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Molecular-dynamics simulations have been carried out on a "soft-sphere" model for binary al-
loys quenched into supercooled and amorphous states. The main emphasis of the work is on the
static and dynamic characterization of the glass transition. A comparison between molecular-
dynamics data and the results of a self-consistent integral equation shows that the equation of state
bifurcates into "glass" and "fluid" branches below a glass transition temperature Tg. The static
pair structures differ significantly along the two branches. The structurally relaxed "fluid" branch
leads to a phase separation at very low temperatures. Close to the glass transition, the atomic
mean-square displacements of the two species go over more and more slowly to the asymptotic
diffusive regime, due to the emergence of an intermediate time scale linked to the slowing down of
structural relaxation. The diffusion constants of the two species follow closely a scaling law, as
predicted by mode-coupling theory, except in the immediate vicinity of the glass transition where
activated processes lead to residual diffusion.

I. INTRODUCTION

The glass transition from a supercooled liquid to a
frozen amorphous state is readily observed in the labora-
tory for complex multicomponent systems, polymers, or
network-forming substances, but the practically achiev-
able cooling rates are not sufhcient to bypass crystalliza-
tion and obtain a glass phase of simple atomic systems,
like rare gases or pure liquid metals. However, simple
model systems of spherical particles can be quenched
into amorphous solid states in molecular-dynamics (MD)
or Monte Carlo "computer experiments, "' where cooling
rates are typically ?0" K/sec or higher. ' Such a "com-
puter glass" shares many characteristic features with
glasses obtained in the laboratory, but lends itself more
readily to theoretical analysis. Recent theoretical devel-
opments, based on the mode-coupling techniques of the
theory of liquids, point to the essentially dynamical ori-
gin of the glass transition. These theories focus on
the density-density correlation function, the decay of
which is found to exhibit two slow relaxation time scales
in the supercooled liquid phase. The glass transition is
signaled by the divergence of the structural relaxation
time and a resulting non-ergodic behavior characteristic
of "structural arrest. " These predictions appear to be
borne out by recent MD simulations of the density-
density correlation function of a supercooled Lennard-
Jones system. ' However, a more quantitative confron-
tation with theory would require very long simulation
runs (typically & 10 time steps in a MD "experiment")
in order to probe the slow decay mechanisms; this is

dificult to achieve with simple one-component systems,
since the supercooled fiuid always exhibits a tendency to-
wards nucleation over sufficiently long time intervals. "

Nucleation is much more easily bypassed in quenched
samples of binary mixtures of spherical particles with
different diameters. ' This situation is reminiscent of the
ease with which certain metallic alloys can be quenched
into stable amorphous states by a variety of fast cooling
techniques. The model which we consider in this paper
is a binary mixture of "soft spheres" containing two
species of spherical particles of different diameters which
interact through purely repulsive inverse power poten-
tials. Our preliminary simulations, ' as well as the more
extensive calculations presented in the present paper,
showed no sign of a tendency towards crystallization of
the quenched computer samples, even for the longest
runs, thus allowing a detailed study of slow relaxations
near the glass transition.

The advantage of considering a simple inverse power
potential model is twofold. First, the corresponding
mixtures have simple scaling properties which imply a
reduction of the number of independent thermodynami-
cal variables from 3 to 2; as a consequence, compression
and cooling of the samples constitute equivalent routes
towards glass formation. On the other hand, the one-
component version of the soft-sphere model has been ex-
tensively studied by MD and Monte Carlo simulations,
both in the stable fiuid and crystal phases, ' ' and in
the supercooled and amorphous states. "' ' The gen-
eralization of the model to binary mixtures, which is the
subject of this paper, can be regarded as the simplest
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model, retaining the essential features of glass-forming
alloys, such as Ag-Cu or Cu-Mg films.

Although the main motivation of our simulation work
remains the dynamic characterization of the glass transi-
tion, we also present and analyze static properties of the
supercooled and amorphous mixtures, including the
equation of state, the pair structure, and the tendency
towards segregation of the two species. The static prop-
erties for several concentrations were calculated by
constant-energy and constant-temperature MD simula-
tions, and from numerical solutions of a thermodynami-
cally self-consistent integral equation for the pair struc-
ture. ' In the second part of the paper we examine in
detail how the slow structural relaxation affects the self-
diffusion of the two species in the vicinity of the glass
transition. The relaxation of the density-density correla-
tion function will be the subject of a subsequent paper.

II. THE MODEL

We consider binary mixtures of N& atoms of mass m
&

and diameter o.
&

and N2 atoms of mass m 2 and diameter
o.

