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By continuing earlier investigations, generalized coherent states are introduced to describe the
quasiclassical motion of electrons in a microwave and in a homogeneous magnetic field. The mi-

crowave is circularly polarized and propagates along the direction of the magnetic field. In view of
possible applications to laboratory plasmas, the problem is treated nonrelativistically and the mi-

crowave is taken in the dipole approximation. The generalized coherent states emerge in polar coor-
dinates (p, g) from ordinary Landau states

~
I, m & by an appropriate choice of unitary and displace-

ment operations. These coherent states are shown to form a complete and orthonormal set. Conse-

quently, these states may be conveniently used for the description of scattering processes. As an ex-

ample, scattering of electrons by a screened Coulomb potential is considered in the presence of the
above two external fields. For simplicity, the scattering potential is treated in the first-order Born ap-
proximation. The quasiclassical features of the corresponding cross sections for the induced non-

linear processes are discussed.

I. INTRODUCTION

The investigation of scattering processes of charged par-
ticles in strong external electromagnetic fields is of interest
in fusion research and in astrophysics. There are, howev-
er, also features of these scattering phenomena which
deserve attention from a fundamental point of view. In
particular, potential scattering of electrons in a strong
laser field has been quite intensively investigated in the
past two decades. ' If a magnetic field B is also present,
additional complications arise for electron scattering.
This, for example, is the case in laser interactions with a
magnetized plasma. The treatment of scattering in the
two external fields requires the solution of the following
two problems. First of all, a proper formulation of the
scattering boundary conditions in a magnetic field has to
be found, and secondly, the question arises as to how the
limit B~O has to be taken in order to obtain the field-free
results.

A few years ago, we started to investigate the possibility
of describing the electron motion in the two external fields
by conveniently chosen wave packets, the motion of which
would follow the corresponding classical trajectories.
This description would establish a connection between the
quantum-mechanical boundary-value problem and the
corresponding classical initial-value problem of electron
motion in the above external fields. As a first step in this
direction, one of the present authors (S.V. ) introduced a
coherent state description for electrons which only in-
teract with a homogeneous magnetic field. This investi-
gation also showed how the limit B~O has to be con-
sistently formulated. At the same time, we moreover con-
sidered the classical limit of Compton scattering and elec-

tron scattering in the two external fields. In these calcu-
lations we finally approached highly excited Landau states
for the ingoing and outgoing electrons, respectively. Thus
we were able to derive results which permitted a quasic-
lassical interpretation. Compton scattering, in particular,
furnished valuable insight into this limit„since for this
problem entirely classical cross-section calculations can be
performed.

By continuing these investigations, we will show in the
present paper how the quantum-mechanical motion of
electrons, which are simultaneously embedded in a mi-
crowave and a constant homogeneous magnetic field, can
be described by generalized coherent states. For these
electrons the motion of the corresponding wave packets
then follows classical trajectories. These coherent states
are obtained in polar coordinates (p, qr ) from ordinary
Landau states

~
l, m ) by a set of unitary and displacement

operations. These states turn out to form a complete and
orthonormal set. Therefore, they may be used as a basis
for the description of scattering processes in the two exter-
nal fields. As an example, we shall consider potential
scattering of electrons. For simplicity, we choose a
screened Coulomb potential, the effect of which will be
treated to first-order of the Born approximation.

In Sec. II we derive the general form of electron states
which are dressed by a circularly polarized electromagnet-
ic plane wave in the dipole approximation, and by a con-
stant homogeneous magnetic field. The magnetic field is
oriented along the z axis and it is perpendicular to the
directions of the polarization vector of the plane wave.
From these dressed states we shall construct in Sec. III
coherent states and generalized coherent states, and we
shall discuss their properties in some detail. These states
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will then be applied to potential scattering of electrons in
Sec. IV, and the quasiclassical features of the various
field-induced nonlinear processes will be discussed. Po-
tential scattering constitutes only a typical example for the
application of the above generalized coherent states. We
conclude our paper with a summary of the main results of
our investigation in Sec. V.

The choice of the combined external fields, introduced
in Sec. II, is occasionally called the Redmond
configuration. Redmond was the first who not only
presented an elegant exact solution of the classical relativ-
istic equation of motion for such a superposition of an
electromagnetic plane wave and a magnetic field, but who
also presented the corresponding exact solutions of the
Klein-Gordon and Dirac equations of motion. Moreover
he related these latter solutions to the classical result. In
the work of Redmond, however, no specific application
of these solutions to a scattering problem has been con-
sidered, nor have the generalized coherent states been in-
troduced, as we shall do in Sec. III, restricting our inves-
tigations to the nonrelativistic domain.

II. GENERAL FORM OF THE DRESSED
ELECTRON STATES

[qtpl='& . (3a)

Moreover, we have introduced the cyclotron frequency
m, =eB/Mc. Next, it is convenient to define the follow-
ing "collective" creation and annihilation operators:

A"=(2Mficu, )
' (Mcu, q i—p),

A =(2Miilco, )
' (Mco, q+iP),

for which

(4a)

[A, A ]=1 . (4b)

By means of (4a) and (4b), the Hamiltonian (2) can be
brought into the form

H =fico, ( A A + —,
'

) —i (eF/co)(%co, /2M)'

X [A exp(idiot) —A "exp( —idiot)]

+(2M) '(eF/cu) +p, /2M . (5)

For convenience of our later considerations, we shall
moreover introduce the creation and annihilation opera-
tors (a,a) and (b, b), corresponding, respectively, to ex-
citations and deexcitations of the x and y components of
the oscillatory motion of the electron in the magnetic
field. These operators are defined by

We consider an electron of charge —e and mass M
which is embedded in an external field of the form

A'"'=
—,'BXx+ A (t)

=[—,'By +(cF/co—)cos(cot), ,'Bx +(cF/—co)sin(cot),0] .

a—:(4Miruu, )
' (M axi2iP„)—,

a =(4M%co, )
' (Mai, x+2ip„),

bt=(4Mfico ) (M~ y 2iPy)—

b=(4Mficu ) (Mco y+2iPy)

(6a)

(6b)

+(eF/cu)[(p/M)cos(cot)+co, q sin(cot)]

+(2M) '(eF/co)'+P, /2M .

In (2) we have introduced the following pair of canonical
operators:

p =—p + —,'Mco, y, Mao, q =—py+ —,'Mco, x,
which fulfill the commutation relation

(3)

For convenience, we have represented the constant homo-
geneous magnetic field B in an (x,y) symmetric gauge.
The circularly polarized microwave is determined by the
vector potential A (t) and it is taken in the dipole ap-
proximation. This field has field strength F and frequency

The quantum-mechanical motion of an electron in
these two fields will be treated nonrelativistically. Roch-
lin and Davidovich have estimated the range of validity
of the dipole approximation and of the nonrelativistic
treatment of problems in magnetic fields. According to
these authors, our two approximations are certainly valid
for laboratory plasmas but can even be applied to prob-
lems in the astrophysical range of parameters.

