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Neural networks contain, very often, asymmetric bonds. The interactions J;, and J,; between
the ith and the jth neurons are not identical. In this paper we study the Langevin dynamics of ful-

ly connected spin systems whose interaction matrix contains a random antisymmetrie part. The
symmetric part consists of independent random bonds whose mean is either zero or ferromagnetic.
We also consider a more general class of systems such as the asymmetric Hopfield model and oth-
er neural-network models. Within the framework of mean-field theory, the spin fluctuations are
viewed as local, thermally averaged, time-dependent magnetic moments. These moments are in-

duced by excess (i.e., nonthermal) internal noise which, in the presence of asymmetry, is time

dependent and does not vanish even in the high-temperature phase. The mean-field equations are
solved using a simplified, spherical model, in which the spins are linear variables except for a glo-
bal constraint on the total level of their fluctuations. Random asymmetry of arbitrary strength
destroys spin-glass freezing. Ferromagnetic phases, as well as "retrieval" states in neural net-

works, are affected only slightly by weak random asymmetry, in agreement with the conclusions of
Hertz et al. The dynamical behavior of a system with weak asymmetry is studied in some detail.
In the spin-glass case at low temperatures, when the strength of the asymmetry decreases, the
internal excess noise does not vanish but slows down with a characteristic correlation time ~ ~ k
The parameter k denotes the relative strength of the antisymmetric components of the bonds. The
system behaves as a frozen symmetric spin glass on time scales t &&~ and as a paramagnet on
scales t &&~. The thermal fluctuations decay with a characteristic time ~T ~ k . The spherical
model exhibits a completely frozen spin-glass state at zero temperature. As T~O, fluctuations ex-
hibit a critical slowing down with time ~~ T for all values of k ~0. This T =0 spin-glass tran-
sition is probably an artifact of the spherical model and is not expected to exist in nonlinear sys-

tems. The relevance of the results to the performance of neural networks is discussed.

I. INTRODUCTION

The long-time behavior of some neural-network mod-
els have been studied by mapping them onto statistical-
mechanical problems. ' The mapping assumes that the
synaptic connections J;J between pairs of neurons i and j
are symmetric, i.e., J~; =J;~. Under this assumption, the
dynamics of the network can be described as a relaxation
of a global energy function. The dynamic flows ter-
minate at fixed points which are the local minima of the
energy. However, the synaptic connections in biological
nervous systems are usually not symmetric. Therefore it
is of interest to understand the effect of that asymmetry
on the long-time properties of the networks.

The asymmetry in neural networks may exhibit a
well-defined structure. This is the case with layered sys-
tems where the asymmetry of the bonds determines the
direction of information flow. Another example is net-
work models of temporal pattern generation, where the
asymmetry determines the direction of flows in
configuration space. In this paper we focus on systems
with random asymmetry, where it plays the role of a
noise in an otherwise symmetric system.

The effect of random asymmetry has been studied in
several recent works. " The first systematic study of

this problem is the work of Hertz et al. , in which the
Langevin dynamics of a Hopfield model' with random
asymmetry has been investigated. On the basis of the
n~oo limit of an n-component spin model they argue
that even arbitrarily weak asymmetry destroys the
"spurious" spin-glass (SG) states which exist in the
symmetric model at finite a. The parameter a denotes
the ratio p /N where p and N are the number of
memories and the number of neurons, respectively. On
the other hand, the "retrieval" states, which are highly
correlated with the memories, remain stable in the pres-
ence of weak asymmetry. The destruction of the SG
states by random asymmetry has been also proposed by
Parisi. ' Feigelman and Ioffe studied the Hopfield mod-
el with strong random asymmetry in the limit of a~0.
Their conclusion is that the retrieval states remain stable
at sufficiently low temperature. A related work is that of
Bausch et aI. , who studied a random asymmetric model
with n-component spins in the n~~ limit. They find
that thermal fluctuations destroy the SG freezing, but a
fully frozen SG state exists in the absence of thermal
noise, i e., at T =0. The structure of the flows in
configuration space in asymmetric Ising systems with
deterministic dynamics is studied in Ref. 11.

Several suggestions have been made regarding the
relevance of the random asymmetry to the performance
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of associative-memory networks. Hertz et al. suggest
that the absence of the spurious SG states improves the
process of the retrieval of memories, i.e., the conver-
gence to the retrieval states. Parisi' proposed that ran-
dom asymmetry is important for the learning process, in
that it guarantees that only the retrieval states will be
enhanced by the "Hebb" learning mechanism.

In this paper we study the effects of random asym-
metry on the dynamics of networks. Our main aim in
this work is to clarify three issues.

(1) The limit of weak asymmetry: What is the nature
of the transition from a "symmetric" to a "nonsym-
metric" behavior as the asymmetry is turned on?

(2) The limit of zero temperature: What is the role of
thermal Auctuations in the asymmetric system? Does
one expect in general an SG freezing at T =0?

(3) General neural networks: What is the source of the
difference in the stability of the retrieval and SG phases
in the presence of asymmetry? Can one generalize this
difference to neural networks other than the Hopfield
model?

A systematic analytic study of the dynamics of asym-
metric networks is complicated by two factors: (1) The
long-time limit has to be calculated via the full dynamic
problem and cannot be evaluated by statistical-
mechanical averages, and (2) Averaging over the
quenched disorder of the bonds J;J is difficult because in
general the bonds may be correlated.

In order to circumvent these difficulties we study in
detail a simplified dynamic model, a "spherical" asyrn-
metric SG model. The dynamic equations are linear but
a global constraint on the level of the total spin Auctua-
tions is added. The linear nature of this model is similar
to the large-n limit of Refs. 7 and 9, but it uses single-
component spin variables, which is more natural in the
context of neural networks. We first consider the case of
Sherrington-Kirkpatrick (SK) -like' random asymmetric
bonds with a positive mean. This enables us to study the
effect of asymmetry on both spin glass and ferromagnetic
(FM) ordering. The starting point is nonlinear Langevin
equations for a system of "soft" spins with random
asymmetric bonds, similar to those of Ref. 7. Using the
dynamic mean-field theory of Ref. 13, these equations
can be reduced to a set of local self-consistent equations.
These mean-field equations are presented in the follow-
ing section, Sec. II. In this section, we also introduce
the notion of excess dynamic noise generated by asym-
rnetry. The simplified, asymmetric SG spherical model
is studied in Sec. III, with the main focus on the limit of
weak asymmetry and the limit of zero temperature. In
Sec. IV we study the spherical model with net ferromag-
netic interactions. Section V extends the results regard-
ing the SG phase to a large class of networks, including
the Hopfield model and its variations. In Sec. VI we dis-
cuss the extent to which the results of the spherical
model are expected to hold in nonlinear systems, and the
relevance of the results to the performance of neural net-
works for associative memory.

In a second paper' on the subject, an analytical and
numerical study of the Cxlauber dynamics of an asym-
metric Ising SG will be presented.

II. THE GENERAL FORMALISM

A. The dynamic model

We study an asymmetric spin-glass model in the
mean-field limit. The model consists of 1V fully connect-
ed spins interacting via random asymmetric interactions.
Denoting pairs of spins by (i,j ) the interaction matrix J;~
is of the form

Jj=Jj+kJ,", , k &0, (2.1)

where J' and J" are symmetric and antisymmetric rna-
trices, respectively,

Jji Jij ~ Jji Jij (2.2)

Each of the off-diagonal elements of J' and J" is a ran-
dom Gaussian variable with zero mean and the following
variance:

J2
[(Js )2~ [(Jas)2]

J J ~ 1+k 2
(2.3)

Square brackets denote the "quench" average with
respect to the distribution of J; . The diagonal elements
J; and J,',-' are zero. The parameter k measures the de-
gree of asymmetry in the interactions. Equation (2.3)
implies

N(JJ )=J (2.4a)

1 —kN(Ji Ji; )=J
1+k

(2.4b)

(2.5)

Each degree of freedom is represented by a "soft" spin
a. ; which can vary continuously from —~ to + Oc. The
local potential V(cr; )+roo; l2 is an even function of o;
which controls the fluctuations in the amplitude of o.;.
For convenience we have exhibited explicitly the term
linear in cr; so that V'(o;) contains only the nonlinear
parts, i.e., V"(o;=0)=0.

The term h; represents a local external field, whereas

g; is a white noise with width

(2.6)

The parameter I 0
' sets the scale of the microscopic

Thus k =0 reduces to the ordinary symmetric SG mod-
el, ' ' whereas k =1 corresponds to a fully asymmetric
model in which the value of the bond in the direction
i ~j is uncorrelated with the value of the bond in the
j—+i direction.

The dynamics of the model is defined by a set of
Langevin equations,

5V(o;)
I 0

' o;(t)= —rocr;(t) — + g Jjo~(t)
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processing time, whereas T measures the level of the sto-
chastic noise in the system. By analogy with the sym-
metric case we call T the "temperature" of the system
even though the system does not reach thermal equilibri-
um.