2 in a volume V. They interact through the purely
repulsive soft-sphere potentials:

12

v &(r)=e (la)

where 1 &a, P(2 are species indexes, and the diameters
are assumed to be additive, i.e.,

o p
——2(cr +op) . (lb)

3= 3Ox= g Qx~xpO~p
a P

and the corresponding effective coupling constant is
3

(3)

(4)

r„depends on concentration and interpolates be-
tween the coupling constants relevant for the pure
phases at a given temperature and number density,
1

&

——I for x
&

—1 and 1 2
——1 (o 2/cr ~) for x, =0 (x~ = 1).

The freezing point of these pure phases is at I =1.15

According to the scaling property of inverse power po-
tentials, all reduced equilibrium properties of such mix-
tures, in excess of their ideal gas counterparts, depend
only on two independent variables. If p* =No.

&
/ V

denotes the reduced number density (with N =N, +N2),
and T*=k&T/e the reduced temperature, the two in-

dependent variables are conveniently chosen to be the di-
mensionless coupling constant '

(2)

and the number concentration of species I, x& ——N&/N.
It is tempting to relate the thermodynamic properties of
such a mixture to those of an effective one-component
system in the framework of an approximate "one-fluid"
description. According to conformal solution theory,
the diameter of the atoms in the effective one-component
system is given by

(a=1,2) (Refs. 13 and 14), while the glass transition is
situated around I =1.5. ' ' ' It is worth pointing out
that, for a fixed temperature, the density range of the su-
percooled liquid phase is considerably larger for soft
spheres than for hard spheres.

The microscopic time scale is chosen to be
1/2

m)g)
7 = (5)

12E

Most of the MD simulations were carried out at con-
stant total energy, using a finite difference algorithm, de-
rived from that recently developed by one of us, ' to in-
tegrate the coupled equations of motion of the N atoms.
If ht denotes the time step in the integration, the parti-
cle positions are calculated with an error O(ht ) by a
symmetrized version of the algorithm in Ref. 19; the re-
sulting total energy turns out to be remarkably constant,
with a reduced time step At =At/&=0. 04, the drift not
exceeding 0.02% over 10 time steps in the worst cases.
Since the temperature fluctuates in constant-energy
simulations, which may lead to "blurring" of some
dynamical signatures of the glass transition, we have, for
comparative purposes, carried out a few constant-
temperature (i.e., constant kinetic energy) simulations,
using the constraint method of Hoover et al. and
Nose. ' ' Most simulations were done for samples of
N =500 atoms (with the usual periodic boundary condi-
tions), but two runs were also made for samples of 4000
atoms. We examined only one size ratio, u2/o. , =1.4;
most calculations were for a mass ratio m 2/m, =2, with
a few runs for a ratio mz/m

&

——4. The simulations cover
a wide range of states in the stable and supercooled fluid
phase and in the glass phase, extending roughly from
I, =1 to I, =2.5, for x, =1, 0.9, 0.75, 0.5, and 0.25,
with special emphasis on the equimolar concentration;
the characteristics of the various runs are summarized in
Table I.

In practice, all simulations were carried out for a re-
duced number density, such that p'[x, +x2(o.2/
o &) ]=1. An equilibrium fiuid configuration (at a tem-
perature above the freezing temperature) was obtained
by melting an initial crystal configuration. Supercooled
and glassy states were obtained from the equilibrium
fluid configuration by a succession of quenches during
which the velocities of all atoms were scaled down ac-
cording to v;=av;, with 0&a«1. The resulting (in-
stantaneous) change in total energy is simply

AE = —,
' g m, v, ( 1 —a ) = 3 Nks ( T, —T'& ) .

The isolated system is then left to evolve in time to a
new temperature T2, with a redistribution of AE among
the kinetic and potential components of the total energy.
A very dense system is not far from harmonic, so that
equipartition holds approximately; consequently,

(6)

AE=2x 3Nks(T, —T2) . —

Comparison of Eqs. (6) and (7) leads to the estimate of
the final temperature:

Tz =(T&+T', )/2=T, /2 as a~0 .
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TABLE I. Summary of molecular-dynamics runs. The column MD specifies constant-energy (E)
or constant-temperature {T) simulations; b t*=Et/~ is the time step and N, is the total number of
time steps, including equilibration.

MD

E
E
E

E

E
E
E

E

T

E

E

E
T
E
E
T
E
E
E

E
E
T
E

E
E
E

N,

250
500
250
250
125
375
250
250
250
250
450
250
250
250
250

2000
250
250
250
250
250
250
125
250
250
375
216

(CsC1
450
500
250

2000
250
250
375
250
375

N,

250
0

250
250
375
125
250
250
250
250

50
250
250
250
250

2000
250
250
250
250
250
250
375
250
250
125
216

crystal)
50
0

250
2000

250
250
125
250
125

m2/m
&

0.5
1.0
0.5
0.5
0.25
0.75
0.5
0.5
0.5
0.5
0.9
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.25
0.5
0.5
0.75
0.5