For an electron in the external field (I), the Hamiltoni-
an operator reads

H = (2M) '[p+ (e /c) A'"']

=p /2M + —'Mco, q

with

[a,a ]=1, [b, b ]=1 . (6c)

By means of (3), (4a), (6a), and (6b), the collective opera-
tors ( A, A ) can be expressed in terms of (a, b ) and
(a, b):

At=2 ' (at+ibt), A =2 ' (a ib) . — (7)

FI= —,~, (a a+bb+1)+ ~, (a(bt —a b

(eF/cu)(fico, /—4M)'~ [(b +ia)exp(icot)

+(b ia )exp( ——idiot)]

+(2M) '(eF/co) +P, /2M .

From this equation it becomes evident that the electron's
transverse motion in the homogeneous magnetic field and
in the microwave field can be described by two forced
linear harmonic oscillators that are coupled to each other
via the energy-conserving interaction term i Ac@, (ab
—a b)/2. This coupling term represents the Larmor en-

ergy, which is proportional to the z component of the an-
gular momentum of the electron. The total wave function

Because of (7) we obtain from (5) an alternative form of
the Hamiltonian
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~

4 ), satisfying the Schrodinger equation

8[+),=tea, [e), , (9)

can be factorized since there is no coupling between the
longitudinal and the transverse components of the elec-
tronic motion,

(9a)

where
~ p, ), represents a momentum eigenstate,

(z
~
p, )t=(2m%) 'r exp[(i/R)[p, z (p—, /2M)t]] .

(9b)

~
P2), =exp[icot ( A A + —,

' )]
~
@), , (14)

to obtain from (13b) the following equation for
~

N ), :

e, (A'A+-,')
~
e), =in',

~

e), . (14a)

According to the definitions of (A, A) in (4a), we see,
however, that (14a) is the Schrodinger equation for an
electron in the presence of the constant homogeneous
magnetic field alone. Consequently, taking into account
(14), (13), (ll), (9a), and (13a), the total wave function

~
4), of the electron motion in both external fields can be

cast into the form

Equation (9b) is a free particle de Broglie wave of momen-
tum p, which describes the uniform longitudinal motion
of the electron. On the other hand,

~ P), satisfies the
Schrodinger equation of the transverse electron motion,

[iii4o, ( A A + —,
'

) i (e—F/co)(fico, /2M)'r

~

4), =
~
Jr, ),D(cr)

~
@),exp( ihEt—/A'),

where

D (cr ) =exp[(i /fi)ko(MRcu, /2)'~

X[A exp(icot)+ A exp( icot)]), ,— (15a)

X [ A exp(icot) A—exp( icot)—]

+(2M) '(eF/co)']
~
P) =i&c)

~
f) (10)

with

Ap = (eF /Mcco—)(co/bco)A. , 1i, =c /co, bco = co —co, ,

It is interesting to note that in the case of exact resonance
(co=co, ), the first term in (1 la) will vanish. In classical
terms this corresponds to an aperiodic unbounded trans-
verse electron motion, as discussed by Redmond and
Varro et al. In the present paper we shall always as-
sume co&co, . Now we introduce the displacement opera-
tor

D (cr ) =exp( cr A cr * A ),— (12)

and we define the transformed wave function
~
Pq), by

means of the relation

(13)

Introducing (13) into (1 la), we can easily show that the
interaction term is eliminated if we choose the parameter
o. as

In the following, we shall show that (10) can be
transformed to the Schrodinger equation of an electron
embedded in the magnetic field alone. As a first step to-
wards the elimination of the interaction term in (10), we

get rid of the time dependence by using the ansatz

~ lii), =exp[ i cot ( A t—A + —,
'

)] ~ pi ), . (1 1)

If (11) is inserted into (10), we obtain for
~ Pi ), the equa-

tion of motion

[fi(co, —co)(A A + ,') i (e—F—/co)(Rcu, /2M)'r (A —At)

+(2M) '(eF/co) ] ~
Pi), =i',

~
fi), . (1 la)

(15b)

and

EE=(2M) '(eF/co) +Rheo
I

cr
I

(15c)

As we shall see later, ko represents the amplitude of that
part of the classical oscillatory motion of the electron
which oscillates with the microwave frequency cu. In
(15c), the first part of the energy shift b,E is the usual
intensity-dependent ac Stark shift due to the presence of
the microwave. This shift can be expressed in the form
Mc p /2, where

p=eF/Mcco .

This is the dimensionless intensity parameter which mea-
sures the electric field strength of the microwave. As we
can see from (15b), the effective intensity parameter,
p(co/bco), can be much larger than the intensity parame-
ter p if the detuning hco is much smaller than the mi-
crowave frequency co. Moreover, we have introduced in
(15b) the reduced wavelength A, of the microwave. There-
fore, the amplitude A, o may be expressed in the form
Xo=p(co/Aco )A.

For convenience in our later considerations, we shall
present an alternative expression for the displacement
operator D(cr), as defined in (15a). By means of (7),
D(cr) can be expressed as a product of two displacement
operators acting on Hilbert subspaces which belong to the
x and y components of the transverse electron motion.
This representation reads

cr =i (eF/co)(Ace, /2M)' [fi(co co,)]—(13a) D(cr) =D, (a)Db(P),
This yields the transformed equation for

~ f2 ), :

[A(co co, )(A A—+ —,
' —

~

cr
~

)+(2M) '(eF/co) ] ~
Q2),

=iiricl,
~
p2), . (13b)

Finally, we make the ansatz

where

D( a)=exp(aa —a*a), Di, (P) =exp(Pb Pb), —

(ISa)

and
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a =i A p(Mco, /2iri)' exp( —icot),

P= —Ao(Mco, /2')' exp( i—cot) .
(18b)

where

l!
(l+ ~m ~)!

1/2

exp(imp)

The operators (18a) have the displacement properties

D, '(a)aD, (a)=a +a, Dl, '(/3)bDi, (/3)=b+/3 . (18c)

With reference to (14a), the state vector
~

N), satisfies the
Schrodinger equation in the presence of the homogeneous
magnetic field alone. The stationary solutions of this
equation are the well-known Landau states

i
N),

=
i

/, m), =
~

l, m )eXP( iCO—lmt), Where 1 and m are the
radial and azimuthal quantum numbers, respectively. By
introducing the polar coordinates (p, cp) through the
definitions x =p coscp, y =p sing, these Landau states
have the following form in coordinate representation
(Landau and Lifshitz ):

(x
~

0&), =(x,y ~
l, m), =&i (p, cp)exp( ico—l t),

(19a)

simultaneously interacting with a homogeneous magnetic
field and a microwave field have been presented. These
states were applied to a semiclassical treatment of
magneto-Raman scattering in a microwave field.

In this section we shall construct generalized coherent
states of an electron which is simultaneously embedded in
a constant homogeneous magnetic field and in a circularly
polarized electromagnetic plane wave. These states wi11

form a complete set of solutions of the Schrodinger equa-
tion (9), where the corresponding Hamiltonian is given by
(8). These states, dressed by the external fields, will be
used as a basis for calculations in perturbation theory, to
be presented in Sec. IV.