The dynamical quantities of interest are spin correla-
tions and response functions, in particular the average
autocorrelation C(t) and the average local response
function, or susceptibility, G (t),

C(r)=[(o;(t+t')o;(r') &], (2.7)

(2.8)

Angular brackets denote "thermal" average, i.e., average
with respect to g;, whereas square brackets denote
"quench" average, i.e., average with respect to the J;J's.
In the absence of asymmetry (i.e., k =0), the dynamical
equations (2.5), obey the Callen-Welton-Kubo fluctua-
tion-dissipation theorem (FDT), '

C(co) = ImG(co) .2T

and variance,

(2.13)

(2.14)

where Go(co) would be the average local response func-
tion in the absence of the nonlinearity (i.e., V=O),

and

Go (co)= —icuI 0 +ra —J
z G(co),—1 ~ —] 2l —k

1+k' (2.15)

Here C(t) and G(t) are the full average autocorrelation
and local response functions determined self-consistently
from Eq. (2.12). The terms involving G (t) and C(t)
represent the eAect of the interactions J;J on the dynam-
ics of a single spin.

It is useful to exhibit the Fourier transform of Eqs.
(2. 12) and (2.13) in the following way:

, , 5V(o; )
Go '(co)o;(co)=(p;(co)~h;(co)+ f dt e'"'

5cr, (t)

Here C(co) and G (co) are the Fourier transforms of Eqs.
(2.7) and (2.8),

C(co)= f dt e' 'C(t), (2.10a)

G (co)= f dt e'"'G (t) . (2.10b)

The FDT guarantees that, in the long-time limit, averag-
ing over the g s is identical to a statistical-mechanical
averaging over a Boltzmann distribution P [ o I
~ exp[ PE(o )] wi—th an energy E,

E = ——,
' g (J) —1'05;J )o. cT~+ g V(o; ) —g h, o, (2.11)

( &p; (co)(p; (co') &
=2~5(co+ co') +J C(co )

2T 2

0
(2.16)

C. Excess dynamic noise in asymmetric SG models

C(t)=C(t)+q,
where

(2.17)

Solving Eqs. (2.14)—(2.16) is a formidable task, in par-
ticular in the k&0 case where we do not have the
powerful tool of the FDT. Nevertheless, it is useful to
recall the treatment of the k =0 case. ' We write

and a temperature T =P ', given through Eq. (2.6).
However, when k&0 the FDT does not hold and the
equilibrium limit of Eq. (2.5) does not correspond, in
general, to thermal equilibrium.

B. Self-consistent dynamic equations

q = lim [(cr;(t)cr;( )0&]= lim C(t) . (2.18)

The Edwards-Anderson' order parameter q is nonzero
only if the system undergoes a phase transition into a
frozen phase. We now write the noise rp;(t) as a sum of
two Gaussian terms,

The analysis of Eq. (2.5) simplifies considerably in the
thermodynamic limit, N~ ~. In this limit the dynam-
ics of the system can be described by a self-consistent
equation involving only a single spin. This is achieved
by a straightforward extension of the dynamic mean-field
theory (MFT) developed by Sompolinsky and Zippelius
for symmetric spin glasses. ' The details are delegated
to Appendix A. The resultant mean-field equation of
motion is

q, (&)= rI, (&)+z, ,

where ri; (t) is the dynamic component,

( rI;(co)rI; (co') &
=2~5(co+ co') +J C(co )

0

and z; the static component,

(;( );( ')&=2 5( + ')5( )J'q .

(2.19)

(2.20)

(2.21)

Equation (2.17) has now the following meaning: C(t)
and q are the connected and the disconnected parts of
C(t). As usual, the disconnected correlation is given by

1 —k+J
~

dt G t —t o; t
1+k q=((o;(r)»'„, . (2.22)

(2.12)

The variable y;(t) is a Gaussian variable with zero mean

Here ( & „and ( . &, denote averaging with
respect to the Gaussian variables q;(t) and z;, respective-
ly.
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Inspecting Eqs. (2.14) and (2.15), for general k, one ob-
serves that the role of the "microscopic relaxation time"
of these equations is played by I 0 '(co), where

2

I o (co)= ——ImGO (co)=I O +J —ImG(co) .
1 i ) 2 1 —k 1

co 1+k co

(2.23)

(rt;(co)il;(co')) =2ir5(co+co') +J C(co)
2T 21 —k
I p 1+k'

(2.28)

It looks similar to Eq. (2.20), but the thermal correlation
function C(t) has a meaning different from C(t) of Eq.
(2.17). It is defined as

It is straightforward to see that, in the k =0 case, ri;(t)
obeys C(t)=C(t) q(—t), (2.29)

(il;(co)il;(co') ) = 2ir5(co+co'),2T
I (co)

where
(2.24)

q(t)=((cr;(t')) (cr;(t+t')) )„, . (2.30)

C(co}= ImG(co) .
2T

(2.25a)

which is a straightforward generalization of Eq. (2.6). It
guarantees the validity of the FDT between the local
response and the connected correlation functions,

The variable (o;(t) )„ is the thermally averaged local
magnetization induced by the excess time-dependent ran-
dom field x;(t)+z;.

The variance of z; is given by Eq. (2.21) as before,
where q now is defined by

In particular, the static susceptibility X—:G (co =0) obeys 2 5( + ')5( )q=((;( ))„(;( '))„„&,. (2.31)
1— 1X=—C(t =0}= [C(t =—0) —q] .T T (2.25b) The variance of the excess dynamic noise is, by Eqs.

(2.16), (2.21), and (2.28),
In the equilibrium limit, the nontrivial co dependence

of Eq. (2.24) is irrelevant and il;(t) can be considered as
an ordinary thermal noise. Thus the static limit of Eq.
(2.14) (in the k =0 case) is equivalent to a statistical-
mechanical problem of a single spin which has the fol-
lowing mean-field Hamiltonian

(x;(co)x;(co') ) =2ir5(co+co')X(co)

=2ir5(co+co')
2
J C'(co)

2k
1+k'

+J [q(co) —q5(co)]
E=—,'Go '(co=0)cr, + V(o;) z;cr; —. (2.26)

(2.32)

cp, (t) =rt, (t)+x, (t)+z, . (2.27)

The first term is a thermal dynamic noise which obeys
the relation (2.24) [with I o(co) of Eq. (2.23)]. The terms
z; and x;(t) are the static and dynamic components of
the excess noise cp;(t) ri;(t). The variance of ii;(t) —is, by
Eqs. (2.23) and (2.24),

The quantity Go '(co=0) equals ro —J G (co=0) [see Eq.
(2.15)] and z; is the excess static noise which has a Gauss-
ian distribution with a width of J q [see Eq. (2.21)].
Averaging with respect to the dynamical thermal noise
ii;(t) is equivalent to averaging with the Gibbs distribu-
tion P (cr; ) ~ exp[ PE (cr; )], w—hereas averaging with
respect to z; is equivalent to a quench average over the
Gaussian static field z;. This approach leads to the so-
called replica symmetric SG theory. Extending it by
considering time persistent parts in the local response
function G (co) yields the full static SG mean-field
theory. ' '

Let us now turn to the k&0 case. Equation (2.24)
does not hold any more for the dynamic noise ri;(t) of
Eq. (2.20) because of the factor (1—k )/(1+k ) in Eq.
(2.15). Obviously the amplitude of the dynamic noise
ri;(t) is bigger than the one which is necessary to main-
tain thermal equilibrium at the temperature T. To ex-
press explicitly this fact let us separate the noise y;(t)
into three Gaussian components,

where C'(co) and q(co) are the Fourier transforms of Eqs.
(2.29) and (2.30). Note that, with C(co) given by Eqs.
(2.29) and (2.30), we have the FDT

C(co) = ImG(co) .
2T

(2.33)

1 ~ 1X=—c.'(t =0)=—(C —q ),T" T

where

C = C(t =0)= (cr2(t') )„„,,
q=—q(t =0)=((~,(t'))'&„, .

(2.34)

(2.35)

(2.36)

It is important to realize that the disconnected corre-
lation q is a dynamic quantity. It is nonzero even in the
absence of a true static freezing (i.e., q =0). Therefore,
unlike the k =0 case, X&C/T, even at high tempera-
ture. Note that since the excess noise x;(co) acts in gen-
eral on the same time scale as il;(co), one cannot neglect
its frequency dependence, even in calculating the long-
time limit. Thus, one has to solve a full dynamic prob-
lem in order to derive the correct statics. Nevertheless,

This justifies our identification of il;(t) as the dynamic
thermal noise, C(t) as the thermal correlation function,
and x;(t) and q(t) as the dynamic excess noise and spin
correlations. ' Equation (2.34) implies for the static sus-
ceptibility X a relation analogous to Eq. (2.25b),
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the separation of the time-dependent noise into two
parts ii;(t) and x;(t) is useful, particularly for the under-
standing of the small-k limit. In the following sections
we study a spherical model, which can be solved exactly
for all k and T.