0.9
1.0
0.5
0.5
0.5
0.5
0.75
0.5
0.75

1.065
0.611
0.501
0.482
0.509
0.423
0.384
0.359
0.319
0.256
0.255
0.211
0.208
0.207
0.193
0.190
0.172
0.165
0.164
0.159
0.159
0.151
0.150
0.136
0.135
0.128
0.127

0.129
0.133
0.110
0.101
0.090
0.060
0.040
0.033
0.024

1 err

0.947
1.131
1.143
1.154
1.156
1 ~ 192
1.221
1.242
1.280
1.352
1.376
1.418
1.425
1.425
1.451
1.457
1.494
1.508
1.511
1.523
1.523
1.543
1.570
1.584
1.586
1.608
1.612

1.631
1.656
1.670
1.705
1.755
1.943
2.153
2.263
2.445

0.018
0.030
0.035
0.022
0.035
0.035
0.035
0.035
0.035
0.035
0.040
0.035
0.035
0.035
0.050
0.040
0.050
0.050
0.050
0.035
0.035
0.035
0.055
0.035
0.035
0.040
0.040

0.040
0.050
0.035
0.050
0.050
0.050
0.070
0.100
0.100

N/ /10'

2+5
4+4
4+4
2+ 10
4+4
4+4
4+4
4+4
4+4
2+ 10
4+4
4+4
2+ 20
2+ 10
4+4
2+2
4+4
4+4
4+4
2+20
2+ 10
4+4
4+4
2+ 10
2+ 20
4+4
4+4

4+4
4+4

10+20
2+2
4+4
4+4
4+4
4+4
4+4

f3P /p

12.60
18.71
20.22
20.80
20.48
22.65
24. 19
25.34
27.66
32.41
32.88
37.69
37.87
38.09
40.43
40.95
44.41
45.66
46.07
47.03
47.35
49.41
51.33
53.98
53.91
56.58
53.50

57.71
54.00
65.01
70.40
78.25

114.4
168.1

205.3
274.4

The process can be repeated several times to reach
quenched states of arbitrarily low temperature. Two
successive quenches are typically separated by 10 time
steps. Intermediate temperatures can be achieved by ad-
justing the scaling factor a accordingly.

A common feature of the constant-energy simulations
is the slow upward drift of the temperature (i.e., total ki-
netic energy) observed for most glassy states (i.e., for
r,,~1.5); the drift represents typically less than l%%uo of
the initial temperature (after equilibration) in a 4000
time-step run, and appears to slow down with time in
most cases. However, there is almost no drift of the
pressure along the run. There is a corresponding down-
ward drift in total energy in the isothermal simulations.

III. THE EQUATION OF STATE

The excess internal energy U of the soft-sphere mix-
ture is calculated from the statistical average of the total
potential energy Vz, while the pressure P, as calculated
from the virial theorem, is directly proportional to U for
inverse-power potentials; in the present case,

PP PU 4
( )

p N Nkg T

The MD estimates of the equation of state pP Ip are list-
ing in Table I and plotted versus I,z in Fig. 1. If the
one-fluid description were exact, all points, correspond-
ing to different concentrations, would fall on the same
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FIG. l. Equation of state @Pip of soft-sphere mixtures vs

I,z. Upper part of figure: MD data (solid symbols) for x, =1
(star), x& ——0.9 (diamonds), x~ ——0.75 (triangles), x& ——0. 5 (cir-
cles), and x, =0.25 (squares); the solid line is the conformal
solution equation of state (EOS) (12) (with b =1.712). Lower
part of figure: equation of state for the concentration x, =0.5;
solid circles (linked by dashed line), MD data; open circles, RY
results; dashed-dotted line, harmonic EOS (11) (with b = 1.727)
for a CsCl lattice.

curve. This is nearly so, as can be seen from the figure,
where all MD results fall practically on a straight line.
The linear behavior is easily understood from a simple
harmonic model for high-density (or low-temperature)
states; according to this model,

—=a(x, )e(p*) + —3ksT+O(T ), (10)

In the one-component case (x t
——1), a = 1.450 for the fcc

lattice, while the equation of state of the supercooled
liquid and glass phase is very well fitted by Eq. (11) with
a =1.712. ' In light of the results shown in Fig. 1, the
equation of state of the amorphous mixture is most
efBciently written in the form

=7+4b (x t )I,tt, (12)

where most of the concentration dependence is con-
tained in I,tr, so that b =a(cr, lo„)' is only weakly
dependent on x&. In the one-Quid approximation, b is
independent of x

&
and equal to the value a =1.712

where a (x t ) is a concentration-dependent Madelung
constant which determines the zero-temperature "lat-
tice" energy. The corresponding equation of state reads

P —1 =6+4a (x
&
)I 4

found for the one-component case; the deviations from
this approximation are found to be small, but significant.
A least-squares fit to the equimolar amorphous data
(x t

——0. 5) yields b = l. 88, while the corresponding
Madelung constant for the crystalline CsCl structure
(which appears to be the most stable for a ratio
ozlcr &