We begin our investigation with a skort review of the
ordinary coherent states for electrons in a homogeneous
magnetic field. Perhaps the simplest method for con-
structing such coherent states is based on the one-
dimensional harmonic oscillator algebra. Instead of
starting from (14a), it is more convenient to consider the
equivalent Schrodinger equation, which is obtained by
means of (7), introducing the operators (a,a) and (b,b)
of particle oscillations in the x and y directions, respec-
tively. This equation reads

—,'co, (a a+b b+1)+ co, (ab ——a "b)
~

4),
)& exp( —g'/2)g ~ Lll I (g) (19b)

(20)

In (19b) the LlI I are associated Laguerre polynomials
(Gradshteyn and Ryzhik' ) and we have introduced the
abbreviations

~

iIi), =R ( —,'co, t)
~
Ni), , (21)

In (20) we eliminate the coupling between the two oscilla-
tory motions by means of the ansatz

g=yp, y =eB/2irie =Mco, /2A' . (19c) where the operator R (A, ) is defined by

Correspondingly, in (19a) the discrete energy levels El
of the transverse electron motion (Landau levels) are
known to be

El, m /icol, m col, m =co, [&+-,'(m +
~

m
~
+1)]

R (A)=exp[A, (ab ab)] —. (21a)

This operator has the interesting property of rotating the
linear combinations of a and b in the (a, b) plane,

l =0, 1,2, . . . , rn =0, +1,+2, . . . . (19d) R '(A. )aR (A. ) =a cosA. bsinA. , —

R '(A, )bR (A, )=b cosA, +a sinA. .

III. COHERENT AND GENERALIZED
COHERENT STATES OF ELECTRONS

IN EXTERNAL FIELDS

After having eliminated the coupling term by means of
(21), we are left with the equation

—,'co, (a a +b b+1)
~
4i), =id,

~

+i), . (21c)

Coherent states of charged particles in a homogeneous
magnetic field have been introduced by Malkin and
Man'ko. " These states have been thoroughly studied by
Varro, in particular, from the point of view of the limit
of zero magnetic field. Moreover, in a paper by Varro
et al. , a special class of coherent states of electrons

This is simply the Schrodinger equation of two indepen-
dent linear harmonic oscillators of the same frequency
co, /2. The coherent states of this system can be easily
generated from the ground state by means of the displace-
ment operations

~
@i),=

~
ai, /3i), =

~

aiexp( ico, tl2)),
~

/3iex—p( ico, t/2))bexp( ico, tl—2)—
=D, [aiexp( ico, t/2))Di, [/3i—exp( —ico, tl2)]

i
0),

~

0)i, exp( —ico, tl2), (22)
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where

XDi, [i (a exp( ico,—t) /3)—] ~

0,0)

X exp( i co—, t l2 ), (23)

a: ,'(a—,—i/3—, ), /3= ,'(a, +-i/3i), (23a)

and
~
0,0) =

~
0),

~
0)b is the ground state of the coupled

harmonic oscillators corresponding to a Landau state with
radial and azimuthal quantum numbers I =m =0.

If an electron is in one of its coherent states
~

a, /3)„
then the probability distribution for the position of the
electron in a plane perpendicular to the magnetic induc-
tion lines is a gaussian wave packet of constant width.
The center of this packet gyrates along one of the possible
classical trajectories in the magnetic field. The charac-
teristic parameters of these trajectories, namely, initial po-
sition and initial velocity of the electron, are implicitly
contained in the complex numbers a and /3. It will be
useful to present an alternative form of the coherent states

i a, /3), in terms of the time-independent one-dimensional
oscillator coherent states

~

a i ) and
~
/3i ):

~
a, /3), =exp( iHtttift)D—, (ai)Dt, (/3i)

~

0,0)
=exp( iHstlft)

~
ai).—~/3i)b . (24)

In this equation, Hz is the Hamiltonian of an electron in
a homogeneous magnetic field alone. This Hamiltonian
can be inferred from (20) to be

where D, and Db are the displacement operators defined
in (18), and ai and Pi are arbitrary complex parameters.
By using (21), the coherent states of the original system
(20) can be immediately obtained. After some algebra, we
thus get

i
cIi), =

~

a,P), =D, [a exp( ic—o, t)+/3]

and in (25) the integration is extended over the whole
complex ai and /3i plane. In (25a) Re and Im denote the
real and imaginary parts, respectively.

Since the coherent states
~

a,P), form a complete set
on the Hilbert space belonging to the transverse part of
the electronic motion in the magnetic field, they could in
principle, be used as a basis set in perturbation theory, in
order to describe scattering processes in the presence of a
homogeneous magnetic field. This would allow us to in-
terpret the quantum-mechanical results in terms of classi-
cal particle trajectories. Since, however, the coherent
states are not orthogonal to one another, even in Born ap-
proximation we encounter a set of integro-differential
equations for the scattering amplitudes. As we shall show
in Sec. IV, we can get rid of this difhculty by using a set
of generalized coherent states, which we shall now intro-
duce.

To this end, we recall the expression (24) for the
coherent states

~

a, /3)„and we define the generalized
coherent states as a natural generalization of (24) in the
following manner

~

a,P;I, m ), —:exp( —iHstlft)D, (ai)Db(/3i) I, m ),

where
~

l, m) are ordinary Landau states of the form
19(a)—19(d). By analogy with (23), we can obtain from
(26), after some algebra, an alternative form of the gen-
eralized coherent states

~
a, /3; I, m ) =D, [a exp( i co, t) +—/3]

XDb[i(a exp( —ico, t) —/3)]

Htt= ,'ftco, (ct a+b b+—1)+ fico, (ctb —a b—) .
2

(24a)
X

~

I, m )exp( icoI t) . — (26a)

f d ai I d /3i
~
a, /3) t, ( a,P ~

= 1, (25)

where

d ai—=d(Reai)d(Imai), d Pi ——d(Re/3i)d(lm/3i),

(25a)

From (24) it is clear that the states
~
a, /3), form an over-

complete set, as the usual coherent states of a linear har-
monic oscillator do. For these states the completeness re-
lation reads

We now consider an electron, which is simultaneously
embedded in a constant homogeneous magnetic field and
in a microwave field, and we follow the general outline of
solution of the Schrodinger equation which was presented
in Sec. II. Accordingly, if we want to take into account
the effect of the radiation field on the electron, we have to
determine the total wave function

~

%)„which is given
by (15). In the present case, however, the solution

~
N),

is not an ordinary Landau state (19a) and (19b), but in-
stead has to be considered as a generalized coherent state

~

a, /3;I, m ), . Hence, treating only the transverse part of
the electron motion, we obtain from (26a) by applying the
displacement operator D(cr) given by (15a), (17), (18a),
and (18b):

D
I
cI') ~

=D
I
a p I m )