III. THE ASYMMETRIC SG SPHERICAL MODEL

A. The model

Substituting

C(co) =C(co)+2vrq5(co)

yields

2Trp—'

C(co) =
l
G(co)

l

—1

for the finite-co correlations, and

(3.10)

(3.1 1)

We define a spherical model of an asymmetric SCx by
the following Langevin equations:

I ' o.;(t—)= rcr;(t)—+ g J; cr (t)
J

+h;(r)+g;(r), (3.1)

where Ji is defined by Eqs. (2.1)—(2.4) and g; obeys Eq.
(2.6). The source h; is an external field, as before. Equa-
tion (3.1) is just a linear version of the model (2.5).
However, unlike ro of Eq. (2.5), the parameter r is not a
free parameter but is determined by the global condi-
tion'

q =X'q (3.12)

for the static part. Recall that X=G(co=0). Defining
Tg as the first temperature for which q is nonzero, Eq.
(3.12) implies that

7=1, T(Tg . (3.13)

r =1+(1—k )/(1+k ), T & Tz . (3.14)

The value of q is determined by the constraint (3.3), i.e.,

q =1—C(t =0) . (3.1 5)

This equation determines the value of r below Tg [see
Eq. (3.6)]

N

cr;(t)=1 .
iV,.

(3.2)
Before discussing the asymmetric case let us recall

briefiy the behavior in the k =0 case. The FDT [Eq.
(2.25b)] implies that

In the thermodynamic limit this condition can be writ-
ten as

1 T) TT' g (3.16)

(3.3)

where, as before, C—:C(t =0).
In the absence of explicit nonlinear terms, the mean-

field equations (2.14) read simply

yielding an SG transition at Tg = 1 [see Eq. (3.13)].
Below Tg, r =2 and q =1—T. As for the dynamic prop-
erties, both C(co) and G(co) have a low-frequency singu-
larity at T & T~. In fact, Eq. (3.5) (with k =0 and r =2)
yields

o;(co)=G(co)[q;(co)+h;(cu)], (3.4)

where G(co) equals Go(co) of Eq. (2.15) and g;(co) is the
self-consistent noise, given by Eq. (2.16). Solving Eq.
(2.15) with G(co)—:Go(co) yields

G '(co)= —,
' [r —ical 0

'

ImG(co) —1/2—C(co)-cu, co~0, T & Tg

B. Absence of an SG phase at finite T

(3.17)

+[(r—icoI ') —4(1 —k )/(1+0 )]'

(3.5)

Here and in the following we substitute for simplicity
J =1. One also finds the useful relations

ReG(cu) =

ImG(co) =

r

l
G (~) '+(1—k')/(1+k')

coI p
—1

l
G(co)

l

—(1—k )/(1+k )

(3.6)

(3.7)

The parameter r is determined via the constraint on C,
Eq. (3.3). Using Eqs. (3.4) and (2.16) one obtains the fol-
lowing equation:

(3.8)

where

In the k&0 case, Eq. (3.13) cannot be satisfied at finite
T. The reason is that G(co) has a low-frequency singu-
larity only when P =(1—k )/(1+k ) [see Eq. (3.7)],
whereas C(co) has a singularity when X= 1 [see Eq.
(3.8)]. Thus, if X= 1,

l
G(co)

l
is still analytic at co=0

and is of the form
l
G(co)

l

—1 —0(ro ). This, in turn,
would mean, as noted in Refs. 7 and 9, that when 7=1

C(co) co, co~0,
violating the constraint that

(3.18)

C(r =0)= J C(c0)
277

(3.19)

be finite. Note that in the k =0 case the singularity of
C(co) is much weaker and is integrable, see Eq. (3.17).
Consequently, we conclude that, in the asymmetric
spherical model

(o;(co)cr;(co') ) =2ir5(co+co')C(co) . (3.9) q =0, T)0, (3.20)
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and both C(co) and G(co) are analytic at co=0 at all
Anite T.

C. A zero-temperature SG phase
i.0

Let us now consider the zero-temperature case. Sub-
stituting T =0 in Eqs. (3.8) and (3.11) yields

0.5—
C(t0) =0, T =0, (3.21)

whereas the constraint (3.15) implies that

q =1, +=1, T=O, (3.22)

for all k. Thus at T =0 the system is completely frozen
in an SG state despite the asymmetry. To understand
the nature of the transition from a paramagnetic state
(q =0) at T &0 to an ordered phase (q =1) at T =0, we
study in more detail the limit of T~O. Expanding Eq.
(3.5) in powers of co and T, with the constraint C =1, we
obtain

0.0
0

FIG. 1. Static susceptibility P of the SCx spherical model vs
T for di6'erent values of k. The dashed line shows the qualita-
tive shape of g for a fixed small value of k.

I--' 2k'
ReG (co) = 1 — co— T +2k' 1+k'
ImG(e) = I 'co+

(3.23)

(3.24)

teraction J;~, i.e.,

G '(co) =r icuI 0
—', k=1. (3.30)

2 4k'
p + T + s ~ ~

(1+k~)"
where

(3.25)

C(co) = 2T k=1
(r2 1)1/2 1+( )2

' (3.31)

The correlation function C (co ) [see Eq. (3.8)j has a
Lorenzian shape for all T and co,

1+k'
2k

(3.26) r,-'
(r —1)2 1/2 ' (3.32)

C(~)= 27
T~ct) ~0

1+(cur )

where
2

1+k'
2k

(3.27)

(3.28)

The zero-T SG phase is recovered by taking the limit
T~O keeping co&0, which results in

Substituting these results in Eq. (3.8) yields a correlation
function with Lorenzian shape,

The constraint C =1 yields

'=r =(1+T )', k =1 .

The low-T limit of these equations is, of course, con-
sistent with Eqs. (3.23)—(3.26). The result for X(T) is
plotted in Fig. 1, together with the value of X(T) at
k =0. It is seen that the sharp cusp of the symmetric
X( T) at Tg is replaced by a gradual saturation of X(T) as
T~O. We also present, in Fig. 1, the qualitative shape
of X(T) for a fixed small value of k. This case will be
discussed in some detail in the following paragraph.

lim
27 = 2m.6(a) ),1+((or )

(3.29)

i.e., q =1. Note that the limits of T~O and co~0 are
noncommuting. The result (3.29) represents the behav-
ior in the regime co/T ~&1, whereas in the opposite limit
~/T && 1, the system behaves paramagnetically with
C(co)-2r-T '. This is a typical case of a critical
slowing down with w-1/T. In fact, the discontinuity of
the order parameter (in our case q), together with a
divergence of the correlation time (and length), is
characteristic of ordinary zero-temperature critical
points. Note that the response function G(co) remains
analytic at co=0 even at T =0.

%'e conclude this paragraph by considering the partic-
ularly simple case of a fully asymmetric system. Substi-
tuting k =1 in Eq. (3.5) one observes that in this case
the form of the response function is unafFected by the in-

D. The limit of weak asymmetry

X(co)= C(co)+q(co)
2k

1+4' (3.34)

The conc1usion that the system remains ergodic at all
T &0, even for arbitrarily weak asymmetry, raises the
following question: Is there a mechanism for a smooth
recovery of the SCs phase (below T = 1) in the k ~0 lim-
it, despite the fact that q =0 for all k&0? To answer
this question one needs to understand better the efFect of
the asymmetry on the SG phase. To achieve this we use
the concept of excess dynamic noise introduced in Sec.
II, and study its behavior in the limit of k ~0 (and» 0).

Since q =0, the static part of the noise, z, (co), Eq.
(2.21), vanishes. The variance of the excess dynamic
noise is now given by [see Eq. (2.33)]
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X(co)~0, q(co)~0 as k ~0, T & 1 (3.35)

and

1 ~X=—C;(t =0)~—as k~0, T & 1 .T' T
(3.36)

However, since 7 necessarily remains smaller than 1 at
all T, q(co) cannot be too small when T &1. Thus,
below T =1 both X(co) and q(co) stay finite even as
k~0. This almost "spontaneous" appearance of q(co)
occurs at a frequency range which becomes more and
more concentrated around co=0 as k decreases to zero,
so that

(where as before we have put J = 1).
In the limit k~0, the first contribution to X(co)

disappears. Therefore, one would expect naively that in
this limit X(co) will vanish, which will self-consistently
make q(co) go to zero. This is indeed the case for T & l.
In this case,

comes, in the k ~0 limit, identical to the equation for q
in the k =0 case, with x;(co) playing the role of the ex-
cess static field z;, see Eq. (2.21). From this we conclude
that, below T=1, the excess dynamic noise does not
vanish as k decreases, but slows down giving rise to a
gradual freezing of the system. In the limit of k =0 the
excess noise becomes time persistent and the SG phase
of the symmetric case is recovered.

