-
proximation, and (b) eighth-order polynomial approximation.

Ia= —.2'

a=~1

Sixth order

Q
2

Q2

C2

A

C

K1
E2
I( 3

K4

0.3657
1.898

a
0.1276

—0.4712
0.3436

a
0.1903
0.3319
0.1441

0.4495
1 ~ 837

a
—0.027 49

0.088 01
—0.060 52

a
0.3060
0.4341
0.004 361

'Not applicable.

(b) Parameter values
a=

2
1

Sixth order

a=
2
1

Eighth order

0.1789
1.243
1.195
0.028 58

—0.1337
0.1905

—0.085 42
0.3226
0.3799
0.3105
0.001 798
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and y =c. There are four multiplicative constants, one
for each of the intervals (O,a), (a, b), (b, c), and (c,m. /2)
and these are listed in Table III(b) along with the other
parameter values. The resulting approximation is shown
in Fig. 1(b) and there is much better agreement with the
true density than with the sixth-order polynomial ap-
proximation. The moments in the eighth-order case
agreed extremely well with the actual values.

Similar computations were performed for the case
a= —,

' and similar behavior obtained. The eighth-order
polynomial approximation may not be practical in a sit-
uation when the moments are computed from experi-
mental data, but there is no reason why it cannot be im-
plemented in a situation when the moments are known
analytically, but the underlying density is unknown.
Two such cases arising in physical problems are con-
sidered in Sec. IV.

IV. EXAMPLES —UNKNOWN DENSITIES

A. Filter-limiter4lter

The Langevin equations for the filter-limiter-filter sys-
tem are

dy (t)
dt +py (t) =psgn[7)(t)], (53)

dg(t) 1
g(t) =-w (t),

dt
(54)

in which w(t) is white Gaussian noise with autocorrela-
tion function R (r)=2D5(r) Th.e signum function in
(53) models the operation of a limiter in an electrical net-
work and, because of its presence, the intensity D of the
white noise is unimportant. It is known that p (y) has a
beta density when a=ps, =2, but there are no exact
solutions for p(y) for general a. ' ' ' However, in the
general case, the moments p„can be calculated succes-
sively from the recursion relation [Ref. 22, Eq. (49)
et seq. ]

All of the examples in Sec. III were tests or bench-
marks of the Pcarson-type approximations since the
probability density functions were known a priori. In
the examples to be considered in this section, the proba-
bility density functions are unknown. Indeed, the results
presented here are, to our knowledge, the Arst times
good approximate solutions have been given to these
problems. We first consider the Alter-limiter-filter prob-
lem and then a second-order oscillator driven by Markov
dichotomous noise.

(55)

In this equation n is an integer, yo is an auxiliary ran-
dom variable, and the odd moments of both y and yo are
all zero. The moments calculated from this are given in
Table IV for a= —,', —,', 1, 2, and 5.

The forms of the approximations depend upon a, and
they are, for a= —,

' and —,',

TABLE IV. Filter-limiter-filter.

(a) Output moments

p6 p&o

0.116847

0.237 240
0.363 380
0.5
0.660 469

0.032 664 9
0.112 836
0.227 687
0.375
0.566 609

0.012 693 9

0.067 399 0
0.167 151
0.3125
0.516 323

0.005 933 46

0.045 287 5

0.132 551
0.273 438
0.483 184

0.003 128 92

0.032 725 8

0.110053
0.246 094
0.458 969

Q
2

b'
A

C
K

Ia=—
5

—7.648
2.809

—0.6137
—2.935

3.548
75.71

1a=—
2

—24.91
2.034

—0.033 62
—0.8427

0.8763
1.319

(b) Parameter values
a=5

—1.277
2.045
0.2438
0.5311

—0.7749
0.1288

a=1
Co

C2

C4

4.059
—9.962
15.13

—0.054 15
0.4661
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for a=1,

p(y) =Ic

E(1—y )

( t22+y2)A(b2y2)JS

2
1 —y

(Cp+C23' +C43'

6(c2+2C4), c2+2c4y
Q exp tan

Z [IZ
(4CpC4 —C 2 ) (4cpc4 —c2 )

(56)

(57)

and —,'. The agreement is so close that it follows that
p(y) is within a few percent of the Monte Carlo [the ac-
tual simulation values in Ref. 16 are no longer available
and the simulations were not repeated —this is why we
are comparing p(y) to PFF(y)]. The moments ]M„agreed
with I2„ to within l%%uo for all values of a and there is lit-
tle to be gained by tabulating them.

Equations (56), (57), and (59) are new approximation
solutions to the filter-limiter-filter problem.