——1.4) is b =1.727.
The equation of state was also calculated from a

straightforward multicomponent generalization of a
thermodynamically self-consistent integral equation due
to Rogers and Young (RY), ' ' which will be presented
in greater detail in Sec. IV. The RY equation yields
equations of state which agree very closely (within better
than 1%) with simulation data over the whole fiuid
range of all inverse-power potentials, and in particular
for the present soft-sphere model. Our own calculations
show that this excellent agreement extends into the su-
percooled Quid range for all concentrations up to
I,&-1.5. Beyond that coupling a clear bifuraction is
observed, as shown in Fig. 1 for an equimolar mixture:
The RY results drop progressively below the MD data
as I increases. This trend could be attributed to a gra-
dual breakdown of the RY closure under very strong
coupling conditions, but this does not seem to be very
likely, since different implementations of the thermo-
dynamic self-consistency requirement (to be discussed in
Sec. IV) lead to nearly identical results, as shown in
Table II. We believe that the different pressures corre-
spond to two physically different branches of the equa-
tion of state. The upper branch, along which the MD
data lie, may be associated with typical glassy states, i.e.,
quenched metastable structures which were unable to re-
lax within the duration of the MD runs, since structural
relaxation times increase by many orders of magnitude
beyond the glass transition ("structural arrest"). This
branch is of course not unique and may depend, among
other factors, on the cooling rate during the preparation
of the initial configuration of the sample. Also the point
beyond which bifurcation occurs will depend on the ini-
tial preparation. It is, however, worth stressing that all
the MD-generated "glassy" states appear to fall on the
same curve, independently of the initial preparation and
nearly independently of concentration, at least within
the limited range of initial configurations and cooling
rates which we have explored.

The lower branch drawn through the RY results, on
the other hand, corresponds to metastable disordered
states of lowest free energy, since the integral equation
describes translationally invariant "equilibrium" situa-
tions which would be reached after a sufficiently long
structural relaxation process. True thermodynamic
equilibrium can only be reached by translational
symmetry-breaking nucleation into the crystal phase,
which is characterized by significantly lower pressures,
as shown in Fig. 1.

The bifurcation in the equation of state, and the ensu-
ing difference in slopes beyond the glass transition is
reminiscent of the distinct "kinks" in the variation of a
number of thermodynamic properties with temperature
at constant pressure observed in many simulations of
one-component systems. The soft-sphere model under
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TABLE II. Thermodynamic results from HNC and three versions of the self-consistent RY in-

tegral equation, for two states of an equimolar soft-sphere mixture; when two results are given, the
first is obtained via the virial route, while the second stems from the compressibility (or fluctuation)
route; Xz- is the isothermal compressibility while U

&
and U2 are the partial molar volumes.

HNC RY1 RY2 RY3 MD

pkg Tgz-
~ 10'

5.9
11.4

x, =0.5; T*=0.207; I, =1.425
6.54 6.54
6.54 6.54

6.54
6.54

6.15
6.3+0.3

PP /p

Pv& /Xr

Pvp /Xy.

Sgc(0)/x )x2

42.64

109.3
56.43

231.4
119.5

1.64

37.81

97.43
98.57

208.7
207.2

1.41

37.75

97.70
97.27

207.8
211.0

1.49

37.80

97.72
97.34

208.3
208.6

1.33

38.0

pkg TXp
g 10'

3.37
6.88

x, =0.5; T =0.107; I, =1.68
3.65 3.65
3.65 3.65

3.65
3.65

3.26

PP /p

Pv ~ /gr

Pvq/Xr

SCC(0) /+ 1+2

70.90

188.3
92.16

405.2
198.7

4.02

63.78

172.6
175.4

375.3
372.5

2.10

63.74

177.5
171.1

374.4
376.7

2.39

63.76

173.1
172.8

375.0
374.9

1.85

66.84

investigation leads to unphysically high pressures, due to
the purely repulsive nature of interatomic forces. In or-
der to investigate thermodynamic properties at zero
pressure, we have taken into account the effect of attrac-
tive interactions within the standard van der Waals
mean-field approximation. If combined with the
equation of state (12), this leads to simple analytic ex-
pressions for the thermodynamic properties at constant
pressure. The corresponding volume per article, enthal-
py, compressibility, and thermal expansion coefficient all
exhibit a distinct change in slope at a temperature
Tg =0.3 which is often identified with the glass transi-
tion temperature, and corresponds to a value I,&-1.5 of
the effective coupling constant, in agreement with the
approximate location of the bifurcation point in the
equation of state.

