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A new method is proposed to locate and analyze phase transitions in a thermodynamic formal-
ism for the description of fractal sets. By studying order parameters appropriate to the transitions
we get both an efficient numerical tool for locating phase transitions and an understanding of the
structure of the ordered phase. With this method, we examine fractal sets generated by a class of

maps of the interval close to the map x —4x (1 —x).

We show that the existence of phase transi-

tions is a persistent phenomenon and remains when the map is perturbed although the structure of
the entropy function changes drastically. For strong perturbations the transition disappears and
the entropy function becomes nonsingular. The phase transitions describe transitions in the distri-

bution of the characteristic Lyapunov exponents.

I. INTRODUCTION

It is now widely recognized that fractal objects, i.e., ob-
jects with a similar structure at all length scales, play a
fundamental role in many branches of physics. Recently
much progress has been made in finding an appropriate
description, in terms of “‘multifractals; or “thermodynam-
ical formalism” for these structures.!~!! With this formal-
ism we hope to be able to get a better understanding of the
relation between the invariants characterizing a fractal set
(e.g., a strange attractor) and the dynamics that generates
it. In the present work we have studied ‘“‘thermodynami-
cal” quantities describing how characteristic, or
Lyapunov, exponents are distributed on a fractal set gen-
erated by a one-dimensional map.” We have chosen a fam-
ily of maps whose attractors all have the same “f (a) spec-
trum”’ but we shall find that the “‘entropies” describing
the distribution of Lyapunov exponents can be very
different. In particular we have focused on whether the
thermodynamical quantities have phase transitions.” 12~ 13
The existence and types of such transitions might turn out
to be a worthwhile characterization of universality classes
for such structures.

So far, these transitions have been found by evaluating
“free energies” or entropies and locating singular behav-
ior. It is, in general, hard to determine such behavior
unambiguously by numerical methods if one does not
have further arguments or exact solutions to depend on.
Furthermore, singular behavior in the free energy does
not tell anything about what kind of change the state of
the system undergoes at the transition. The method pro-
posed here remedies both of these deficiencies: It shows
the phase transition already for quite small systems and
it tells us what happens at the transition. Motivated by
analogs to usual phase transitions, we introduce an order
parameter which will differ in the two phases. Calculat-
ing the order parameter as a function of the temperature
clearly shows where the transition will occur.

As mentioned already we shall look at Cantor sets
generated by one-dimensional maps of an interval. The
dynamics naturally defines a partition of the interval into
“cylinders” such that all points within a cylinder move
according to the same string of symbolic dynamics. This
string can, via the thermodynamic formalism, be
mapped onto a system of up and down spins; an Ising
model.® Each configuration possesses an ‘“energy” and
from a partition function all relevant thermodynamic in-
formation can be derived. Furthermore, the mapping to
an Ising model suggests that the natural choices for the
order parameter can be found by looking at local aver-
ages of the spin configuration, i.e., the local magnetiza-
tion.

In the following we shall focus on a specific class of
one-dimensional maps. They should be unimodal (one
hump) and map an interval I onto itself, which is the
case of “crisis” or “fully developed chaos.” The attrac-
tor is then the whole interval and specifically always has
Hausdorff dimension 1. If f is made slightly “higher”
the maximal value of f (the critical point) will be outside
of I and the invariant set will be a repelling Cantor set in
I: Almost all points escape from I. As shown in Ref. 7
this precludes any phase transitions in the thermo-
dynamical formalism so we shall stick to the attractive
case.

The particular map f(x)=4x (1—x) (“logistic map”’)
has been studied from this point of view.”!>!* Because
of the conjugacy to the symmetric tent map
f(x)=1—]2x —1]| all thermodynamical quantities can
be found analytically.”!® They differ from the trivial re-
sults for the tent map because the conjugating function
is ill behaved at the ends of the interval, and, in fact,
display a first-order phase transition. The question that
is asked in the following is whether the phase transition
will persist if the map is perturbed maintaining the crisis
condition and the second-order maximum. One should
bear in mind that the conjugacy implies an enormous de-
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generacy in the scaling spectrum; the perturbation will
at least partly lift that degeneracy, and possibly that is
enough to destroy the phase transition.