The above qualitative analysis is quite general and
holds also in the nonlinear case, Eq. (2.5). We will use
the spherical model to explicitly calculate the limit
k~0. In this linear model the local (unaveraged) mag-
netization is o;(co)=G (co)[g;(co)+x;(co)]. Therefore,
the thermal and excess correlations, Eqs. (2.29) and
(2.30), are, respectively,

2vrC(co)=
~

G(co)
~
'(g;(~)g;( —~))

=2'
l
G(~)

l
+ C(~) (3 39)

2T 1 —k~

ro 1+k~
q(co)~q5(co) as k~0, T &1 .

In fact, writing

(3.37)

q(cu)=
~

G(co)
~

X(co), (3.40)
X(co)~q(co), k ~0, (3.38)

it is straightforward to see that the equation for q be-
where X(co) is given by Eq. (2.33) and use has been made
of Eq. (2.28). Solving Eqs. (3.39) and (3.40) one obtains

2Tr,—' =2TC'(co) = ImG(co),
~

G(cu)
~

' —(1 —k')/(1+k')
2k 2Tr,—'

1+k (
~

G(co)
~

—1)[
~

G(co)
~

—(1—k )/(1+k )]

(3.41)

(3.42)

cuz--k as k~O, T &1 . (3.43)

For ~ &&~z- the system behaves as a symmetric system,
1.e.,

1 —G (co)-co'i, C'(co)-co ', co »k (3.44)

where G(co) is given by Eq. (3.5).
For T & 1, q(co) vanishes as k ~0, while the denomi-

nators of Eqs. (3.41) and (3.42) do not develop singulari-
ty since the k =0 value of 7 is less than unity. Thus one
recovers in the k~O limit the symmetric paramagnetic
phase with 7=1/T. On the other hand, for T & 1, care
must be taken in handling the singularity of the denomi-
nators at co=0 as k ~0.

Constructing a self-consistent solution of Eqs. (3.5),
(3.41), and (3.42) in the k~0 limit and T & 1 we find
two relevant scales of characteristic frequencies. For
G (co) and C'(co), the characteristic frequency scale is

This corresponds to a value of r which is

—f'= 1 —k2+k4 k6+gk8 ~ &(k (3.46)

C(co) =
TI 'k

4
—1

-2, u) ((k
co rp
&8k'

(3.47)

Note, however, that the integral of Eq. (3.47) up to
co-k has a negligible weight -k which means that as
far as the constraint (3.3) is concerned the dominant
contribution of C(co) comes from the high-frequency re-
gime, Eq. (3.44). This contribution is the same as in the
symmetric case, i.e.,

and the value of A, , k & 1, will be determined self-
consistently below.

The result (3.45) implies that the thermal correlation
function behaves in this regime as a Lorenzian,

On the other hand, when co «co&- the effect of asym-
metry is strong. In this case we find C(t=0)—= T+O(k ), k~O. (3.48)

( I —1)2
G '(co) = 1+(k —1)k sk'

)pro '

2k

cg ((k (3.45)

A second, smaller, characteristic frequency scale, cop,

appears in the dynamic behavior of the excess spin
correlations q(co). Substituting Eq. (3.45) in Eq. (3.42),
one obtains
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q(cp) = 2TI p
'k

COI p
—1

(A, —1)
8k

—1

2k'

co ((k (3.49)

namic equations are now

5V(o; )
I p

' o—;(t)= r—po;(t) — + g Jjo;(t)

+Jpm (t)+h (t)+g (t) (4.1)
from which we conclude that the smallest relaxation fre-
quency of q(co) is

Q)p k as k 0 T& 1 (3.50)

q(co) = T 2v

&A, —1 1+(cps)~

r,-'
2v'X —1 k' '

which, upon integration, yields

(3.51)

(3.52)

Equation (3.49) implies that q(cp) gives a finite contri-
bution to q=q(t =0) from the regime cp-k . In fact,
q(cp) can be written in this regime as

where the JJ's are given, as before, by Eqs. (2.1)—(2.4),
and Jp & 0. The magnetization m (t) is

m (t)= —g o j(t)=[(oJ(t))],1

j (~ij
(4.2)

where the last equality holds in the thermodynamic lim-
it.

The quantities of interest, besides the local G(t) and
C(t), are the uniform response and correlation functions
defined by

5[(o;(t +t') ) ]
5h (t')

t&J J A=p

q =2T(A, —1) (3.53)

(3.54)

Using the constraint q =1—T [see Eq. (3.48)] fixes A, ,
'2

A, =1+ 2T
1 —T

and

5m (t +t')
5h (t') t)0

/I =p
(4.3)

from which one finds for r of Eq. (3.52) the result

(1—T) I o
7 =

4T as k~0, T&1 . (3.55)

CFM(t) =—y [(cr;(t +t')0J(t ) )
L,J

—(o;(t +t') ) (o, (t') ) ], (4.4)

Note that the limit T~O of Eq. (3.55) agrees with the
k ~0 limit of the result (3.28) for the relaxation time of
C(co) in the zero-temperature limit. Thus, the limits
k ~0 and T~O commute. As for the static susceptibili-
ty, Eqs. (3.45) and (3.54) yield

'2

7= 1 — k as k —+0, T &1 . (3.56)
2T 6

1 —T

The results (3.55) and (3.56) are valid only outside the
neighborhood of T=1. In fact, at T =1 the results
(3.55) and (3.56) are replaced by

where h (t) is a uniform external field.
The dynamic mean-field equations are now

Gp
' (co)cr; (cp) =g; (cp)+ Jpm (co)+h;(cp)

, , 5V(o;)
+ dt e'"' (4.5)

t', c7;(t) )~=m (t) . (4.6)

where Gp(co) and p;(cp) are given, as before, by Eqs.
(2.15) and (2.16). The self-consistent equation for rn(t)
is just

~-k, 1 —7-k as k —+0, T =1 . (3.57) Note that in the case of a static uniform external field
h;(co) =2~h5(co) Eq. (4.6) has the form

The crossover from the behavior (3.55) and (3.56) to the
critical behavior (3.57) occurs at temperatures such that (o;(cp) )~=2m.m5(co), (4.7)

1 —T-k . (3.58) i.e., the magnetization is a static quantity. In Appendix
B we show that GFM(cp) and C„M(cp) are related to
G(co) and C(cp) by

IV. THE ASYMMETRIC SG
WITH FERROMAGNETIC INTERACTION

G (co)
1 —JoG (cp)

(4.8)

A. The general model

In this section we investigate the effect of asymmetry
on the long-range ferromagnetic (FM) order. We intro-
duce infinite-range ferromagnetic interactions simply by
adding a constant positive term Jp/N to the off-diagonal
elements of the interaction matrix J;J. The Langevin dy-

C (co)
—

o
(4.9)

In the k =0 case the FDT, Eq. (2.25a), implies via
Eqs. (4.8) and (4.9) a similar theorem relating GFM(co)
and CFM(cp). In the k&0 case, the relations (4.8) and
(4.9) still hold, but the FDT does not exist. From Eqs.
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(4.8) and (4.9) one concludes that the temperature T,
below which spontaneous magnetization appears is
determined by the condition

T, =(JO —1)'i', Jo&1, k=1. (4.12)

Fo general k, the equation for the magnetization
below T, yields, m =JomX, i.e.,

1=JOGO(co =0)=JOX, (4.10)
+=JO ', T&T, . (4.13)

B. The spherical model ~ith FM interactions Below T„both m and q are nonzero. Separating the
self-consistent noise q';(co), as in Eq. (2.27), one obtains

In the spherical model, introduced in Sec. III A, the
mean-field equations (4.5) reduce to q = & (~, ( r))'„„),=X'(q+ Jom'), (4.14)

0' (co)= G(co) [q' (ci) )+2w5(co)(h +Jom)] (4. 1 1) or,

where G(co) is given by Eq. (3.5). The parameter r has
to be determined via the constraint (3.3). Although ex-
plicit solution of this self-consistent linear problem is
possible for all values of k, the case k =1 offers a partic-
ularly simple example. Using Eqs. (3.3) and (3.5), the
equation for T„Eq. (4.10), yields

m T&Te
1 —Jo

(4.15)

Using the constraint 1=C(t =0)+q, together with the
result (3.11), which implies that C(t =0)=T/T, , one
has

q =1—T/T, ,

m =(1—T/T, )(1—Jo ),
(4.16)

(4.17)

valid for T & T, and Jo & 1. Note that in the T~O lim-
it, q~ 1, meaning that the system is completely frozen
at zero temperature, as in the SG case.

Equations (4.16) and (4.17) are independent of k, and
the only effect of k is to reduce the value of T, ~ Thus a
weak asymmetry generates only a slight perturbation of
the FM phase. In the language of Sec. III, the excess
noise x;(co) and hence the excess spin correlations q(co)
vanish in the k~0 limit for all co, and T & T, . The
complete phase diagram of the asymmetric spherical
model with nonzero Jo is shown in Fig. 2(a). For com-
parison, we present in Fig. 2(b) the corresponding phase
diagram in the k =0 case.