IV. PAIR STRUCTURE AND SEGREGATION

=x 5 ~+px x~ f h &(r)e'"'dr, (13)

where the h &(r)=g ~(r) —1 are the correlation func-

The microscopic pair structure of binary mixtures is
characterized by three partial pair distribution functions
(PDF) g ~(r), or equivalently, by their Fourier trans-
forms, the partial structure factors S &(k):

tions and

a=1,2

is a Fourier component of the microscopic density of
species a. Two linear combinations of p&& and pk2 are of
particular physical interest, namely, the Fourier corn-
ponents of the total number and concentration densities:

pa+ =pa&+pz2 ~

pic =&zpj i
—X Ipa2 ~

(isa)

(15b)

From these, the three Bhatia-Thornton structure fac-
tors S»(k), S~c(k), and Scc(k) are defined by relations
similar to Eq. (15); they are obviously linear combina-
tions of the three partial structure factors; their long-
wavelength limits are related to second derivatives of the
Gibbs free energy G; in particular

Nk~ T
lim Scc(k)=
k~0 (8 G/0 i )z;,

(16)

The MD simulations yield accurate estimates of the
PDF g ~(r) for distances r less than half the length L of
the simulation cell. Truncation of the Fourier integral
in Eq. (13) leads to spurious results for the correspond-
ing S ~(k) for k (2'/L, thus preventing a direct evalu-
ation of the k —+0 limit in Eq. (16).

The g &(r) and S ~(k) can also be obtained from nu-
merical solutions of the familiar integral equations of the
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theory of liquids. The classic Percus- Yevick and
hypernetted-chain (HNC) equations suffer from internal
thermodynamic inconsistency, which can be overcome
by a number of improvement schemes. One of the most
successful is the interpolation scheme of Rogers and

Young, ' which has the merit of being easily generalized
to the case of mixtures. The RY integral equation sup-
plements the three Ornstein-Zernike relations between
the h p(r) and the direct correlation functions c p(r) by
the closure relations

exp[f p(r)[h p(r) —c p(r)]) —1

g p(r)= exp[ PU—p(r)] 1+
~p r

(17)

where the f p(r) are "switching functions" conveniently
taken in the form'

f p(r) =1—exp( gpr—) . (18)

The parameters g p are adjusted to ensure thermo-
dynamic consistency of the integral equation. In the
one-component case, the single parameter g is adjusted
to achieve self-consistency between the virial and
compressibility (Iluctuation) routes to the equation of
state. For a two-component system, there are three pa-
rameters g p, but only two consistency conditions, name-
ly,

= 1 —g ppc p(k =0), a = 1,2
p

(19)

(pk21 TET )
~P Tx(

=1—g gX XpPC p
a P

(k =0) . (20)

More generally, if the characteristic scales of the g p(r)
(e.g. , the positions of the main peaks) are denoted by
R ~, the ordering R» & R &z & R zz leads us to expect that
the reciprocal lengths g p should be ordered according
«$22 & f12 & f11. Only one consistency relation [namely,
Eq. (20)] is needed if the following constraint is imposed:

where c p(k) denotes the Fourier transform of c p(r); in

a self-consistent theory the left-hand side of Eq. (19),
with the pressure calculated from the virial equation,
must coincide with the fluctuation result on the right-
hand side. In the simplest version of RY theory (RY1)
applied to binary mixtures, a single parameter g is used
(i.e. , g» ——$12——f22 ——g), and this is determined from the
single condition obtained by summing the two conditions
(19), namely,

two equimolar states, one above and one below the glass
transition temperature. The three RY schemes yield
nearly identical pressures and good internal consistency
between the virial and fluctuation routs for those quanti-
ties that are not directly tied by the consistency rela-
tions. This contrasts sharply with the high degree of in-
consistency of the HNC results. As already noted in the
Sec. II, the RY pressures are very close to the MD result
at the temperature above the glass transition, while they
he 5% below the MD result at the lower temperature.

The quantity which is most sensitive to small varia-
tions of the g p is the long-wavelength limit of Scc(k).
Despite the resulting uncertainties on Scc(k =0), this
quantity is found to increase rapidly, and appears to
diverge, as the temperature is lowered well below the
glass transition temperature Tg'. According to the result
(16) this divergence signals the limit of stability of the
mixture against phase separation, since the spinodal line
is precisely determined by the condition 3 6/Bx

&
——0.

The situation is illustrated in Fig. 2 for three concentra-
tions;, the demixing tendency is seen to be particularly
strong for low concentrations of the larger species.
Phase separation is also obtained for less dissymmetric
mixtures (e.g., for 0 2/cr 1

——1.2), but at considerably
lower temperatures. No such demixing is observed in
the MD simulations, because the very slow structural re-
laxation inhibits any tendency towards segregation.