II. THERMODYNAMIC FORMALISM
AND THE TRANSFER OPERATOR TECHNIQUE

For a given one-hump crisis map we want to describe
the scaling properties of the attracting set, which in this
case is the entire interval, I. For this we need a natural
partition and that is provided by the cylinders (we follow
here Ref. 7). For an index n, I is partitioned into 2" in
tervals or n-cylinders, these being the segments where
f (") is monotonic or, equivalently, the sets of points hav-
ing identical symbolic-dynamics sequences of length n
with respect to the critical point ¢. The inverse function
h =f ! has two branches, & _, and h,, as shown in Fig.
1(a). The n-cylinders are all the nth-order preimages of 1
and can therefore be labeled by binary strings
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where we identify the energies as E. . e
Vg rEp

=|Inl ., .. | 21317 In the limit n— o the sum
behaves as
Z,(B)=e "B | 3)

which defines the free energy, F(f).!® The entropy S(A)
is the Legendre transform

S(AM)=—F(B)+AB, (4)
where the relation between A and 8 is found from
d
= F(
A= a8 B, (5)

and this has the following meaning: In the limit 7 — oo,
e"S™ is the number of cylinders with length / =e ~"* or,
equivalently, with Lyapunov exponent A. The dimension
of the set of points in I having Lyapunov exponent A is
S(A)/A. (Some care is required here since there are ex-
ceptional points with arbitrary large negative Lyapunov
exponents—the ones close to preimages of the critical
point, i.e., the edges of the cylinders.)

For hyperbolic systems S(A) has a further meaning.
Hyperbolicity for 1D maps means simply “everywhere
expanding,” or equivalently that 1< f’< o in all points.
In this case the natural measure is the Sinai, Bowen,
Ruelle measure which is a Gibbs measure that assigns
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FIG. 1. (a) An asymmetrical one-hump map which maps the
interval I onto itself. ¢ denotes the critical point. (b) The in-
verse of the map. The two branches are denoted 4 _, and k,.

each cylinder a weight proportional to its length and
therefore S (A) is the metric entropy for a family of mea-
sures.>” In particular, the value of S(A) evaluated at
the A for which B(A)=S'(A)=1, is the KoI’'mogorov en-
tropy. For the nonhyperbolic cases studied here that re-
lation breaks down. The case f(x)=4x(1—x) shows
this clearly: The natural measure, which is carried over
from the tent map, assigns all cylinders the same weight,
although those at the edges become very small.

For the hyperbolic case there is a simple relation be-
tween the entropy function S(A) and the spectrum of
scaling indices introduced in Ref. 5, the f(a) spectrum.
In our case again this relation breaks down for the
above-mentioned reason and indeed, since the natural
measure for the whole class of maps studied here is
smooth except for square-root singularities at the edges,
the f(a) spectrum should be the same for them all:* It
should consist of the two points (% 0) and (1,1). The en-
tropy function S(A) should, as is the f(a) spectrum, be
accessible from an experimental time series. Let us say
we consider level z in the construction. Then for a point
x; in the time series, we start in x; and its nearest neigh-
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bor, follow the series n times, and obtain a Lyapunov ex-
ponent. If we do this for a number of points x; which
are uniformly distributed on the interval we obtain a dis-
tribution of Lyapunov exponents and may calculate
S(A). If the time series defines a one-hump return map
we may also obtain the nth-order symbolic dynamics
with respect to the critical point to calculate the order
parameter introduced in the following.

In complete analogy with statistical mechanics we
now define the average value over the ensemble consist-
ing of all cylinders on a given level, n:

(4)=

1
> A(ey, €y, . . ., 8y )l‘gl,E2 ,,,,, c

noELEy ..y Ey

To relate one level in the hierarchy to the preceding lev-
el we introduce the Feigenbaum scaling function'?

l

EpEy - n8n

.,En_H: i

(7)

051,52, ..