B. Dichotomous-noise-driven oscillator

for a=2,

p(y) =p (y) =

for a=5,
(1 y2)1/2

(5&)

d'y (t) dy (&)

dt
+2/3 +2/3'y (t) =2P2x (t)

dt
(61)

Our final example is that of a second-order Butter-
worth filter excited by Markov dichotomous noise with
Langevin equation

~ ( 2+y 2)A(b 2 y2)%

(1 2) —e (59)
and x (r) has intervals with the probability density func-
tion

in which Iy I
& 1 in each case. The parameter values

for these are listed in Table IV(b). For a= —,', —,', and 2,
the roots a and b both lie outside the interval (0, 1).

An approximation that makes use only of pz was
developed in 1969 by solving an approximate Fokker-
Planck equation' and is

f (r)=3.e ~', t &0 . (62)

In this case, the output probability density function is
symmetric and lies in the interval Iy I &y,„where
y „=coth(m. /2)=1. 09033. The output moments are
given by

(1—3') '
]

PFP y 22y ]B(, )
'

a+1 1

2 2

a+1 1

2 '2

JM2n =

in which

ll &
—+1 k 1 [1—( —1)"]a+k +i~kr ii (63)

(64a)

k

Sk —— (64b)
This approximation was shown to give a cumulative dis-
tribution that agreed to within 5%%uo with Monte Carlo
simulations. ' Since the true density is close to being
beta distributed, we expect our Pearson-type approxima-
tions to work extremely well. Unquestionably, the above
approximations P(y) will be better than this PFF(y) since
five even moments are used in the former and only one
in the latter. It is nevertheless interesting to compare
p(y) and pFF(y) and this is done in Table V for a= —,

'

Filter-limiter-filter. Comparison of p(y) and

PFF(y) for a = —,
' and a = 5.

(b2 2) —%

(y
2 t] 2 )A (y

2
y

2
)

(b —y )

(
2 2)A( 2 2)C

(
2 b2) —21

a&IyI&b

I y I &ymax

(65)

m =1

Again, the forms of the sixth-order polynomial Pearson-
type approximations depend upon the parameter a. %'e
find, for a= —,

' and —,',

0
0.2
0.4
0.6
0.8
0.9
0.95
0.99
0.999

P(y)

1.049
0.9436
0.6628
0.3131
0.0568
0.0074

PFF (y)

1.061
0.9474
0.6537
0.3070
0.0621
0.0105

P(y)

0.2000
0.2058
0.2256
0.2709
0.3992
0.6245
1.016
3.381

19.92

PFF(y)

0.1949
0.2009
0.2218
0.2715
0.4163
0.6693
1.099
3.578

19.73

for a=1,

( a 2
y

2 )A ( b 2
y

2 )%
E

(
2 2) —C

3 max 3

(y
2 a 2 )~ (b y

2 )+
2 2(y,„—y )

and for a =2 and 5,

« Iy I &ymax

(66)
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2 2

P(y) =K
I
co+c» +c4y

p(y)
Jl

@(c2+ 2c4y „) C2 +2C4y
)& exp tan

2 iy2(4coc4 —c~ ) (4coc4 —c ~ )

) y [ (y,„. (67)

The parameter values for the various cases are given in
Table VI along with the output moments.

The approximation P(y) is shown in Fig. 2 for a= —,'.
The deep chasms at y =+a have little effect upon the
cumulative distribution. The infinities near y =+b can
be explained by the physics of the problem; i.e., the out-
put y (t) overshoots and oscillates about the steady states
at y =+1, and, for this case, b is close to 1.

The cumulative distributions P(y ( Y)
p(y)dy are tabulated in Table VII along with

results of Monte Carlo simulations reproduced from Ref.
23. There is excellent, almost uncanny, agreement be-
tween the two sets of numbers —especially since the
simulations were done without prior knowledge of the
true or approximate values.

The approximate moments p„were computed in each
case and found to be within 1% of the true values except
in the case a = 1 where the difference was of the order of
10% for p]o.

I

&max

I

~max

FIG. 2. Probability-density function for output of second-
order Butterworth filter driven by Markov dichotomous noise,
a= —.

5

V. THE ASYMMETRIC CASE

Much of what we have done can be extended to the
asymmetric case. The asymmetric analog of the sixth-
degree polynomial differential equation (10e) is

1 dP (68)
P dy (y —y;. )(y ..—y)(co+ciy+c»')

TABLE VI. Second-order Butterworth filter driven by Markov dichotomous noise.