SG
V. ABSENCE OF AN SG PHASE

IN GENERAL ASYMMETRIC NETWORKS

(b)

In this section we study the effects of random Gauss-
ian antisymmetry on the SG freezing in systems whose
interaction matrices are not necessarily Gaussian vari-
ables. We consider an interaction matrix J;- of the fol-
lowing form:

J; =J +kJ', (5.1)

PM
where J~' is an antisymmetric matrix with independent
Gaussian elements, i.e.,

P (J,j') = exp
&2m. /N

( JRs)2
lj

2/X
(5.2)

0
0

Jo

FIG. 2. Phase diagram of the SG spherical model: (a) k&0.
The line separating the FM and PM phases is qualitative. The
case of k = 1 is given in Eq. (4.12); (b) k =0.

and Jj Jj'The symmetric part J,j is a random ma-
trix which exhibits an SG phase in the absence of the
asymmetry (i.e., in the case k =0). The matrix elements
of Jj may have correlations so that the SG phase is not
necessarily identical to the SK model. ' Specifically, we
assume that the spectrum of the eigenvalues J~ of J,
forms a continuous band with a sharp edge, at least in
the upper part of the spectrum. The average density of
eigenvalues is assumed to vanish at this edge. As usual
the matrix Ji is normalized so that J1

——O(N-I/2). This
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ensures that the eigenvalues are of order 1.
An example is the Hopfield model of associative

memory' Gg '(co)=r Jg—i—col o '+k G(co),

(5.10)

(5.1 1)

PJ' =—g St'S"
V ~ i J

@=1
(yg(~)pg(~') ) = 2T 2+k C(co) 2n.5(co+co'},

0
(5.12)

where IS/I„& 2 ~ are Np independent random (kl)
variables and a=p!N is jtnite If. k =0, the system un-
dergoes a second-order SG transition at finite T. The
spectrum of JJ. , Eq. (5.3), is given by the following aver-
age density of eigenvalues: ( o g(co)o g(co') ) = 2m 5(co+ co' }Cg(co), (5.13)

where C(co) and G(co) are the Fourier components of
the average local correlation and response functions. By
definition one has

p(J~)=(1—a)5(J~+a)+po(J~), a & 1,
(J~)=po(J~), a

(5.4a)

(5.4b)

so that from Eqs. (5.10) and (5.12) it follows that

Cq(co)=
l

Gq(co)
l

+k C(co)r, (5.14)

[4a —(J& —1) ]'~
po(J~ }=

2~(J~+a)
1 —2&a & J~ & 1+2&a . (5.4c)

I ' o;(t)= ra;(t)+ —g' J,o, (t)
at

Hence, for any finite a, the upper part of the spectrum
of J~ is continuous with an edge at

Jg'" ——1+2&a . (5.5)

In order to investigate the SG freezing in such systems
we use again the dynamic spherical model of Sec. III
with the general J~ matrix of Eq. (5.1). The full mean-
field equations depend on the form of J which we have
not fully specified. Instead, we use the mean-field pro-
cedure to write down the dynamic equations which re-
sult from averaging only over the Gaussian antisym-
metric part. These equations are

The functions C(co) and G(co) are related to Cz(co)
and Gq(co) through

C(~)= f dJ, P(J, )C,(~),
G(co)= f dJg p(Jg)Gg(co), (5.16)

g(~o}= f dJxp(Jx)
l

G~(~o)
l

' .

Then from Eqs. (5.14) and (5.15) we find

2Tr, '
C(~) =

lg(~)] ' —k'

(5.17)

(5.18)

On the other side from Eq. (5.11) it follows that

—
l

Gq(co)
l

ImGq(co)= —co+k ImG(co), (5.19)

where, as before, p(J~ ) is the (average) density of eigen-
values of J~. The integrals are over the whole range of
eigen values.

Let us define

—k' f dt'G(t t')a;(t')+P—, (t), (5 6)
so that

(y, (t)P, (t')) = 5(t t')+k'C(t —t') 5,, —r, (5.7)

where the prime, as usual, means that the sum is over all
j&i The sto. chastic variable P;(t) has a Gaussian distri-
bution with zero mean and variance

1

co —k ImG(co)

ImG (co)

co —k ImG(co)

Im f dJ~ p(J~)G~(co)

CO

ImG (co)

(5.20)

o.g(t) =—g o;(t)Pg
i=1

Denoting

og(co)= f dt e' 'op(t),

then Eq. (5.6) reads

(5.8)

(5.9)

C(t} and G(t) are the average local correlation and
response functions given by Eqs. (2.7) and (2.8), which
have to be calculated self-consistently through (5.6). As
before, r is determined by the constraint (3.3).

The matrix J;~ is symmetric, so that it has real eigen-
values Jq and its eigenvectors gq (which are real) form
an orthogonal base. Thus Eq. (5.6) can be diagonalized
in terms of

Inserting Eq. (5.20) into Eq. (5.18) we find

C(~)= 2Tr, '

—2k
ImG(co)

(5.21)

From Eqs. (5.11), (5.16), and (5.21) one can calculate
G(to) and C(co) if the average density of eigenvalues of
the symmetric matrix p(Jq) is known. The parameter r
is determined by the constraint (3.3). In the k =0 case,
as T decreases, r decreases until it reaches the value
r =J~ '", signaling an SG transition. Because of the
form of the constraint, the transition temperature will in
fact be identical to its value in the corresponding Ising
case. For example, solving the spherical version of the
symmetric Hopfield model, one finds an SG phase for
all a) 0, below Tg = 1+&a, as in the Ising case.
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However, if k&0, Eq. (5.21) shows that a divergence
of ImG (co)/co would lead to instability of C(co). On the
other hand a divergence of C (co=0) implies

ImG (oi ) 1

0 2k
(5.22)

but in this case G(co) is still analytic in co, so that for
small to we find the behavior C(co) —to which means
that C(t =0) will diverge and the constraint (3.3) cannot
be satisfied.

Our conclusion, therefore, is that the random Gauss-
ian asymmetry, even if it is arbitrarily weak, destroys the
SG phase in general fully connected networks. It should
be emphasized that we have used the spherical model
only to study the possibility of SG freezing. In general,
the networks may possess other types of ordered states.
Unlike the SG or FM states discussed above, some of
these ordered states may be reached only via a first order-
transition and cannot be investigated within the spheri-
cal model. For instance, in an Ising system with the
Hopfield interactions, Eq. (5.3), the retrieval states
(states with a large overlap with the patterns IS]'I) exist
at low T for a&a, -0.14. They appear (upon varying
a or T) in a discontinuous manner, indicating that their
existence depends on the strong nonlinearity of the sys-
tem. Indeed, it is found that retrieval states do not ex-
ist in the "spherical version" of the symmetric Hopfield
model for any finite a. Therefore, the spherical model is
useless in studying the effect of asymmetry on the re-
trieval states. Further discussion of the retrieval states is
presented in Sec. VI.

(6.2)

where (o;(t) )z is the local spin average over the (renor-
malized) thermal noise 71(t) [see Eq. (2.28)] but not over
the static and dynamic components [denoted, respective-
ly, by z and x (t)] of the excess noise.

The condition for the appearance of an SG phase
below T =T~ is

(6.3)

where J (assumed equal to 1 in the preceding sections) is
defined by Eq. (2.4a). But the presence of the dynamic
component of the excess noise suppresses 7 so that for
any strength of asymmetry, 7 & J ' for all T & 0.
Therefore, the Edwards-Anderson (EA) order parameter

(6.4)

is zero for all T &0. The SG interactions induce local
dynamic fields instead of the static ones which appear in
symmetric SG's below Tz.

2. Kinetic freezing at small k

At high T (i.e. , T & J), when the value of k decreases
so does q. On the other hand, at low T (T & J)q remains
finite as k decreases. This is because the amplitude of
the dynamic component of the excess noise does not van-
ish as k~0. Instead, it becomes increasingly slower at
small k. The characteristic relaxation time for the decay
of the dynamic correlations in the excess noise [and
hence the decay of q(t)] diverges as

z~k k 0 T(J . (6.5a)
VI. SUMMARY AND DISCUSSIQN

We have studied the effect of randomly asymmetric
bonds on fully connected spin systems governed by
Langevin nonlinear dynamics. Applying mean-field
theory, the dynamics of the system has been described
by single-spin self-consistent equations. In this paper the
mean-field equations have been solved within the spheri-
cal model. In this model the starting equations are
linear Langevin equations in which the linear coefficient
is determined by the global constraint (3.2). In Sec.
VIA we summarize the results of the spherical model.
In Sec. VI B we discuss the general, nonlinear case.