EEp -y Ey

The scaling function can be considered as a function on
the unit interval by setting'>!®

7 (E,+l) .
051’82, L€y =0 2 2 2—("+1—1) ° (8)

In general o will look quite complicated but the impor-
tant point is that a unique limiting function exists as
n— 0.

As the scaling function takes us from one level to the
next it acts as a transfer operator’ and all the thermo-
dynamic quantities can be computed from eigenvalues
and eigenvectors for the matrix defined by'°

<En—}-l’ .. ’83782! T(B)‘E;n . 15’2781>

The largest eigenvalue A(f3) is related to the free energy
as —F(B)=InA and averages like Eq. (6) are replaced by
the average value in the state determined by the corre-
sponding eigenvector | V), i.e.,

(A)=(¥|A4|V). (10)

III. INTRODUCTION OF SPIN VARIABLES

As noted by Feigenbaum® the thermodynamics of
cylinders is closely analogous to 1D Ising-like systems:
Strings of —1’s and 1’s can be interpreted as strings of
spins being up or down. Now it is well known that 1D
systems with short-range interactions do not exhibit
phase transitions at finite temperature. The reason that
these system after all have transitions is the existence of
infinite-range interactions!® which is intimately related to
the behavior around the critical point, ¢, where f’'=0.

To make the analogy even closer consider the
asymmetrical “tent” map and its inverse (Fig. 2) with
slopes a,—b. The energy E=|Inl. . | ¢, | of a

cylinder is simply —nglna —nInb, where n, is the num-
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FIG. 2. (a) An asymmetrical tent map. (b) The inverse of
the tent map. The two branches have slopes a and — b, respec-
tively.

ber of —1’'s and n, is the number of 1’'s so that
n:n0+n]. Ifa >b

a

b
This corresponds to a nearest-neighbor Ising model with
n, domain walls (spin flips) of an energy 2J =In(a /b)
over the ground state —n Ina. From this we learn that
the symbolic-dynamic sequences ¢€,€,,...,€, corre-
spond not to spins but to spin flips, and in order to use
Ising-like order parameters, i.e., the magnetization, we
must reorder the sequences. If the spin configuration

Ec ., .. e, =—nlIna+nln (11)

corresponding to the sequence ¢€,g,,...,g, is
$1,82,+..,5,, then
Er = —Sk 1Sk » (12)

and so g, =1 if 5, _; and s; differ. If the end point is
fixed,

€1=81, (13)



and if the number of 1’s in the string to the left of and
including ¢, is denoted n(k), then Egs. (12) and (13)
read

ny(k)

k
—si=[[(—¢)=(-1) (14)

i=1

The new ordering is actually of fundamental importance
in the “kneading theory” of unimodal maps, since the
ordering in the s;’s corresponds to monotonic ordering
of the cylinders on the interval.?’ In the s; variables the
scaling function has striking symmetry properties. If all
s;’s in a string are inverted all the ¢;’s remain unchanged
except €;, which is inverted: The domain walls remain
fixed if the chain is inverted. If we (as we shall do in the
following) use spin variables in (8) (i.e., substitute s; for
€;) we see that this implies the symmetry o(1—x)=0(x)
in the limit n — . Furthermore, property (b) of Sec. II
means that o(x +1)=1—0(x) which is an exact sym-
metry valid even for finite n.

One should note a peculiarity in the mapping of our
“partition function” (2) to statistical mechanics. In (2) B
can take any value between — o0 and «: Each value of
B singles out an important length scale. In thermo-
dynamics B=1/T >0 so the analog is more precisely
that (2) is equivalent to two statistical mechanics prob-
lems: One with positive 8 and one with negative S
which can be reformulated as positive temperature but
inverted energies. For negative 3 the energies of the tent
map (11) should be changed to

¢, =—nInb+nglna/b) . (15)

which shows that the ground state of the chain has all
€;=1. In spin language this means that the ground state
has become antiferromagnetic: s;=(—1)Y. Thus as 8
changes from o« to — o we start from 7 =0 in a fer-

romagnetic state and go to a disordered state at =0,
J

—1-1—-1 —-1—-141 —141-1 —1+1+1
—1-1-1 051‘144 U€|_1~1+1 0 0
—1—-1+1 0 0 0'67171“71 U€1~1+1+1
—14+1-1 0 0 0 0
—14+1+1 0 0 0 0
+1—-1-1 UB+|-1~1—1 U€1~1-1+1 0 0
+1-1+1 0 0 oo o
+14+1-1 0 0 0 0
+1+1+41 0 0 0 0