The difference between the "glass" and "Quid"
branches is also clearly apparent from the PDF g p(r).
Figure 3 shows that above Tg*, the MD and RY results
are very close. Note that the characteristic splitting of

(11 12 422 12

$12 R 11 412 R22
(21) X,Xq

g roc

k1 422= I+a, =1 e(RY3) . —
(12 412

(22)

A typical comparison of thermodynamic properties, cal-
culated via each of these RY routes, and via the HNC
approximation (where g'

p
——oo ), is made in Table II for

If the two consistency relations (19) are used, the num-
ber of independent parameters g p is restricted to two,
by imposing the constraint

2
jeff

FIG. 2. xlx~/Sc~(k =0) vs I,~. The solid curves from top
to bottom are the RY1 results for x

&

——0.25, 0.5, 0.9, and 0.75;
the stars are the HNC results for x

&

——0.25, 0.5, and 0.75.
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4 *

r/o

FIG. 3. Partial pair distribution functions g p(r) for x& ———'
1

r„=1.42. The solid curves are the RY1 results, while stars
are MD data.

the second peak of the g p(r) is observed well before the
glass transition is reached and cannot, consequently, be
considered as a "signature" of that transition. Another
noteworthy feature lies in the relative amplitudes of the
main peaks of the g &(r): The g, z peak is significantly
lower than g» and gzz, signaling a tendency towards
homocoordination; this may be interpreted as a precur-
sor to the phase separation at much lower temperatures.
The situation changes considerably well below the glass
transition temperature, as illustrated in Fig. 4. The MD
and RY results, which may be associated with the
"glass" and "fluid" branches, differ now considerably.
The RY peaks are much higher and slightly shifted to
larger r compared to the MD counterparts; they also
show an enhanced tendency towards homocoordination
and an almost complete separation between first and
second shells, as materialized by nearly vanishing values
of the g ~ (r) between the first and second peaks. TheRY

differences between the main peaks of the g (r) and
RY

aP
the corresponding g ~ (r) show up very clearly in the
coordination numbers, calculated according to

p
6 ~p =41Tpp g ~p( )rrdr (23)

Results for equimolar mixtures are shown in Fig. 5
versus coupling. Whereas the MD data are practically
independent of temperature, the RY results for the coor-
dination numbers n&& and nz2 along the "fluid" branch
increase significantly with coupling, thus stressing the
tendency towards segregation.

Typical examples of Bhatia-Thornton structure factors
from MD simulations (on the "glass" branch) and from
RY calculations (on the fiuid branch) are shown in Figs.
6 and 7. As already stressed earlier, the MD data are
not reliable at small k, but the structure factors appear
to vary smoothly as k~O. On the other hand, the RY
structure factors increase sharply in that limit, due to
the tendency towards segregation in the fluid phase at
low temperatures. The MD and RY results for Sz&(k)
both exhibit a striking "interference" effect in the inter-
mediate wave-number range (ko i-20): The oscillations
in S~~(k) are first damped with increasing k, but after
going through a minimum, their amplitude increases
again before finally decreasing to zero. This behavior is
perfectly reproducible in the MD simulations and is ob-
served for equimolar mixtures over the whole range of
temperatures typical of the glass (I,s~ 1.5); although
less pronounced, this behavior is also observed at higher
temperatures, in the supercooled liquid. This "interfer-
ence" effect was not observed at the other concentrations
which we have studied, and may be attributed to an in-
terplay of the relative phases of the oscillations in the
partial structure factors S &(k), which depend sensitively
on the concentration and size ratio. In particular, the
effect is much less pronounced for the sma1ler size ratio
o 2/o )

——1.2.

V. SELF-DIFFUSION NEAR THE
GLASS TRANSITION

One of the most obvious dynamical characterizations
of the glass transition is the sharp decrease of the self-
diffusion constant D: Except for activated processes

10'

where r ~ is the position of the first minimum in g ~(r).

~ ~

r/o

1.5 2.5

FIG. 4. Same as Fig. 3, but for I,&——1.94; the dashed curves
through the MD data are for visual clarity.

FIG. 5. Coordination numbers n&~, n~&, and n22 (from bot-
tom to top) vs I,z for equimolar mixtures. The solid curves
are RY1 results, while the dots are the MD data.
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2

Z (t)= l —QE2 —+O(t4), (25)

involves the characteristic Einstein frequency,

O

Z
Z

AE — cv Z (cv)de2'
1 g pE fg tt(r)V v t3(r)dr,

3m
(26)

0
r

J
I /

I
g/

I

20
KO

40

FIG. 6. MD data for the Bhatia-Thornton structure factors
S~~(k) (solid curve), S~~(k) (dashed-dotted curve), and S~~(k)
(dashed curve) vs ko.

l for xl ———,
' and I,~——1.755.