=D, [ig exp( icot)+a exp( —ico, t)+/3]Db {i—[ig exp( icot)+a exp(—ico, t) /3]]
~

I m—)—
X exp( i cot t)exp(2ig {—a exp[i (co —co, )t]+a*exp[ i (co —co, )t]—I ), (27)
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where

g =Ap(y/2)'~ (27a)

u (t) =x, (t) iy—, (t)

=ikpexp( i—cot)+i (vp/cp, )exp( —i', t)+ up

+a exp( —i cp, t) +P],
u~(t) =(2/y)'~ Im[ig exp( icvt)—

(28a)

with A,p and y defined by (15b) and (19c), respectively. If
we introduce the two-dimensional vector ui(t)
:—(u„(t),u~(t), 0) with components

u„(t)=—(2/y)' Re[ig exp( i co—t)

(32)

where Ap has been defined in (15b). As we can see, it is in
fact the amplitude of that part of the oscillatory motion of
the electron, which oscillates with the microwave frequen-
cy. Moreover, the parameters vp and up in (32) are deter-
mined by the initial velocity v (tp) and the initial position
u (tp), where tp is some arbitrary initial time. We get

+a exp( i',—t) —P], (28b)
vp =—v (tp )exp(icp, tp ) —cvkpexp( i Ace—t p ), (32a)

then we can show that the probability distributions for the
transverse electron position xi =—(x,y) read up ——u (tp) —iApexp( —icvtp) i (vp—/cv, )exp( —icp, tp),

(XJ
(
D

(
a,P;I,m ), (

=
(
4i (xi —ux(t) (29) (32b)

u (t) —=x, (t) —iy, (t),
v (t) =x, (t) iy, (t),—

(30a)

(30b)

where x, (t) and y, (t) are, respectively, the x and y com-
ponents of the classical transverse electron trajectory, and
the dot denotes as usual derivation with respect to time.
The nonrelativistic classical Lorentz equation of motion
for an electron in the two external fields reads

Here the electrons move in two external fields and they
are described by generalized coherent states (27), while the

(xi ) are ordinary Landau states (19b) in coordinate
representation. As we shall discuss below, the transverse
parts of the classical electron trajectories in our external
field configuration have the same structure as
uq(t) =(u„(t),u~(t)) of (28a) and (28b). Consequently, if
we properly adjust the complex parameters a and p, we
can always construct generalized coherent states, the
probability distributions of which exactly follow the possi-
ble classical trajectories. The parameters a and p can be
expressed as certain combinations of the initial position
and the initial velocity of a classical electron. This means
that, up to an irrelevant phase factor in the wave function,
there is a one-to-one correspondence between the classical
trajectories and the generalized coherent states, if a fixed
pair of quantum numbers (l, m) is considered.

In order to derive the relations between the parameters
a and P and the initial values of the corresponding classi-
cal trajectory, it is convenient to introduce the complex
position u (t) and the corresponding complex velocity v (t)
through the definitions

where b,co=co —co, . From (32), (32a), (32b), (28a), and
(28b) it is obvious that u (t) and u„(t) iu~(t) —have the
same structure. Therefore, if we choose

a=i (vp/cp, )(y/2)' ', P=up(y/2)' ', (33)

then u (t) iu~(t) co—incides with the classical complex
trajectory u(t)=x, (t)—iy, (t). Consequently, the vector
uq(t)=(u (t), u~(t)) coincides with the classical transverse
position vector x, i

——(x, (t),y, (t), 0) of the electron

u(t)=x, i(t) . (33a)

Henceforth we shall denote the generalized coherent state
D (a,P;l, m)„defined in (27), and corresponding to a
classical complex electron trajectory u (t), by

(u (t);l, m ):D(a, I3;l, m ), .— (34)

Here u (t) is given by (32), (32a), and (32b). The relations
between the classical parameters (up, vp) and the original
parameters (a,P) are shown in (33). With the compact
notation introduced by (34), we can rewrite (29) in the
form

t);i, m & I (35)

(
u (t)) =

(
u (t);0,0) . (36)

The ordinary coherent states for electrons in our exter-
nal field configuration are special cases of the generalized
coherent states

(
u (t);l, m ) with 1 =m =0. Hence they

are shifted ground states of the Landau type. %e shall
denote them by

Mv= —eE (t) —(e/c)vt&B, (3 la) As has been mentioned earlier, these coherent states form
an overcomplete set with

where

E (t) =F(sin(cpt), —cos(cot), 0), B=(0,0,8), (31b)

J d u
(

u (t)) (u (t)
(
=1,

(
(u'(t)

(
u(t)) (

(37a)

which are the electric field of the microwave and the mag-
netic induction field, respectively. They follow from the
vector potential (1). The transverse components of the
classical trajectory can be easily determined by employing
the complex combinations u (t) and v (t) defined in (30a)
and (30b). Thus we obtain for u (t):

=exp[ —y ( up —up
(

—(y/cp, )
(

vp —vp
( ], (37b)

where

d u:—m. d(Reai)d(lmai)d(RePi)d(lmPi) . (37c)

According to the definition of the parameter y in (19c),
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1, m

( u (t);l, m
~

u (t);1',rn'
& =5~ ~ 6

(38a)

(38b)

Finally, if we choose in (15) for D
~

@&, a generalized
coherent state (34), then the total wave function of (15)
has the form

~

'I' &, =
~ p, &,

~

u (t); 1,m & exp( i b Et /A), — (39)

where hE is defined by (15a). In Sec. IV we shall apply
the complete orthonormal set of this type of wave func-
tions to perturbation calculations.

IV. APPLICATION OF GENERALIZED
COHERENT STATES TO POTENTIAL SCA'I I'ERING

In Sec. II we have derived the exact solution (15) and
(15a)—(15c) of the Schrodinger equation for an electron
embedded in a magnetic field and in a microwave. We
shall consider in this section scattering of electrons by a
screened Coulomb potential V (r) =( A Ir)exp( —kDr),
where kD is the Debye wave number. In order to de-
scribe electron scattering in our external field
configuration, we represent the initial and final states by
dressed states of the form (15). In (15) we may choose for
D

~

N &, either coherent states
~

u (t) &, or generalized
coherent state,

~

u(t);l, m & as introduced in Sec. III, and
we shall discuss both possibilities. For simplicity, we
shall treat the scattering potential to lowest order of the
Born approximation. Consequently, the matrix element
corresponding to the diagram of Fig. 1 has to be evalu-
ated. In this figure the double line indicates dressed elec-
tron states.

We employ the time-dependent perturbation theory of

y
' is a characteristic length in our magnetic field prob-

lems.
The complex parameters a ~ and P ~ are related to the in-

itial values of the classical trajectories via (33), (32a), (32b)
and (23a). Therefore, (37a) says that the integral of the
dyad

~

u(t)&(u(t)
~

taken over all classical trajectories
(more precisely, taken over all possible initial values of the
classical motion) yields the unit operator of the Hilbert
space belonging to the two-dimensional quantum motion
of an electron in the two external fields. Furthermore,
(37b) shows that the overlap of two coherent states is
small, if the initial data (uo, uo) and (uo, uo) of the two
corresponding classical trajectories are far from each other
in the classical parameter space. This overlap also de-
creases with increasing value of the magnetic parameter y.