Higher-order matrices will be on a “similar” form. At
the nth stage of the construction there are a total of 2”
cylinders so the maximal size of the transfer matrix is
2" =127 =1, To obtain the highest precision we shall, in
general, apply the largest possible matrix but one can
also use lower-order approximations to the transfer ma-
trix which work very well for Julia sets.?! Since the ma-
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which means either T= o or T = — . From there we
cool the inverted system to B= — «, i.e., the antiferro-

magnetic state at 7=0. (For b >a the sequence of
states would of course be opposite.) In the following we
shall call T'=1/p the temperature allowing it to be both
positive and negative.

IV. THE ORDER PARAMETER

To calculate order parameters we shall apply the for-
mulas of Sec. II [(6)-(10)] using always the reordered
chains (spin chains) s;,s,, . . .,s, instead of the original
€1,€, . . .,€,. The most natural order parameter for a
spin system is the magnetization which can be calculated
either for the lattice as a whole or at a specific site, i, in
the lattice. We shall, in general, calculate the latter
quantity, (s;?. The particular class of dynamical sys-
tems we consider is defined by the maps

f(x)=Ax(1—x)(1+4+yx) . (16)

For a specific value of y, a corresponding value of A4 is
found such that the function maps the unit interval onto
itself. For y =0 this value is 4 =4 and f is the logistic
map at its “fully” chaotic point, which as already men-
tioned has a first-order phase transition at 5. = —1. For
v values in an interval around zero we look at what hap-
pens when the map is made slightly asymmetrical, but
still maps the interval onto itself. Is the phase transition
robust against this perturbation? How will the entropy
curve change? What is the ordered state? These are the
questions we shall focus on.

To obtain good convergence of the order parameter
(s;) we use the transfer-matrix technique. Since the
cylinders are found by inverse iterates the construction
follows precisely the construction of Julia sets by inverse
iterates?! and the transfer matrix Eq. (9) will, at the
fourth stage of the hierarchy, be on the form

+1—-1—1 +1—-141 414+1—-1 +14+1+1
0 0 0 0
0 0 0 0
O 141-1-1 U€1+1—1+1 0 0
0 0 of i 0F i . 17)
0 0 0 0
0 0 0 0
”il+1~1v1 0€1+1—1+1 0 0
0 0 UB+1+1+1—1 U€1+1+1+1

r

trix (17) is very sparse and has a simple construction one
simply keeps all nonzero elements in a string and multi-
ply as a vector. It is then quite easy to obtain the largest
eigenvalue and the corresponding eigenvector; start with
a random vector and apply the matrix, renormalize the
vector to a unit vector, apply the matrix again, renor-
malize, etc. This is continued until convergence; the re-
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normalizing factor is then the largest eigenvalue A; and
the converged vector is the eigenvector | ¥) of Eq. (10).
Let this eigenvector be on the form

|W)=la,az,...,a,), (18)

and normalized. As indicated on the matrix Eq. (17) for
the case n =4, the first element a; corresponds to a spin
state —1 —1 —1, a, corresponds to the spin state
—1—1+41, etc., and ag corresponds to the spin state
+1+1+1. So in order to calculate (s, ), for instance,
we use Eq. (10), weight the value of the second spin in
the ith state with @?, and sum over all possible states.

Furthermore, we may calculate the second largest ei-
genvalue A, of the transfer matrix Eq. (17). This is of in-
terest because the correlation length & diverges when the
difference between the two leading eigenvalues ap-
proaches zero:

1

&~ N, (19)
Again, we can obtain the second largest eigenvalue just
from iteration of a random vector by operating with the
transfer matrix. Straight iteration, of course, results in
the largest eigenvalue and its eigenvector, as described
above. If we, on the other hand, in each step subtract
the contribution from the dominant eigendirection, the
contribution from the next-to-dominant eigendirection is
obtained. Again this procedure converges very rapidly.
At a first-order transition & does not necessarily diverge.
Here we observe, however, that the two eigenvalues
merge continuously and remain equal below the transi-
tion. This procedure defines a way to locate the transi-
tion temperature.