(jump diffusion), D is expected to vanish at the transi-
tion. The recent mode-coupling theories point to a
power-law behavior of D in the vicinity of the glass tran-

6, 27sition. ' Another signature of "structural arrest" is the
dramatic increase of the shear viscosity q. In practical
MD simulations, the transport coe%cients, which are
determined by the collective dynamics of the atoms, like
g, cannot be obtained with a high degree of accuracy.
Moreover, the associated stress tensor autocorrelation
function (ACF) builds up a slowly decaying tail as the
temperature is lowered, which makes it impossible to ob-
tain even an order of magnitude of g in the supercooled
liquid near the transition. For that reason we have con-
centrated our efforts on the velocity ACF's of the two
species in the soft-sphere mixtures, and on the corre-
sponding self-diffusion constants D given by

kBT
D = f "Z (t)dt,

ma

where 2' (cv) denotes the power spectrum of the velocitci y
ACF Z (t). Physically A,E is the frequency at which an
atom of species a vibrates in the potential well of the
cage formed by its neighbors fixed at their mean posi-
tions ~z ——1/Qz constitutes the shortest time scale
characterizing individual atomic motions. Numerical re-
sults for OE shows that the Einstein frequencies are
significantly higher along the glass branch, due to the
slightly shorter nearest-neighbor distances compared to
the fiuid branch (cf. Fig. 4).

Typical velocity autocorrelation functions Z, (t) and
Z2(t) of an equimolar mixture are shown in Fig. 8 for
two states: one near the glass transition, and one deep
in the glass phase. As expected, the Z (t) exhibit an in-
creasing degree of structure as the temperature is
lowered. While the two ACF's exhibit the familiar back-
scattering effect, followed by a negative plateau in the
supercooled fluid state, well-defined oscillations appear

m
Z t = g (v; (t).v; (0)) .

a B i=]
(24)

The short-time expansion of Z (t),

0

0.96
I I

20
k

gPa
~ ~

0

l

10
K C7

I

20 30

FIG. 7. RY results for the Bhatia-Thornton structure fac-
tors at x = —' and I ,&

——1.943; symbols have the same meaning
as in Fig. 6; the inset shows S»(k) at large wave numbers on
an enlarged scale.

FIG. 8. Velocity autocorrelation functions Zl(t) (left-most
curve) and Z~(t) vs reduced time t/~ for xi ———', I,q

——1.51 (su-
percooled fluid near the glass transition), and for I,&

——1.943
(low-temperature glass, upper curves).



36 SOFT-SPHERE MODEL FOR THE GLASS TRANSITION IN. . . 4899

beyond the glass transition, which are reminiscent of the
behavior expected for a harmonic solid. The corre-
sponding spectral functions, for the state close to the
glass transition, are shown in Fig. 9; these spectra exhib-
it well-resolved peaks which are significantly narrower
than in the fluid near freezing. Not unexpectedly, the
spectra are very sensitive to the mass ratio

m & /m i. Fig-
ure 10 shows the results for the same thermodynamic
state as in Fig. 9, but for a mass ratio tn2/m i

——4 rather
than 2. 2, (co) is considerably sharper for the larger
mass ratio as a consequence of the cage effect, which is
more clear-cut when the large particles are much heavier
than the light ones.

We have also computed the interdiffusion current
ACF, J(t), which determines the mutual diffusion con-
stant D1z according to

k~T
Di2 —— yxix2 f J(t)dt,

m1p 0

1.0

3

0 5
3

0

FIG. 10. Same as Fig. 9, but for m 2/m &

——4.

m12J(t)= ( ji~(t).ji2(0) ),
X 1X2

where jiz(t) is the interdiffusion current

Ni N2

j,2(t)=x2 g v;, (t) —x, g v, 2(t),

(27)

(28)

which results from complete neglect of the cross correla-
tions between velocities of different particles. Hence,
since y = (x ix z )

' for nearly ideal mixtures, the
interdiffusion constant is approximately given by

and y=(t) [6/Xk&T]/Bxi )p T~, while m i2' xzrn i
'——

+x1m 2
'. Because it is the ACF of a collective variable,

J(t) is affected by considerably larger statistical uncer-
tainties than the velocity ACF. Nonetheless, we find
that for all states which were investigated, the calculated
J(t) does not differ significantly from the simple super-
position

m12J(t) =x2 Zi(t)+xi Zq(t),
m1 mp

(29)

0.6

3
(~

0.3
3

(fV

FICx. 9. Spectra 2~(to) (right-most solid curve), 22(co) and
J(cu) (dashed curve) vs reduced frequency co~ for x

&

———',
r„=1.51 and a mass ratio m2/m, =2 [the corresponding
Z, (t) and Z2(t) are shown in Fig. 8].

D1P -x~D1+x1D2, (30)

The slope of the mean-square displacement y (t) of an
atom, suitably averaged over all atoms of a given species,
allows a more accurate estimate of D than an integra-
tion of Z (t), when the resulting integral is small, due to
the unavoidable inclusion of statistical noise at long
times. The time dependence of the mean-square dis-
placements of the two species is shown in Fig. 12 for
three thermodynamic states in the vicinity of the glass
transition. At the highest temperature, y (t) reaches its
asymptotic (linear) regime rapidly, typically after 10—20
Einstein periods ~E . This behavior is observed
throughout the stable and supercooled fluid range, up to
r„=1.4. At lower temperatures, as the glass transition

a relation which is reasonably well obeyed in simple
liquid mixtures. Spectra J(co) are shown in Figs. 9 and
10; they agree reasonably well with the simple superposi-
tion (29). The results listed in Table III show that, in
the supercooled fluid, D12 is systematically larger than,
but still comparable with, its estimate (30).