In the present paper we shall not enter into a detailed
discussion of the formal properties of the generalized
coherent states. We shall merely present the completeness
and orthogonality properties, which we sha11 need in Sec.
IV. These two properties of the generalized coherent
states originate in the corresponding properties of the or-
dinary Landau states

~

1,m & of (19a) and (19b). From
(34), (25), (19a), and (19b) immediately follows that for
any classical trajectory u(t) the corresponding coherent
states

~

u(t);l, m & satisfy the following completeness and
orthogonality relations:

FIG. 1. Feynman diagram of electron scattering in a screened
Coulomb potential V in the first-order Born approximation. The
double lines represent the ingoing and outgoing electrons, which
are described by the generalized coherent states

~
4; )—=

~

u(t};1 m & ~p, &, and
~

0'f &
—=

~

u'(t);i', m') Ip,'&„respective-
ly. This diagram corresponds to the transition matrix element
(46).

Dirac to evaluate the scattering matrix element. The total
wave function

~

X&, satisfies the Schrodinger equation

(H + V)
~

X &, =i Ar},
~

X &, , (40)

where H is given by (2). We split
~

X &, into a sum of the
initial state vector

~

4; &, and a correction term
~

Ox. &, :

(41)

For
~

4; &, we take one of the solutions of the unper-
turbed Schrodinger equation (9). The correction vector

~

%x. &, can be expressed as a superposition of unper-
turbed states satisfying (9). In what follows, we have two
possibilities.

According to (39), (36), and (37a), the coherent states
u(t)& form a complete set. Therefore, we can express
4x &, as an integral over the states

~

u (t) &
~ p, &, . The

term containing the energy shift b,E, given by (15c), does
not need to be written down explicitly, since it drops out
in the evaluation of transition probabilities. Hence we
write

i

%x. &, = f dp, f d u C~ „(t)
i

u (t) &
i p, &, , (42)

where C~ „(t) are the unknown transition amplitudes
which have to be determined. On the other hand, if we
use the relation (38a) for the completeness of the general-
ized coherent states, then we may express

~

'IIx &, as a
sum over generalized coherent states belonging to some
classical trajectory u'(t). Thus we may write

~

%'x &, = f dp, g Cz ~, m(t;u')
~ p, &

~

u'(t);l, m & . (43)
l, m
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In the first case, where
I

qltc ), is given by (42), we obtain
in the first-order Born approximation for the unknown
amplitudes C~ „(t) the following integro-diff'erential equa-

tion:

ih' f dp, g C „I, (t;u')
I p, ) (

I

u'(t);i, m & = V
I

'p; )
l, m

(45)

i' dp, duC~ „t u t p, , =V (44)

Apparently, we cannot transform (44) into an ordinary
differential equation for the amplitudes C~ „(t) by project-

ing each side of (44) on (u'(t), (p,
'

I, since according to
(37b) the set of states u (t) ) is not orthogonal. We can
overcome this difficulty, however, if we use the represen-
tation (43) of

I

4x. ), as a sum over generalized coherent
states

I

u'(t);I, m). In fact, in the first-order Born ap-
proximation the amplitudes Cz ~

(t;u') satisfy the equa-

tion

and this equation can be simplified by means of the ortho-
normality relation (38b) of the generalized coherent states.
Thus we obtain for the C~ t (t;u') the following ordi-

nary differential equation

ifiC ~ t, ,(t, u') =, (p,'
I

( u'(t);1', m'
I

V
I
4; ), , (45a)

which can be immediately solved.
Consequently, if we choose for the transverse part of

the initial state
I
4; ), a generalized coherent state

I

u (t);l, m ), then we can evaluate from (45a) the transi-
tion matrix elements Tf;, which are equivalent to the am-
plitudes C ~ r, ( t = ao, u '). Hence,

Tf;(p,', u', 1',m'~p„u, l, m) =Tf;
=(iA') ' f dt, (p,

'
I

(u'(t);1', m'I V
I
u(t);1, m) Ip, ), . (46)

In evaluating Tf; we should pay attention to the fact that
we have expressed in (43) the correction state

I

%x. ), in
terms of generalized coherent states

I

u'(t);1', m') corre-
sponding to some classical trajectory u'(t). The trick of
our procedure is that in

I

4'x. ), we use the family of "out
states"

I
u '( t);1',m ' ), whereas the initial states

I
u (t);l, m ) belong to the family of "in states" of the gen-

eralized coherent states.
The transition matrix elements (46) are the probability

amplitudes for transitions during which the classical tra-
jectories change from u (t) to u'(t), and, at the same time,
the generalized coherent wave packets change their shape,
which is accounted for by the change in the quantum
numbers 1 and m and can be recognized in (35). In the
present paper, we shall not consider the change of the
shape of the wave packets. Moreover, for clarity we shall
study transitions between the ordinary coherent states

u (t)) =
I

u (t);1 =O, m =0) of (36). Accordingly, the
transition matrix elements, which we shall analyze below,

are the following special cases of (46):

Tf =(1&) ' f "«&p'1&u'(t)
I

V Iu(t)& lp. & (47)

Now we shall choose in (47) for V a screened Coulomb
potential, which we will represent by the Fourier integral

V(r)=( A /r)exp( kDr)—

kD+kJ +kz

In (48) we have introduced kz =—(k„,k~) and xj—= (x,y) as
two dimensional vectors in a plane perpendicular to the
direction of the magnetic field B=(O,O, B). For clarity,
we summarize from (39), (36), (34), (27), (27a), (25), (24),
(24a), (23a), (18a), (18b), (17), (9b), (32), and (33) the
meaning of those quantities which appear in the matrix
elements (47):

I
u (t) ) =D, [ig exp( —idiot)]Db [—g exp( icot)]exp( iH—st/R)

I
a~ )—,

I
p~)b,

H~ = —,'duo, (ct "a +b b +1)+ fur, (ab —a b), —

(z
I p, ), =(2M) '~ expI —(i') '[zp, (p, /2M)t] j, —

g =Xo(y/2)', Xo——(eF/Mes)(cu/hey)k, y =Mao, /2', 5cg=cg cg„k=c/co, co—, =eB/Mc,

a) =a+P, Pt =i (a P), a=i (Uo/—co, )(y/2)', P=u0 (y/2)'

u (t) =x, (t) iy, (t) =ikoe—xp( idiot)+i (Uo/co—, )exp( —ice, t)+uo .

After having carried out the k, integration, we obtain from (47) and (48)

(u'(t)
I
exp(ikg xg)

I
u (t) )

Tf;=(i') '[4~A/(2~) ] f + dt exp[( i%2M) '(p,' —p, )t] f d kz-
oo kD2 +q 2+ k 2&

(49)

(50)
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where

(50a)

corresponding to the longitudinal momentum transfer. Next we apply the displacement properties (18c) of D, and Db
and take into account the relations (6a)—(6c). Then the matrix elements (u'(t)

~

e xp(ikq x.z)
~

u (t)) in (50) can be brought
to the form

(u'(t)
~
exp(ikj xq)

~

u(t)) = b(P~ ~, (a~
~
exp(iHttt/fi)expIi (2y) '~ [k„(a+ctt)+k»(b+bt)]I

X exp( iHtt—t/fi)
~
a~ ),

~
p~) t, exp[ikqkosin(cot —X)],

where we have introduced the polar angle of the vector kj through the definition

kq ——(k„,k»)=kj(cosX, sinX) .