V. THE SYMMETRIC CASE

Let us now return to the logistic map Eq. (16) with
y =0 as shown in Fig. 3(a). Figure 3(b) shows the corre-
sponding scaling function Eq. (8).!* As proved in Sec.
III for any unimodal map, the scaling function is sym-
metric around 0.5 so, for instance, the energies of the
two ferromagnetic states —1—1—1—1—1... and
+1+14+1+4+1+1... are equal in the limit. Therefore
a straightforward calculation of (s;) will always give
zero. This is in complete analogy with the behavior of
the Ising model: The up/down symmetry implies that
the ensemble average of any spin is zero. The spontane-
ous symmetry breaking is related to a break in ergodici-
ty: Temporal averages (which we measure in the labora-
tory) do no longer equal ensemble averages. To see the
transition in an ensemble average we need a weak anisot-
ropy to trigger the transition. One might consider ap-
plying a weak magnetic field which favors one of the fer-
romagnetic states. However, even the tiniest field will
destroy the transition. Instead we can apply a ‘“‘surface”
field, or even simpler keep one spin in the lattice fixed,
up or down depending on which ferromagnetic state
should be favored. Then the partition sum is formed
only over half of the states—the ones with this spin
fixed. To avoid surface effects, which are indeed present
and observable, we always calculate the magnetization of
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FIG. 3. (a) The map x —4x(1—x). (b) The corresponding
scaling function (Ref. 13). (c) The order parameter giving a
first-order transition at 7, = —1 between the disordered and
the ferromagnetic state. Shown are curves corresponding to
n =9-12. (d) The entropy function for n =9,12. Here and in
the following the two dotted lines indicate S(A)=A and
S(A)=In2. The mark on the A axis is at In4.
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the spin in the center of the system, (s,«c ), where i, is

int{(n —1)/2}. Figure 3(c) shows this order parameter
at negative temperatures calculated for different sizes of
the system, corresponding to n =9-12. The curves con-
verge towards the dotted line and result in a first-order
transition at T, = — 1 as we already know.

How can the transition be determined accurately?
There are basically two approaches to follow. The first
is a well-known technique used to locate 7, in spin
glasses. For two consecutive sizes of the system we fol-
low the crossings of the order parameter curves.?? These
crossings converge geometrically towards 7, and result
in this case in 7, = —1.00. The second method is based
on finite-size scaling procedures. For first-order transi-
tions a typical finite-size scaling ansatz is on the form??

AT L (20)
T, L¢

Here L is the size of the spin system. The relation {=d
is often found in usual transitions, where d is the dimen-
sion of the system.? AT, is a measure for the smearing
of the transition and we can obtain this smearing at a
specific value of the order parameter, {s;)=0.4, say.
We obtain a very good fit to the finite-size scaling law
Eq. (18) with an exponent {=4.6, which however devi-
ates from the dimension d =1. In summary, both
methods work very well and give compatible results.

Figure 3(d) shows the entropy function S(A). This
curve can be calculated analytically’ and is a straight
line between the points (In2, In2) and (In4,0). We see
that the transfer-matrix calculation for n» =12 has con-
verged very well. In the disordered state cylinders with
Lyapunov exponent In2 dominate and the dimension of
the set of cylinders with this exponent is
S(A)/A=In2/In2=1 which means that basically all
points have the Lyapunov exponent In2. At the transi-
tion the system jumps to cylinders with Lyapunov ex-
ponent In4. The corresponding dimension is 0: Only the
two cylinders containing the points x =0 and x =1 will
contribute and these characterize the two ferromagnetic
states. Since the slope of the S(A) curve is equal to 8 we
can also determine the transition temperature from the
entropy curve which indeed in this case results in
B.=1/T,=—1. A unique feature of this highly degen-
erate system is that it never orders at positive tempera-
tures. It remains completely disordered all the way
down to 7 =0.