A. Summary of results: The spherical model

~~k, k~0, T-J . (6.5b)

The "thermal" noise [and hence also G(co) and the
thermal spin correlations C(co)] decays much faster than
the excess noise. Its characteristic frequency is

Thus, at T & J, the system behaves as a frozen sym-
metric SG in the "high" frequency r-ange co »k6. In this
regime the excess spin correlations q(oi) play the role of
the EA order parameter. As co becomes smaller than k
these correlations decay and the system behaves
"paramagnetically. " The crossover from a frozen SG
state to a paramagnetic behavior is depicted schematical-
ly in Fig. 3. At the critical temperature regime of the
symmetric system, i.e., T —J-k, the relaxation time z
diverges as

l. Absence of an SG phase at all T & 0 m~~k, k~0, T&J, (6.6)

X =/3(1 —q ), f3= 1/T, (6.1)

where q is the amplitude of the local spin correlations in-
duced by the excess noise. It is given by

In the presence of the asymmetry, the fluctuation dis-
sipation theorem is violated and the system does not re-
lax to thermal equilibrium. In mean-field theory this
effect can be described by an excess local noise which is
generated by the random asymmetry. The static local
susceptibility 7 is then 3. The limit of zero temperature

In the spherical model, the system has a zero-
temperature SG transition for all values of k, signaled by

X(T =0)=J (6.7)

see Eqs. (3.43) —(3.46).
Note that purely static quantities have a smooth limit

as k ~0 (e.g. , g~ 1 for T & Tg ).
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(6.10)

where G(co) is the dynamic susceptibility and A(co) is
the renormalized noise vertex equal to 2TI p

' plus con-
tributions from the nonlinear terms [compare with Eq.
(3.11)]. Examining these contributions by perturbation
theory indicates that the dominant singularity (at co=0)
in C(co) comes only from the vanishing of the denomina-
tor. This implies that the condition (6.3) for the onset of
long-time autocorrelation holds generally.

Likewise,

1. Absence of an SG phase at T & 0

The mechanism which leads to the absence of SG
freezing, for all k&0, in the spherical model is expected
to apply also in the general nonlinear case, as discussed
in Ref. 7. From the structure of the general mean-field
equations (2.12)—(2.16) it follows that the spin autocorre-
lation function C(to) is of the form

0
0.0 0.1 0.2 0.3 ~[r +r(~)]

ImG (co)= J
~

G(to)
i

—(1 —k )/(I+0 )
(6.11)

FIG. 3. Crossover from a frozen SG to a PM state at T &J.
For frequencies above the dashed line the system behaves as a
frozen symmetric SG. On the other hand, for frequencies
below the dashed line the correlations decay and the system
behaves paramagnetically. co is in arbitrary units.

where again X(co) is the contribution of the nonlinear
terms [compare with Eq. (3.7)]. Again, one expects that
X(co) will not diverge at co=0. Thus the low-frequency
singularity in G (co) occurs when

JX=[(1+k )/(1 —k )]'i &1 . (6.12)

see Fig. 1. In terms of the EA order parameter q the
transition is discontinuous: As T~0, q jumps from zero
to 1, implying the complete freezing of the system at
T =0. This is consistent with the large-n result of
Bausch et al. As T~O the system exhibits a critical
slowing down with a characteristic relaxation time
which diverges as

r cc 1/T, T~O

for all k&0.

(6.8)

4. Long range ferromagnetic -order

where Jo&0 is (N times) the mean FM interaction.
Since in the paramagnetic phase, 7 is independent of Jp,
it is clear that for all k an FM transition is induced at
sufficiently large Jp. A weak asymmetry has, thus, a
negligible effect on the FM state. The main effect of the
asymmetry is to reduce somewhat the value of T„see
Figs. 2. Once again, in the spherical model the system
freezes completely at T=0 with a value of magnetiza-
tion m which is less than unity but q =1.

B. General nonlinear systems

We now discuss the properties of nonlinear systems
governed by the Langevin equations (2.5).

The condition for an onset of long-range FM order at
T = T, is, according to the mean-field theory,

(6.9)

Therefore, JX~1 would imply a singularity in C(co) of
the form C(co)-co which is inconsistent since local
spin fluctuations [(o;(t) ) ] should remain finite.

From this argument one concludes that SG transition
is suppressed and q =0 as soon as asymmetry is turned
on. The qualitative description of the dynamic behavior
of the system in terms of an excess dynamic noise and
excess spin correlations applies in the general case as
well, and so does Eq. (6.1). Similarly, the behavior of
the system with small asymmetry is similar to the one
described above. At k =0 the EA order parameter
jumps discontinuously from zero to its value in the sym-
metric SG. This transition is generated by a critical
slowing down of the excess noise and the spin correla-
tions as k~O. Most probably, the divergence of the
characteristic relaxation times remains as in Eqs. (6.5)
and (6.6) even in the presence of nonlinearities. These
conclusions are supported by numerical simulations of
an asymmetric Ising SG. '

2. Absence of an SG phase at zero temperature

The most important difference between the spherical
mode1 and the behavior of nonlinear systems concerns
with the T~O limit. We believe that, the T =0 SG
freezing predicted by the spherical model is an artifact of
the linearity of the system. In explicitly nonlinear sys-
tems, the PM phase (i.e., the q =0 state) will remain
stable even at T =0.

In order to understand the origin of the T =0 freezing
in the spherical model let us consider again the dynamic
equations (3.1). Let us denote by [fz) the A, th right
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eigenvector of the asymmetric matrix J;J and by J~ the
corresponding eigenvalue. In the absence of thermal
noise (i.e., g'=0) the general solution of Eqs. (3.1) is

N
(t) io = a~ ~e

A, =1

where

(6.13)

coi ——I o(r —Ji ), (6.14)

and a~ are arbitrary.
The long-time behavior is then

~, -ai„ ij', e(~) i 0 (6.15)

where J~ is the eigenvalue with the largest real part.
0

Taking into account the constraint (3.3) which, in T =0,
reads

lim [cr;(t)]=1,t~ oo

leads to co~ ——0, i.e.,0

(6.16)

(6.17)

Comparison with Eq. (3.25) implies that Ji is in fact
real and has the value

2

1+@' (6.18)

3. The stability of the ferromagnetic order

The relations (4.8) and (4.9) between the local response
and correlation functions and the uniform ones hold
generally for all systems in the mean-field limit. Hence
the condition for the onset for an FM order is given by
Eq. (6.9) in the nonhnear case as well. Similarly, in all
mean-field systems 7 is independent of Jo in the
paramagnetic phase. Therefore, one concludes that ran-

(These predictions are in agreement with a recent study
of the spectrum of real random asymmetric matrices. ')

The above exercise clearly demonstrates that in the
absence of external sources a (stable) linear system must
relax to a static limit. On the other hand, the nonlinear
equations (2.5) can have solutions with nontrivial long-
time behavior, even in the absence of external sources.
These solutions are "chaotic" in the sense that
lim, [cr, (t)] is finite, whereas the average correlations
between cr;(t) and o;(t') decay to .zero as t t'

~

~ao. —
This will stabilize the PM phase even at T =0.

It is important to note that the spherical model pre-
dicts that the PM phase is unstable at T=O, not only
for small k but for all values of k. On the other hand,
studying the dynamics of Ising systems with asymmetric
bonds, at T=0, one finds' that for k &1 stable states
do not exist at all. This already suggests that the insta-
bility of the PM phase at T =0 is an artifact of the
spherical model. This conclusion is also supported by
numerical simulations of an asymmetric Ising SG with
k & 1, as will be discussed in detail in Ref. 14.

dom asymmetry does not destroy completely the onset of
FM order at finite temperatures for sufficiently large
values of Jo. As k~O the value of T, (JO) approaches
smoothly its value in the symmetric case.

4. Replica symmetry breaking

A central feature of the SG phase in symmetric non-
linear systems is the well-known replica symmetry break-
ing (RSB).' ' This feature does not exist in the sym-
metric spherical model. RSB is associated with the
structure of the co=0 singularities in the C(co) and
G(co). ' ' In the asymmetric case, both C(co) and G(co)
are not singular at co=0 and therefore do not exhibit the
effects of RSB. This is most probably true also for the
FM phase, although in the symmetric case, replica sym-
metry is broken in the FM phase at sufficiently low T.
Nevertheless, the precursors of RSB will probably ap-
pear as k becomes sufficiently small. In particular, as
k ~0, the slow relaxation of the excess noise may not be
characterized by one or two relaxation times, but instead
by a hierarchical distribution of large relaxation times.
Likewise, anomalously slow components will appear as
k ~0, not only in C(co), but in G(co) as well. ' ' We do
not know yet how small k must be (as function of the
size N of the system) for these phenomena to be ob-
served. Studying the appearance of RSB in the k~O
limit might shed new insight on the physical meaning of
this phenomenon.