(51)

(5 la)

The last factor in (51) represents the generating function of the ordinary Bessel functions J„and can be expanded into a
Fourier series using the Jacobi-Anger formula

exp[ikj Rosin(cot —X)]= g J„(kql o)exp[in (cot —X)] . (52)

From (52), (51), and (50) we thus obtain

t2 2

T~ =(iR) '[4mA/(2m. ) ] g f "dt exp ( —i') ' ' —+naca t
2M

J„(kqko)exp( in X )—
X f "kgdkg f dX M—

0 0 kD+q'+k',

where we have introduced an abbreviation for the following matrix element:

M
& &

——
b (P~ ~, (ai

~

exp(iHat/R)

XexpIi(2y) '» [k„(a +a )+k»(b +b )])exp( iH~t/A') —
~
a~),

~
p~)b .

(53)

(53a)

Using some of the formulas collected in (49), we obtain, after a lengthy but straightforward calculation, for the matrix
element (53a)

M ..p. p
——expI —,'kg[(vo*/cv, )e ' —(vo/co, )e ' ]I

l
Xexp —kz(uoe' +uoe '

) exp( —kq/4y), (a'~
~
a~), (bp'~

~
p~)b . (53b)

In (53b} we have taken into account the relations between (a~,P~)(a,P), and (uovo) presented in (49). The last two fac-
tors on the right-hand side of (53b) represent the overlap of the initial and final coherent states,

~

u (t) ) and
~

u (t) ), re-
spectively. The square of the modulus of the product of these states has been presented in (37b).

In order to carry out in (53) the time integration and the integration over X, we expand the first two factors on the
right-hand side of (53b) into Laurent series by applying the generating formula of Bessel functions

expI —,'kj [(vo' /cv, }e ' —(vo/cv, )e ' ]) = g J, [kq(vo*vo)' /co, ](vo*/vo)' exp[is (cv, t —X)], (53c)

l
exp —kq(uoe' +uoe '~) = g Jt[kq(uouo )' ](—uo/uo )' exp(ilX) . (53d)

After we have inserted (53b) —(53d) into (53), we can easily perform the integrations over time and X and we thus obtain
for TI; an infinite double sum over matrix elements for various incoherent nonlinear scattering processes,

Tg; = 2ni g 5[—(2M) '(p,' p, )+n Rco+ sf—ice, )M/,"",
n, S = —oo

where

M'"'=—(A/M)(vo'/vo)'"( —uo/uo )'"+'".&a~
~
a~). b&P& ~P&)b

exp( —k f /4y) 1/2 & e 1/2X kydkg
& 2 2 J (kykp)J„+ [kg(u Ou 0 ) ]J [kg(vo vp) /cv )

0 kD+q +kg

(54)

(54a)
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For the evaluation of the scattering cross sections we need the squares of the moduli of the matrix elements (54a). These
quantities can be written in the form

~
M),"'

~

=( A /vrh)
~

up/up
~

"+'
~

U(i/Up
~

'exp[ —y ~
up —uo

~

—(y/ni, )
~

Uo —vo
~ ] ~

I„,
~

where

exp( —k i /4y )
2

I —f kidki i 2 i J„(kiddo)J„+ [ki(u pu p ) ]Jq[ki (VQ VQ) /CO ]
0 kD+q +kg

(54b)

(54c)

la
In the case of head-on collisions, for which uo =0, Uo =0, we obtain for the transition matrix element a simpler formu-

T/;(HO) = 2rri —g 5[(2M) '(p,' p,—)+nficu+sfm, )M),""(HO),
n, S = —oo

(55)

where

Mf""(HO).=(3 /M), (ai
~

ai ), q (P'i
~
Pi )b[&!(n +&).']

exp( —ki/4) )
&&(Uo'/2ni, )'(duo/2)"+' kidki

2 z 2
J„(kik.p)kP+"

0 kD2 +q 2+
(SSa)

For our further discussion it is convenient to visualize
the essential parameters of our scattering process. Since
the electrons move freely in the z direction before and
after the scattering by the potential V, this part of the
problem causes little difficulties. We shall therefore con-
sider, in particular, the transverse part of the quasiclassi-
cal electron motion in the (x,y) plane. Here we have
chosen to describe the electrons before and after the
scattering by coherent states

~

u(t)) and
~

u'(t)), respec-
tively, given by (36). To these states correspond Gaussian
wave packets, which according to (35) follow classical tra-
jectories, namely, ( (xi

(
u (&))

(

=
[
ilioo(xi —x, i(&)) [

We have indicated this behavior in Fig. 2. In this figure
the range of interaction of the scattering potential is deter-
mined according to (48) by the screening length kD '. The
distance of the center of gyration of the electron from the
scattering center is given by the parameter ~ up ~. With
reference to (49), the initial value uo has moreover a par-
ticular phase in the (x,y) plane. Furthermore, the motion
of the electron wave packet in the magnetic field alone is
characterized by the cyclotron velocity

~

vp
~

and by the
cyclotron radius of gyration

~
vo

~

/co„where Up has also
some initial phase. To this motion are superimposed the
oscillations with amplitude A.o of the wave packet in the
microwave field. As is apparent from (35), while an elec-
tron is moving in the two fields, its wave packet does not
change its shape. The width of the electron wave packet
is determined by the magnetic length y ', which was
introduced in (19c). During a collision process, an elec-
tron makes a transition from the initial coherent state

~

u(t)) to the final state
~

u'(t)). In this transition, the
initial values of the classical trajectory (uo, vo) change in
amplitude and phase to take on the final values (u p, Up).

For the evaluation of the scattering cross sections of the
various field-induced nonlinear processes, we first intro-
duce a finite normalization length L in the z direction.
Then we can calculate from (54) the transition probabili-
ties per unit time to be

FIG. 2. Illustration of the essential parameters that character-
ize our quasiclassical scattering process in the transverse direc-
tion. The electron is described by a wave packet, the probability
distribution of which has the width A, ~ ——y ', which is our unit
of magnetic length. This packet oscillates in the microwave field
with the amplitude A,o and the frequency co. At the same time,
the packet gyrates in the magnetic field with the cyclotron veloci-

ty Up
~

and the frequency co, on a circle of radius

p, =
~

Up
~

/co, , which has its center of gyration at C. The center
of gyration is located at a distance pp=

~

up
~

from the scattering
center at S, and the range of interaction of the scattering poten-
tial V is determined by the screening length kD '. The phases of
the initial values uo and Uo are not indicated. In general, the
complex initial values uo and Uo change in amplitude and phase
during the scattering process, thus changing in particular the po-
sition of the center af gyration C and the radius of gyration p, .
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o'~""=(~/y)[(2ir) /v, 'v, ] ~
M),""

~

(56)

where the matrix elements Mf,"." are given by (54a).
Moreover, we have introduced v, =p, /M and v,'=p,'/M,
which are the z components of the initial and final elec-
tron velocities.