(a) Output moments

p4 p6 P&0

0.810 811
0.6
0.4
0.230 769
0.098 360 7

0.787 772
0.529 412
0.291 584
0.118981
0.025 646 6

0.794 920
0.511 658
0.251 469
0.080 569 0
0.009 936 8

0.816050
0.514 680
0.234 333
0.062 666 7
0.004 846 0

0.846 848

0.529 669
0.228 184
0.052 962 0
0.002 752 9

(b) Parameter values
a=—1

2
+=1

Q
2

b
A

C
K)
K2
K3

0.058 81
0.9479
0.063 22

—0.2965
0.2333
0.1657
0.1671
2.102

0.1523
0.9365
0.031 09

—0.1277
0.096 64
0.3088
0.3338
1.343

0.3517
1.252
0.030 26
0.4020

—0.4322
0.4916
0.3892

co
C2

c4

K

ex=2

—0.3257
—0.2524
—0.080 00

0.6767
1.788

+=5
—0.1016
—0.023 58
—0.027 36

2.970
0.043 26

'Not applicable.
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TABLE VII. Second-order Butterworth filter driven by Markov dichotomous noise. Comparison of sixth-degree polynomial
Pearson-type approximations with Monte Carlo results.

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95
1.00
1.05

1a=—
5

P(y ( Y)

0.500
0.515
0.529
0.542
0.557
0.573
0.590
0.608
0.627
0.648
0.661
0.804
0.936

Monte
Carlo

0.500
0.513
0.530
0.543
0.557
0.575
0.589
0.608
0.628
0.656
0.670
0.798
0.937

a=
2
1

P(y ( Y)

0.500
0.529
0.560
0.589
0.618
0.649
0.682
0.716
0.751
0.788
0.809
0.879
0.952

Monte
Carlo

0.496
0.526
0.555
0.585
0.615
0.646
0.678
0.711
0.748
0.789
0.826
0.871
0.953

a=1

P(y ( Y)

0.500
0.547
0.594
0.641
0.688
0.734
0.778
0.819
0.861
0.906
0.929
0.953
0.979

Monte
Carlo

0.497
0.543
0.587
0.633
0.679
0.723
0.769
0.816
0.858
0.900
0.927
0.944
0.974

a=2

P(y & Y)

0.500
0.573
0.643
0.711
0.773
0.829
0.878
0.919
0.952
0.977
0.987
0.994
0.998

Monte
Carlo

0.501
0.575
0.641
0.699
0.757
0.812
0.866
0.912
0.950
0.981
0.988
0.995
1.000

P(y & Y)

0.500
0.619
0.729
0.822
0.894
0.943
0.973
0.990
0.997
1.000
1.000
1.000
1.000

Monte
Carlo

0.499
0.622
0.704
0.799
0.881
0.937
0.972
0.989
0.997
1.000
1.000
1.000
1.000

( &+y)" '( & —y)'
„+ (69)

It would be expected that some form of the general re-
sult that the approximations are exact for beta densities
in the symmetric case would hold for this asymmetric
form also. The approximations would have the same
negative features that they have in the symmetric case.

VI. SUMMARY AND CONCLUSIONS

A method based upon Pearson-type approximations
from statistics was developed for approximating a sym-
metric probability density function from its moments.
The method was shown to be exact for beta probability
density functions and to work extraordinarily well in
numerous examples. The sixth-degree polynomial ap-
proximation with known end points received the most
attention primarily because this is the highest-degree po-
lynomial case that can be handled conveniently analyti-
cally. Some comparisons were given with the eighth-
degree polynomial approximations.

Two cases need to be distinguished —those in which the
mean y is known and those in which it is not. In the
latter, the mean would be determined as an unknown
along with co, c&, and c2. Similar comments apply if the
extreme values y;„and y,„are unknown.

When y;„=—1 and y,„=1, the symmetric form of
the beta probability density function is'

Computations were performed using a fourth-degree
polynomial with unknown end points, the Hansmann
case, for the second-order Butterworth filter example.
They were found to work well only for values a) 1. In
addition, the number of places of accuracy in the input
moments p„was varied and it was found that as little as
three-place accuracy in the input moments was sufhcient
to give three-place accuracy in the approximations in
most cases. The moments in all of our examples were
determined analytically; however, in many applications
they result from sample data. In these cases, one might
well question the significance and reliability of the
higher moments. Nevertheless, there are many cases,
like the last two examples, in which all of the moments
are precisely known but the probability density not.

Although we have given some general comments
about the asymmetric case, much more work needs to be
done in this area. Also the case when one or both of the
extreme values is infinite merits further study.
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