C. Order in asymmetric neural networks

In Sec. V we have shown, using the spherical model,
that the SG phase is destroyed by weak asymmetry not
only in SK-type systems but also in neural networks
with correlated bonds. In particular, the SG phase
which exists in the symmetric Hopfield model (5.3) (for
all values of ct &0) disappears when random asymmetry
(with arbitrary strength) is added. These results are ex-
pected to hold not only in the spherical model but in
nonlinear models as well.

An important question is whether the retrieval phases,
i.e. , the phases which are highly correlated with the
"memories" of the network, are also destroyed by weak
asymmetry. Explicit calculations of these states are
difficult, in particular, since they may appear via first-
order transitions. It is therefore useful to try to general-
ize the difference between the effect of weak asymmetry
on the SG and FM phases. Within the local mean-field
theory the essential difference between the two cases is
the following. In the symmetric SG phase the local
fields are static random fields whose correlations are
determined self-consistently. When asymmetry is turned
on, random dynamic fields replace the static ones thus,
stabilizing the PM phase at low T. These dynamic fields
are extremely slow when the asymmetry is weak, so that
at a given finite period of time, this PM state behaves in
a manner similar to that of a frozen SG. On the other
hand, the local fields in the symmetric FM phase have a
uniform component. This component cannot be re-
placed by dynamic fields since the random asymmetry
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generates only random fields. This explains why (at least
in mean-field theory) the PM phase remains stable at low
T in the asymmetric SG case and not in the FM case.

This distinction can be easily generalized to other
types of ordered phases. Those phases that are de-
scribed by global order parameters cannot be destroyed
by weak asymmetry. In particular, the "retrieval states"
of the symmetric Hopfield model are characterized by
the global overlap

m = —gS; Sf') 0,1 0 (6.19)

where [S; } is the retrieval state and [St'] is the nearest
memory. Similarly, the static local fields in this phase
have a component which is proportional to Pm. This
order cannot be replaced by the Gaussian random fields
generated by the random asymmetry and therefore m
will remain positive if k is sufficiently small. The same
applies to the ordering of other neural network models
(see, e.g. , Ref. 4).

The above discussion supports the conclusion of Hertz
et al. and others ' that the retrieval phases but not the
SG phase remain stable in the presence of weak asym-
metry. Note that in the limit of a ~0, studied by
Feigelman and Ioffe, the Hopfield model is a special
case of the asymmetric SG with FM interactions, since
the correlations among the bonds vanish in this limit.

Note, however, that the retrieval phases, in the asym-
metric networks, do not represent fixed ("persistent")
configurations of spins. According to the above results
(regarding the FM phase), spins will continue to fluctu-
ate even at T =0. Nevertheless, the average overlap m
will have a finite long-time limit.

Naively one would think that the disappearance of the
spurious SG states enlarges the basins of attraction of
the "memories" or speeds up the retrieval process. This,
however, may not be the case, since the PM phase may
attract as much volume of configuration space as the
original SG one. The destruction of the SG phases may
be more relevant to the "Hebb" learning process as sug-
gested by Parisi. ' If the synaptic changes AJ; are pro-
portional to the product of the time averages of S, (t)
and S&(t) then the "spurious" PM phase will not con-
tribute to EJ; because of the fluctuations of S, (t). How-
ever, our result, Eq. (6.5), indicates that the time correla-
tions in the PM phase decay extremely slowly if the
asymmetry is weak. Therefore, in order that this learn-
ing mechanism will work in practice, strong asymmetry

needs to be present. On the other hand, strong asym-
metry increases the level of noise in the retrieval process
(e.g., the capacity a, will be substantially reduced while
the level of errors will increase significantly).

We now comment on a few related issues. First, we
have discussed so far only Gaussian asymmetry. Our re-
sults apply, however, to other distributions of asym-
metry as well as long as the antisymmetric components
are independent random variables. Since in the thermo-
dynamic limit, only the first two moments of J;. are
relevant, the parameter k can still be defined in the gen-
eral case via Eqs. (2.4). An example of a network whose
asymmetry is due to an asymmetric dilution of bonds is
presented in Appendix C.

It should be emphasized that the paper discusses only
fully connected systems, i.e. , systems where the average
number of neighbors per spin is of 0 (N). An interesting
question is whether the instability of the SG phase in the
presence of random asymmetry holds also in short-range
systems. The behavior of short-range asymmetric sys-
tems or infinite-range systems with finite, coordination
number is beyond the scope of the present paper. We
point out, however, that a recent work by Derrida
found a dynamic phase transition at finite temperature in
fully asymmetric SG. The system studied is a highly di-
luted infinite-range SG. This phase transition is ap-
parently not associated with the onset of freezing but
rather with the sensitivity of the dynamics Aows to small
changes in the initial conditions. This behavior, which
is not reflected in a singularity of G(co) and C(co), can-
not be investigated by the methods of the present paper.
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APPENDIX A: THE DYNAMIC MEAN-FIELD
EQUATIONS OF MOTION

To treat the stochastic equation of motion (2.5) we use
a functional integral formalism' which is very con-
venient for the discussion of quenched-random sys-
tems. We define a stochastic generating functional for
the correlation and response functions

ZJ[P, P]= f Dcr f Do exp f dt g [P;(t)o;(t)+iqY;(t)icr;(t)]+LJ[&,cr]

5V(cr; )
L [cr,cr]= f dr y io, (r) —r c), cr, (r) —r, (rc)r— ' + y J,, cr, (r)+Z, (r)+mr; l&;(r) +K(cr;)

5cr; t

(A2)
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The term K(cr;), which arises from the functional Jaco-
bian, is given by

generates the average correlation and response functions

5 V(o;)
K ( cr; ) = ——,

' f dt
5o;(t)

(A3)
ZJ

Z[4 0]= f d[J]p[J]
ZJ[$=$=0]

(A5)

and ensures the proper normalization of ZJ,

ZJ[$=$=0]=1 . (A4)

Taking the average over J;~ yields the functional which

Since the Z~ is normalized [Eq. (A4)] the quenched aver-
age is done directly on ZJ. This is particularly easy
due to the fact that Eq. (2.5) is linear in J, . A straight-
forward integration then yields

2 N N

Z[P, P]= f Dcr f Do exp QLO(o, ,o;)+ g g f dtdt'[icr;(t)cr (t)i.o';(t')cr (t')
2X .

i &;(t)crj(t)icrj(t')cr;(t')](1 —k ).
(1+k )

(A6)

5V(o;)
L (o;,o;)= f dt io;(t) —I 'c),a;(t) rcr;(t—) — +h;(t)+TI 't o;(t')

5o; t

+P, (t)cr;(t)+i/;(t)io;(t)+K(o; ) (A7)

Note that in deriving Eq. (A6) we have used the symmetry of Jj and the antisymmetry of Jj'.
The four-spin interactions can be decoupled by using Gaussian transformations and introducing four auxiliary fields

Q (t, t') (a=1,2, 3,4). In the mean-field limit (N~no) the integral over the fields Q can be done by the steepest-
descents method. ' One then obtains the following effective local generating functional:

2 2

Z[P, P]= f Do f Dcr exp Lo(o;,o;)+ f dt f dt' C(t —t')io;(t)io;(t')+2 G(t —t')io;(t)cr;(t')
+

(AS)

(B1)

where

5V(cr; )
f;(cr)= rocr;(t) — +g—J;,oj(t), .

I j5o t
(B2)

The average local correlation and response functions
C(t) and G(t) are given by C(t)=[(o;(t+t')o;(t'))]'
and G (t) = [ (i o; (t ')o; ( t + t ') ) ], which have to be calcu-
lated self-consistently through Eq. (AS). Carrying out
the integration over o; in Eq. (AS), the generating func-
tional reduces to the mean-field equations, Eqs. (2.12)
and (2.13).

APPENDIX B: THE AVERAGE FM CORRELATION
AND RESPONSE FUNCTIONS
IN THE MEAN-FIELD LIMIT

In this appendix we show how the FM correlation and
response functions, defined by Eqs. (4.3) and (4.4), can be
calculated in the mean-field theory. We use the func-
tional method described in the Appendix A. Let us con-
sider the general stochastic equations of motion (4.1).
This can be written as

and the prime means that the sum is over all j&i.
We shall derive the mean-field equations for the FM

correlation and response functions above the ferromag-
netic transition, i.e., m =((cr ) )=0. In the FM phase
the derivation follows the same line with few minor
changes.

In terms of the fields o. and o' the correlation and the
response functions are given, respectively, by the correla-
tions (ocr ) and (ioo ). Thus we define the generating
functional
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Z~[P, P]= f Do f Do exp L(o,o,g)+ f dt iP(t)bio, (t)+P(t)go, (t) (83)

L(o,o', g)= f dt g io'(t) I—'d, cr, (t)+f, (cr)+ g'a (t)+h, (t)+g, (t) +V(o, (t))
I N j j

Since Z~[P =P =0]= 1, one has [see Eqs. (4.3) and (4.4)]

1 5 Z[P,P]
N 5$(t)5$(t ) y y I p

(t t )
1 5Z[$$]

5$(t)5l P(t'')
y y h p

where

z[y, y]=[&z,[y, y]&] .