According to (56), the cross sections o'"" are propor-
tional to ~Mf,

"'"
~

which are given by (54b) and (54c),
and which contain the integrals I„, as the only pontrivial
factors. In the following we shall concentrate on the eval-
uation of the integrals I„, for particular cases.

Since the scattering potential is spherically symmetric,
it is intuitively clear that during the scattering process
there will be only a comparatively small, if any, change in
phase of the parameter uo describing the position of the
center of gyration. The scatterer essentially attracts or
repulses the particle in the radial direction, so it very like-
ly only modifies the distance

~
up

~

between the center of
gyration and the origin. Therefore, we may use in (54c)
the approximation upup ——

~

upup ~. This relation is cer-
tainly valid, if the electron does not get too close to the
scattering center. Moreover, the change of the phase of
the velocity vo can also be neglected. In order to see this,
we shall define the phase difference e by the relation
vp vp=

~
vpvp

~

exp(ie). By taking into account (32), we
can estimate e to be roughly equal to co, ~, where ~ is the
collision time. It is natural to approximate ~ by the ratio
between the screening length kD

' and the average velocity
v, =(v,'+v, )/2, hence r=(v, kD) '. In order to estimate
~ we take as an example U, =10 cm/sec and kD '=100
A. In this case we get ~=10 ' sec, which is of the order
of magnitude of co

' of the optical frequencies. For mag-
netic fields available nowadays in laboratories, co, is usual-
ly much smaller than the optical frequencies, so that .

e=~,~ && 1. Therefore, in the case under discussion,
vp'vp=

~
vpvp

~

seems to be a very good approximation.
This conclusion is supported by the following considera-
tion. In (54b) appears the factor exp[ —y ~

vp —vp
~

cp, ],
the argument of which may be rewritten in the
form y ~

vp —vp
~

to, =(B,/8)
~

vp vp
~
c, where B,—=M c / eiii (=10' G) is the critical field strength. Even

though
~

vp —vp
~

c may be very small, this cannot
compensate the huge factor 8, /8 and therefore we obtain

exp( —y ~
vp —vp

~

cv, )= .2 —2 = 0 for vp&vp

1 for Uo ——U.

With these simplifications in (54c), the integrals I„, take a
relatively simpler form:

T W)"'~ =(2m/A)(M/pz )
~
M)i '

~

(2M/L)

from which we obtain the cross sections, if we divide by
the current density of incoming particles, j;„,
=(p, /ML)(y/m. ), where rt/y is the area of the transverse
cross section of the gaussian wave packets of the ingoing
electrons. This finally yields

a =(4y) '(kD+q ), a —=2l,py'~

b=2
~

upup
~ y c=2

~

vpvp
~ y /co

(57a)

To discuss the physical meaning of the parameters (57a),
we remember from (19c) that y '=2k'/Mcp, =As, where
A.z is the characteristic length of the probability distribu-
tions belonging to the coherent states. Therefore, if we
denote the geometric mean value of the initial and final
radial position of the center of gyration by
pp' =—

~

upup
~

', and, similarly, call the "transition cyclo-
tron radius" p',"—:

~

vpvp
~

' /cp„ then a, b, and c in (57a)
measure 2A, O, po', and p,", respectively, in units of A,~,
where A,o is the amplitude of oscillations in the mi-
crowave. Finally, for q =0, n ' is a measure of the De-
bye length kD

' of the potential V in terms of k~. On the
basis of these parameters, we may now consider the fol-
lowing two limiting cases.

(i) If the magnetic field is strong and/or the screening
of the potential is weak, then in (57a) we shall have
a «1, and, consequently, in (57) the Lorentzian profile
(a +x )

' will be much sharper than the Gaussian
profile exp( —x ). Therefore, in this case I„, of (57) can
be well approximated by

I„,= 2
—2J„ax J„+, bx J, cx, o'

a +x
(58)

By means of formula 6.5411 of Cxradshteyn and Ryzhik, '

the integral (58) can be evaluated to yield

K„(aa)I„+,(ab)I, (ac)( —1)', a &
~

b +c
~

I„,= I„(aa)I„+,(ab)K, (ac), c &b, a &
~

c b~—
I„(aa)K„+,(ab)I, (ac), c &b, a &

~

c b~—
(59)

where I„(z) and K„(z) are modified Bessel and Hankel
functions, respectively. The cross sections obtained from
(56), (54b), and (59) represent natural generalizations of
the results of our earlier investigations, in which the clas-
sical limit of Compton scattering and electron scattering
in external fields has been considered. In that paper we
used ordinary Landau states (19a) and (19b) for the states

~

4), of (15), as a basis of perturbation theory in (46), in-
stead of the generalized coherent states

~

u (t);l, m ) intro-
duced in the present investigation. Finally, in the
aforementioned paper, the classical limit of highly excited
Landau states with (l~ oo, m ~ oo ) was discussed. For a
detailed analysis of this limit and its consequences for the
reaction rates, the interested reader is referred to Sec. 4.2
of that investigation.

If electron scattering takes place in the presence of a
magnetic field alone, in which case in (15b) the field am-
plitude F and therefore A, p are zero, we obtain from (57a)
and (59)

2

I„,= xdx J„ax J„+, bx J, cx, 57
0 a +x

I, (ab)K, (ac), c &b
I =5 I, (ac)K, (ab), b & c, (60)

where which is the generalized form of a result derived by Ven-
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Now we use Graf s theorem for the generating function of
the integrals I„„and employ the formula 6.633.2 of
Gradshteyn and Ryzhik' to obtain from (61):

I„,= —,'a exp[ —(a'+b +c')/4]

)& g I„+,~g( ,'ab)I, +k( ,'ac—)II,( ,'bc)—(—1)'+-",
k

(62)
and if there is no microwave present (a=0), we get

I„,= —,'a exp[ (b +c )l4]I—, ( ,'bc)o„p . —(62a)

tura. ' The difference between our result and that of
Ventura comes from the fact that in our calculations we
have taken into account the changes of the particle trajec-
tories during the scattering process from u (t) to u'(t), as
is also apparent from (54b). Hence, if we completely
neglect the changes in the particle trajectories (corre-
sponding to a neglect of transverse recoil effects), our re-
sults coincide with those of Ventura. In Ventura's paper
highly excited Landau states have also been considered
and therefore this investigation is close in spirit to our ear-
lier paper.

It is interesting to note that, for large arguments (ab)
and (ac) in (59) or (60), we may derive from the asymp-
totic expressions for the functions I„and K„a factor of
the form exp[ —(kD +q )'

~ p, —pp ~
]. The maximum of

this factor at p, =po can be easily understood by inspect-
ing Fig. 3. In this situation the particle orbit may hit the
scattering center during the collision process.