VI. THE ASYMMETRIC CASE

To start our investigation of asymmetric maps, let us
first discuss the general appearance of the entropy func-
tion. First of all it should be positive on some interval
[Amins Amax]- The value A=In2 must belong to that inter-
val, which follows from the fact that the sum of the
lengths of all cylinders on a given level is 1. Secondly it
is often found that the values of A_;, and A,, are given
by the logarithms, a@; and a,, of the slopes at the unsta-
ble fixed points-on the right-hand side of I and at the ori-
gin.” Note that for the logistic map a;=Ap;,=In2 so
when we study maps with nonzero y in Eq. (16) we
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might guess that ¥ <0 and y >0 provide two fundamen-
tally different cases. Increasing ¥ above O increases a,
whereas decreasing y decreases a,. Thus for the case
¥ >0 we do not even have a good understanding of the
value of A;,.

We start with the simplest case y <0. Here
ay>2In2>In2>a;. We have specifically studied
Y =—0.5 where 4 =5.1961, a;=1In5.1961=1.6479 and
a;=In1.9124=0.6483. The entropy curve, Fig. 4(e),
does seem to cover the interval [a,,ay] and the main
difference from the case ¥ =0 is that the degeneracy has
been broken so the entropy comes back down at a; on
the left-hand side.

When we look at the magnetization ({s;)), always
keeping one spin at the edge fixed, we find that for
T—0~ the system settles in a ferromagnetic state
whereas for T—0" an antiferromagnetic state appears.
The cylinder containing the unstable fixed point within 1
has the symbolic dynamics €,&,,...,e,=1,1,...,1,
which in the spin language is s;,5;,...,s5,=1,
—1,1, —1,1,..., ie., the antiferromagnetic state.

The scaling function is shown in Fig. 4(b) and the or-
der parameter (s; ) in Fig. 4(c). We see a clear indica-

tion of a phase transition on the ferromagnetic (7 <0)
side. The transition temperature is found quite accurate-
ly to T,=—1.376 by looking at the crossings of the
curves, and the finite-size scaling ansatz Eq. (19) with
(s; )=0.4 gives the same result with {=3.9. In the

positive temperature domain no phase transition seems
to take place. Figure 4(d) shows (s; ) which for large n

seems to converge to a smooth curve but the ordered
phase is in this case antiferromagnetic. The absence of a
phase transition is further supported by the fact that the
two largest eigenvalues never cross.

The precise form of the entropy function is, as men-
tioned in the introduction, not easy to assess with great
accuracy. The existence of a first-order phase transition
implies that there should be a straight line segment in
S(A). Combining the value of T, (=1/p,.) with the end
point a, of the function S(A) we find that this straight
segment (of slope [3.) should go all the way from (a,,0)
to (In2,In2). In the latter point we believe that the slope
is discontinuous and on the left-hand side the entropy
goes down to (a;,0). This scenario is seen in Fig. 4(e),
but to check it in detail we have enlarged the region
around (In2,In2) as shown in Fig. 4(f). The dotted line is
the asymptote of the entropy function which we get
from the value of the transition temperature,
T.=—1.376. The curve in the figure correspond to the
sizes n =9,12. Clearly, we see that the maximum moves
towards (In2,ln2). Of course, with finite-size data, it is
impossible to rule out other types of behavior in an in-
terval of a few thousandths around In2.