The two averages can be easily carried out leading to
T

Jp Ã N

Z[P, P]= f Do f Dct exp f dt g g io;(t)crj(t)+P(t) g cr;(t)+i/(t) bio;(t) +L, (o,&)
j=1 i =1 I

(84)

(85)

(86)

(87)

L, (u, B')= f dt g Iio', (t)[—I 'd, o, (t)+f,'(o )+h, (t)+I 'Tio, . (t)]+K(cr, (t))I, (89)

where f consists of the first two terms in Eq. (82) and the terms generated by the averaging over Ji.
We are interested in the mean-field limit (N~ ao ); thus, we can replace in Eq. (88) g with g, the difference being

of O(1/N). Then, with the help of a Gaussian transformation, the generating functional takes the form

Z[P, P]= f Dm f Dm exp f dt — im(t)rn(t)+ P(t)m (t)+ iP(t)im(t) — ip(t)p(t)
Jp Jp Jp Jp Jp

)& f Do f Do exp f dt 'm(t) bio;(t)+im(t) g o;(t)
'

+L, (o,o ) (810)

Inserting Eq. (810) into Eqs. (85) and (86) we find

C„M(t)=, « rn(t +t')m(t') »,J2

G~(t)=, &&im(t')m(t+t') &&
— 5(t), t &0N, , 1

J2 p

where

« ( . ) » = N
Dm Dm ( . )e""'-"

Jp

A(m, m)= — f dtim(t)rn(t)+ —ln f DofDo exp f d.t m(t) bio;(t)+im(t) ger;(t) '+Lp(cr, o )
1 1

p I I

(811)

(812)

(813)

L, (o,&)=L,(o,o )

In the limit N —+ oo, Q can be replaced by

Q(m, m)=Q(xp)+ —' f dt f dt'fx(t') xp(t')] A(t, t'—)[x(t)—xp(t)] .

We have defined

x (t)={m(t), im(t)),

(814)

(815)

(816)

(817)
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(B18)

where xp is the value of x at the saddle point

=0 ~ (B19)

A straightforward calculation yields

xp ——0,
above the FM phase, and

(B20)

A(co)=
—G(co)

Jp

1 —G( —co)
Jp

(B21)

for the Fourier components of A. C(co) and G(co) are the Fourier components of the average local correlation and
response functions. The correlations & mm ) and &imm ) are then obtained by means of the generating functional

Z[g]= e~"'-' J Dx exp ——f [x ( —co)A(co)x(co)+2/ ( —co)x(co)]xn&p] N den

Jp 2 2~

(B22)

« x (co)xp(co')» = 5 Z[g]
51(i ( —co)5gp( —co')

since Z[0]=1. By definition we have
'2

(B23)

where J;z is a random symmetric matrix, e.g. , the SK
matrix' or the Hopfield matrix, Eq. (5.3), and e;, is a
random asymmetric matrix which takes the value 0 or l.
For definiteness let us assume that the probability distri-
bution of e;~ is given by

therefore, from Eqs. (Bl 1), (B12), and (B23) we have

C (co)

i
1 —JpG(co)

i

(B24)

P(e;, ;e,; )=(1—. c)5(ej —1)5(ej;—1)

+ —5(e~j )5(ej; —1)+—5(E;, —1)5(e,; ) .

(C2)
G (co)

1 —JOG (co)
(B25)

2T
CF~(co) = ImGF~(co} . (B26)

where CF~(cu) and GF~(cu) are the Fourier components
of the average FM correlation and response functions.
If we are in the FM phase, Eqs. (B24) and (B25) are still
valid, but with the connected correlation functions. If
C(co) and G(co) are related by the FDT, then one has
also

The parameter c (0 &c & 1) gives the strength of the dilu-
tion. From Eqs. (Cl) and (C2) one readily sees that each
pair of spins i' and j is connected by a symmetric bond
(J;1=J,&,'Jj;=Jj';) with a probability 1 —c and either by
the unidirectional bond (Jj——Jj',Jj, ——0) or by the uni-
directional bond (Jj =0;Jj; =J,; ) with a probability c/2.
In other words, the concentration of symmetric bonds is
1 —c and that of unidirectional bonds is c. If c =0 all
the bonds are symmetric; if c =1 all the bonds are uni-
directional with random direction.

We can divide the matrix J;~ into the symmetric and
the antisymmetric parts:

APPENDIX C: AN ASYMMETRIC
DILUTED NETWORK

In this appendix we show how asymmetric diluted
models can be related to the asymmetric Gaussian model
we have studied in this paper. Consider a system of N
fully connected spins o.; interacting via an interaction
exchange of the form

J;, = —,'(J;j+J,; )+ —,'(J;j —J,; )

ij p (~ij +~ji )+ ij 2 (~ij

&J IJ + 'J 'J

From Eq. (C2) one readily sees that

(C3)

/J /J /J& +j (Cl) P(e,',. ) =(1—c)5(e';, —I )+c5(e,' ——,
' ), (C4)
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P (e'j') =(1 —c) 5(e;'j') +—5(e'j' ——,
' )+—5(e'j'+ —,

'
) . (C5) so that

' 1/2

By definition we have [see Eqs. (2.1) and (2.3)]

K
[( ij )antisym]

var[( J;j ),„]
Substituting Eq. (C3) in Eq. (C6) we have

c
4 —3c

Note that, as expected,C6

k =0.- -- c =0,
(C9)

k

1c 1cvar(J )
——+ ——
42 42

var(J j )[(1—c)+—,'c] 4 —3c
(C7)

k=1= ~c =1 .

The generalization to other probability distributions of
e;~ is straightforward.

J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982); 81,
3088 {1984).

D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev.
Lett. 55, 1530 (1985); Ann. Phys. 137, 30 (1987).

3D. J. Amit, in Proceedings of the Heidelberg Colloquium on

Glassy Dynamics and Optimization, 1986, edited by J. L. van
Hemrnen and I. Morgenstern (Springer-Verlag, Berlin, 1987),
and references therein.

4H. Sompolinsky, in Proceedings of the Heidelberg Colloquium
on Glassy Dynamics and Optimization, 1986, edited by J. L.
van Hemmen and I. Morgenstern (Springer-Verlag, Berlin,
1987), and references therein.

~See, e.g., D. E. Rumelhart and J. L. McClelland Parallel Dis-
tributed Processing (The MIT Press, Cambridge, MA, 1986)~

H. Sompolinsky and I. Kanter, Phys. Rev. Lett. 57, 2861
(1986); D. Kleinfeld, Proc. Natl. Acad. Sci. USA 83, 9469
(1986).

~J. A. Hertz, G. Crrinstein, and S. A. Solla, in Proceedings of
the Heidelberg Colloquium on Glassy Dynamics and Optimi-
zation, 1986, edited by J. L. van Hemmen and I. Morgen-
stern (Springer-Verlag, Berlin, 1987).

M. V. Feigelman and L. B. Ioffe (unpublished).
R. Bausch, H. K. Janssen, R. Kree, and A. Zippelius (unpub-

lished).
G. Parisi, J. Phys. A 19, L675 (1986).
H. Gutfreund, J. Reger, and P. Young (unpublished).
D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792
(1975); S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17,

4384 (1978).
H. Sompolinsky and A. Zippelius, Phys. Rev. B 25, 6860
(1982).

' A. Crisanti and H. Sompolinsky (unpublished).
For a review, see K. Binder and A. P, Young, Rev. Mod.
Phys. 58, 801 (1986).
S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).
H. Sompolinsky, Phys. Rev. Lett. 47, 935 (1981).

' The notion of a nonthermal noise is also discussed in Ref. 8

in the case of k = 1.
' This model is similar to the spherical model introduced by J.

M. Kosterlitz, D. J. Thouless, and R. C. Jones, Phys. Rev.
Lett. 36, 1217 (1976) for symmetric SG. We emphasize,
however, that, unlike the symmetric case, Eqs. (3.1)—(3.3)
should not be considered as resulting from a saddle-point
evaluation of a rigid constraint, but rather as the definition
of the model.
D. Movshovitz and H. Sompolinsky (unpublished).

~ A. Crisanti, H. Sompolinsky, and Y. Stein (unpublished).
G. Parisi, J. Phys. A 13, 1101 (1980); Phys. Rev. Lett. 50,
1946 (1983).

B. Derrida (unpublished).
24C. de Dominicis, Phys. Rev. B 18, 4913 (1978).

C. de Dominicis, J. Phys. (Paris) Colloq. 37, C1-247 (1976);
C. de Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978).
H. K. Janssen, Z. Phys. B 23, 377 (1976); R. Bausch, H. K.
Janssen, and H. Wagner, ibid. 24, 113 (1976).