(ii) Next, we consider the other extreme, in which the
magnetic field is very weak and/or the screening is very
strong. In (57a) we then shall have a »1, and therefore
in (57) the Gaussian profile exp( —x ) will be much
sharper than the Lorentzian (a +x ) '. Hence, in this
case the integral in (57) can be approximated by

~ d~ exp —~ J„g~ J„+, b~ J, gx
0

a »1 . (61)
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&& I„',(HO), (63)

where

2

I„,(HQ) —= f dx x"+ '+'J„(ax),
a +x

(63a)

with n, s) 0.
For weak magnetic fields and/or strong screening

(a »1), (63a) can be brought to a closed analytic form.
Using formula 6.631.10 of Gradshteyn and Ryzhik' we
get from (63a)

—XI„,(HO)=a f dx e x" + '+'J„(ax)
0

2=(s!/2a )e ' ~ (a l2)" L,"(a l2), a &&1,

(64a)

where I,," are associated Laguerre polynomials. Using in
(62) the power-series expansions of the modified Bessel
functions I„, we can show that the general expression for

~
Mf,""

~

of (54b) and (62) exactly reduces to
~
Mf,""(HO) ~, given by (63) and (64a), if we take the

limits b, c~0 (corresponding to
~

up ~, ~
Up

~

~0). Conse-
quently, although (62) and (64a) apparently look very
different, (62) in fact contains (64a) as a special case.

In the other extreme of strong magnetic fields and/or
weak screening (a « 1), we obtain from (54b) and (59)

The corresponding cross section formulas are again ob-
tained from (56) and (54b), inserting for I„„(62)or (62a),
respectively.

Finally, we investigate the case of head-on collisions.
To this end we return to (55a). Taking into account the
definitions (57a), we get

/ Mf,"'I(HO)
f

= ( 3 /m6) [(n +s)!s!]

I„,(HO)=a '"+ 'K„(aa), a «1 . (64b)

If we consider the limit of small microwave intensities
(a «1), then J„(ax) in (63a) can be approximated by
(ax)"In!, and we can obtain I„,(HO) for any value of a,
using formula 3.383.10 of Gradshteyn and Ryzhik

(HQ) tt na2(n+s)e I ( n s a )
(n +s)!

n1

S

a «1, (65)

where I ( —n, x) is the incomplete gamma function. In
the absence of the microwave during scattering (a=O) we
get from (65):

I„,(HO)=6„ps!a 'e I ( —s, a ), a =0 . (65a)

FIG. 3. During scattering in a magnetic field alone, the in-

teraction with the scattering potential is particularly effective, if
the orbit of gyration of the particle in the magnetic field hits the
scattering center at S, in which case

~

uo
~

=p, =
~

uo
~

/co, .

If we assume that the transverse part of the electron tra-
jectory does not change during the scattering, the matrix
elements of the head-on collision become particularly sim-
ple. From (53) and (53a) we recognize that this corre-
sponds to elastic transmission (p,

' =p, ) and refiection
(p,

' = —p, ). From (63), (64a), and (64b) we obtain:
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2 —2 —a(2a) e ', a »1
Eii(aa), a «1 . (66)

V. SUMMARY AND CONCLUDING REMARKS

In the foregoing sections we have introduced general-
ized coherent states to describe the motion of charged par-
ticles in the simultaneous presence of a constant homo-
geneous magnetic field and in a microwave field in the di-
pole approximation. These states form a complete and
orthonormal set and they are thus convenient as a basis
for perturbation calculations. The probability distribu-
tions of these states follow classical trajectories and, thus,
allow the investigation of the quasiclassical features of a
quantum-mechanical process. As an example, we have
applied these states to the treatment of potential scattering
of electrons, embedded in a homogeneous magnetic field
and in a microwave.

Section II was devoted to an explicit solution of the
Schrodinger equation for a charged particle in the two
external fields. It was shown that this problem can be re-
duced to the solution of the Schrodinger equation in a
magnetic field alone, yielding the well-known Landau
states (19a)—(19d). The coupling of the particle to the mi-
crowave was then accomplished by an appropriate shift
operation given by (15a) and (15b), by means of which we
arrived at the desired solution (15), (15c). Next we con-
structed in Sec. III in a first step coherent and generalized
coherent states for charged particles in a magnetic field
alone. This was achieved by defining appropriate dis-
placement operators (18a) which have to be applied to the
Landau number states (19a)—(19d) to yield the generalized
coherent states (26a) for particles in a magnetic field. The
additional coupling of a particle to the microwave field
was then accomplished by the displacement operator (15a)
and (15b). This led to the generalized coherent states (27)
and (27a), which describe the desired particle motions in
both external fields, and which have the quasiclassical
property (29). To relate the quantum-mechanical particle
motion in a generalized coherent state, characterized by
the quantum numbers l, m of a particular Landau state,
and by the arbitrary complex parameters (a,P), to the
classical particle motion, we introduced the classical tra-
jectories (32) and we derived the one-to-one correspon-
dence (33) between the initial values (Uo, uo) of the classi-
cal motion and the complex parameters (a,P) of the gen-
eralized coherent states. This correspondence is summa-
rized by the definition (34). The orthogonality and com-

pleteness of the generalized coherent states were shown to
be given by (38a) and (38b).

In Sec. IV the complete quantum states (39) were ap-
plied to potential scattering of electrons by a screened
Coulomb potential. The potential was treated in the
first-order Born approximation, while the states (39) were
used to define a set of "in" and "out" states for the per-
turbation treatment of the scattering problem. The corre-
sponding transition matrix element (46) was considered,
in particular, for the Landau ground state l =m =0,
whereas changes of the classical particle orbit (32) were
permitted to take place during the scattering event. The
evaluation of the scattering matrix elements (54a) —(54c)
and cross sections (56) was carried through in detail for
limiting cases of the magnetic field strength and screening
of the scattering potential. If the magnetic field is strong
and/or the screening of the potential weak, the integral
(54c) reduced to the closed analytic expressions (59),
which took the simpler form (60), if no microwave was
present. For weak magnetic fields and/or strong screen-
ing, on the other hand, (54c) reduced to (62), and, in the
absence of a microwave, to (62a). Finally, head-on col-
lisions were considered, which yield the formulas (63),
(64a), and (64b).

In conclusion, we should again point out that the treat-
ment of scattering problems of charged particles in the
two external fields by means of generalized coherent states
stresses the quasiclassical features of these processes and
elucidates the close interrelation between the quantum-
mechanica1 boundary-value problem and the classical
initial-value problem. The corresponding results are of
particular interest for applications in plasma physics.
While the present problem of electron scattering by a
screened ion potential in the simultaneous presence of a
radiation field and a constant magnetic field is of interest
for the investigation of the heating of a magnetized plas-
ma by the absorption of radiation, the process of
magneto-Raman scattering has applications in plasma di-
agnostics. In the latter problem, high-frequency radiation
is scattered by free electrons, which are embedded in a
microwave and in a magnetic field. ' This problem can
be treated with the same methods described here.
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