The case y>0 1is more complicated. Now,
2In2>ap>a;>In2. We have specifically studied
¥ =0.5 where 4 =3.1689, ay=1.1533, @, =0.7486. The
entropy function, Fig. 5(d), shows that the support is the
interval [A,@0] where A, <In2. The scaling function
and the order parameter for negative temperatures is
shown in Figs. 5(b) and 5(c). We see again a clear indi-
cation of a phase transition at 7, = —0.649—the mag-
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FIG. 4. (a) The function Eq. (16) with y = —0.5. (b) The corresponding scaling function. Note that the symmetry around the
center is still there. (c) The order parameter giving a transition at T, = —1.376. (d) The order parameter calculated at positive
temperatures. There is no sign of a transition. (e) The entropy function S(A) for n =9,12. The mark on the A axis is at
In5.1961=1.6479. Also, there is a mark at In1.9124=0.6483 which is hidden behind the entropy function. (f) An enlargement
around the point (In2,In2). The lowest lying dotted line is the straight line part corresponding to B=f,. The line appears to end in
the point (In2,In2).
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FIG. 5. (a) The function Eq. (16) with ¥y =0.5. (b) The corresponding scaling function. (c) The order parameter giving a first-
order transition at T, = —0.649. The transition has become quite sharp. (d) The corresponding entropy function. The mark on
the axis is at In3.1689=1.1533. (e) An enlargement around the point (In2,In2). The dotted line of the transition does not go to the
point (In2,Iln2) and the entropy function beds off before reaching that point.

netization is even sharper than at y =0. Again the or-
dered state here is ferromagnetic, but, as one might have
suspected, the order for T—07 is no longer antiferro-
magnetic. In fact, it is numerically even harder to make
the system order at positive temperatures. It finally
seems to order very close to 7"=0 but there is no phase
transition and the order is again ferromagnetic. Actually

the cylinders which are largest and therefore determine
the order at B— + « are the ones closest to the critical
point. They have the symbolic dynamics
€,€ ...=€;, 1, —1, —1, —1, —1,... where g,=—1
or 1 corresponding to the spin chains s,5,,...
=1-1,-1,—-1,—1,... or —1,1,1,1,1,... . They
differ from the pure ferromagnet only in the first digit
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and thus clearly show the existence of long-range in-
teractions induced by the critical point. Since the criti-
cal point is quadratic these cylinders scale as the square
root of the ones at the origin and thus we expect that
Amin=+ag, Which agrees within 1% of our data.

The structure of the entropy function, Fig. 5(d), seems
also to be more complicated in this case. The maximum
of S(A) does not appear to fall at A=In2 and conse-
quently the straight segment will most likely not go all

(a)

8> L

log2+0.0l
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the way up to ln2. We see an indication of this in the
enlargement around the maximum, Fig. 5(e). Here the
dotted line corresponds to the asymptote and the entro-
py curve appears to bend off before it reaches the value
In2. To stress this point even further we have studied
the case y=1 where A4 =2.5980, a;,=0.9547, and
a;=0.7856. In this case the transition is extremely
sharp as indicated on the order parameter Fig. 6(c). The
transition takes place at T, = —0.331 and only one level
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FIG. 6. (a) The function Eq. (16) with y =1. (b) The corresponding scaling function. Note that the minimum value around the
center is nearly degenerate with the values at the borders. (c) The order parameter giving a transition at 7, = —0.331. Only one

level is shown because the transition is very sharp.

(d) The corresponding entropy function. The mark on the A axis is at

In(2.5980)=0.955. (e) The enlargement around (In2,In2). The curve follows the straight line up to the arrow and then bends off and

is nonsingular otherwise.
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is drawn here because of the sharpness of the transition.
Figure 6(d) is the corresponding entropy curve and we
focus on the enlargement around the maximum, Fig.
6(e). Here we clearly see that the entropy bends as indi-
cated by the arrow around A=0.738. After this the
curve is nonsingular and is tangent to the two dotted
lines.

For larger ¥ completely new behavior occurs. Take as
an example ¥ =1.5 for which the corresponding curves
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are shown in Fig. 7. Here, A =2.1927,
ap=In(2.1927)=0.7851, and a,;=In(2.2532)=0.8123,
so for the first time the slope at the fixed point away
from zero is larger than the slope at the origin and we
would expect to find quite different behavior than in the
previous ‘cases. First of all the state at T—0" is now
antiferromagnetic, since the smallest cylinders now come
from the fixed point inside I. If we look at the order pa-
rameter curve [Fig. 7(c)] the situation has changed a lot.
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log2-0.04

log2+008
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FIG. 7. (a) The function Eq. (16) with ¥y =1.5. (b) The corresponding scaling function. (c) The order parameter. The type of
the ordering has completely changed as compared to the cases shown in the previous figures and there is no sign of a transition.
The ordered state is antiferromagnetic. (d) The corresponding entropy function appears nonsingular which is supported by the en-

largement (e).
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Even though the systems order there seems to be no
phase transition at positive nor at negative temperatures.
This conclusion is supported by the fact that the correla-
tion length always remains finite. Further evidence is
provided by the entropy function Figs. 7(d) and 7(e)
which shows no sign of singular behavior. Apparently
there exists a critical value of ¥ where the series of first-
order transitions terminates. At this point the transition
becomes very sharp and then suddenly disappears.

(a)

<S>

s |

We can give some intuition for when and why the
transition disappears. The existence of a transition has
something to do with the lack of uniformity by which
the scalings are distributed. In the logistic map almost
all cylinders scale with A=In2 and the transition comes
about when suddenly the very sparsely populated region
around In4 is being felt. The spectral density between
these two points is not enough to secure a smooth
changeover. For y around 1 [Fig. 6(b)] the situation is
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FIG. 8. (a) The function Eq. (21) with p=0.1. (b) The scaling function. Now the symmetry around its center is broken. (c) The
order parameter showing a first-order transition at 7, = —1.052. (d) The order parameter calculated for positive temperatures.
There is no sign of a transition and the parameter is numerically hard to saturate at (s )=1. (¢) The entropy function. The mark
at the A axis is at In3.835=1.344. (f) The enlargement around (In2,In2) shown for n =9,12. The dotted line representing the transi-

tion appears to go to the point (In2,In2).
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very different. Here the value of the scaling function in
the center is comparable with its value at the ends which
means that a lot of spectral density is building up at the
ends. For y=1.5 [Fig. 7(b)] the effect is even stronger.
We have not pursued these questions further here but it
would clearly be of interest to study the disappearance
of the phase transitions in more detail. Supposedly the
series of first-order transitions terminate at a critical
point although very likely the transition temperature will
approach zero.

VII. TRANSITIONS FOR LORENTZ-TYPE
RETURN MAPS

In some flows, like the Lorentz system, one may ob-
tain discontinuous return maps similar to the one shown
in Fig. 8(a).?* Consider the map

Bx(1—x —mx?%), x <x,

f(x) 2n

T | =Bx(1—x —myx¥)+1, x>x, ,
where x,, is the location of the discontinuity. For n=0
this discontinuos map has precisely the same cylinders as
the logistic map x —4x (1 —x) only they appear natural-
ly “spin ordered.” For this type of maps (monotonic)
the symbolic dynamics by itself creates monotonically
ordered symbol sequences®® and we do not have to reor-
der them.

We study the case n=0.1 and generate again the
cylinders from backwards iterates. The scaling function
is shown in Fig. 8(b) and shows an interesting new
feature: Now the symmetry x —1—x is broken. To cal-
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culate the order parameter we do not have to put in ex-
tra anisotropy, it is already there. Figure 8(c) shows the
order parameter for various sizes and again we find a
very sharp transition at the temperature 7,= —1.052
with finite-size scaling exponent {=4.7. One might have
expected that the asymmetry is related to a magnetic
field in the corresponding spin system and that the tran-
sition therefore should have been destroyed. It is easy to
check if that is the case: We calculate energy differences
from the unperturbed system (7=0) and check if these
differences are proportional to the total magnetization of
the state, the proportionality factor being a magnetic
field. This is however not the case, presumably the effect
is that of a surface field.

The entropy curve S(A), Fig. 8(e), seems again to be a
straight line at negative temperatures and the Lyapunov
exponent jumps from In2 to In4.159=1.4125 at the tran-
sition. The value 4.159 is the slope in the upper fixed
point of the map in Fig. 8(a) (which is larger than the
slope at the origin). If we magnify the entropy function
around its maximum we surprisingly find that the
straight line branch of the transition (negative tempera-
tures) continues directly up to the point (In2,In2). This
is consistent with the straight line (dotted) calculated
from the transition temperature.
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