Values of the reduced diffusion constants D '
= &12m( T* )

' 0, D, calculated from Eq. (24), are
listed in Table III and plotted in Fig. 11 versus I,z.. D1
and D2 are found to drop below the noise level around
I,&

——1.55, independently of concentration. However,
the estimates of the diffusion constants based on the
Kubo relations (24) are unreliable when they become
very small, because they result from a near cancellation
between positive and negative values of the Z (t) (cf.
Fig. 8). Under these conditions it is more efficient to es-
timate directly D from the Einstein relation

lim (~r; (t) —r;(0)~ )= limy (t)=6D t.
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TABLE III. Self- and mutual diffusion constants, calculated from the Kubo relations (24) and (27)
(K) or from the Einstein limit (31) (E)~

MD

E

E

E
E

E
E

E

E
E

0.5
1.0
0.5
0.5
0.25
0.75
0.5
0.5
0.5
0.9
0.5

0.5

0.5
0.5

0.5

0.5

0.25

0.5

0.5

0.5

I ea

0.947
1.131
1.143
1 ~ 154
1.156
1.192
1.221
1.280
1.352
1.376
1.418

1.425

1.494
1.508

1.523

1.523

1.571

1.586

1.584

1.670

10 D,*

8.6(E)
2.95(E)
3.6(K)
3.0(K)
3.8(K)
2.3(K)
2.2(K)
1.5(K)
0.82(E)
0.19(K)
0.42(K)
0.39(K)
0.42(E)
0.13(K)
0.11(K)
0.07(K)
0.10(E)
0.13(K)
0.10(E)
0.085(K)
0.04(K)
0.03(E)
0.045(K)
0.03(E)
0.005(E)

10D

m, /m, =2
5.7(E)

2.0(K)
1.9(E)
2. 1(K)
1.3(K)
1 ~ 15(K)
0.72(K)
0.38(E)
0.10(K)
0.23(K)
0.19(K)
0.18(E)
0.06(K)
0.03(K)
0.02(K)
0.025(E)
0.06(K)
0.04(E)
0.03(K)
0.015(K)
0.013(E)
0.02(K)
0.01(E)
0.001(E)

10 Dip

4.0

5.0
2.6
2.2
1.3

0.18
0.78

0.12

10 (x D, +x,D* )

2.8

3.4
1.6
1.7
1.1

0.1 1

0.33

0.095

E
E
E

0.5
0.5
0.5

1.242
1.451
1.511

m~/m, =4
1.64(K) 0.98(K)
0.28(K) 0.22(K)
0.10(K) 0.05(K)

1.5
0.35
0.16

1.3
0.25
0.075

3(
~
r; (t) —r; (0) ~')

R (t)=
5[(

~
r; (t) —r; (0)

~

') ]' (32)

For a purely Gaussian process, R (t)=1 for all times.
For simple liquids near freezing, R (t) deviates from 1

at most by 10%. However, our MD data show that
R (t) becomes increasingly non-Gaussian as the temper-
ature is lowered towards the glass transition. As shown

is approached, y (t) exhibits significant curvature out to
increasingly long times, and reaches the linear regime
only after more than 100 Einstein periods. This renders
an accurate determination of the slope 6D very
difficult. In particular, if y ( t ) is not extended to
sufficiently long times, D is easily overestimated, due to
the negative curvature of y (t) at intermediate times. A
similar "subdiffusive" behavior is clearly apparent in our
simulations of the supercooled one-component soft-
sphere fluid, " and in a recent MD study of supercooled
fluids of atoms interacting through a repulsive Yukawa
potential.

Another manifestation of the non-Gaussian nature of
self-diffusion near the glass transition can be found in
the time dependence of the ratids

exp( b f,tt), — (33)

where for &&=0.5 A&=0. 18 6& ——1.0, and A2 ——0. 15,
b2 ——1. 1. It is interesting to note that the data for other
concentrations and for equimolar mixtures with a mass
ratio m2/m& ——4, fall roughly on the same Arrhenius
lines. The slope of the lines corresponding to the two
species is slightly different, so that the ratio D&/Dz in-
creases as the temperature is lowered, from about 1.7
near freezing to nearly 3 in the vicinity of the glass tran-
sition. In light of recent predictions of mode-coupling
theory, we have also examined the validity of a scaling
law of the type

in Fig. 13, the amplitude of the maximum deviation of
R (t) from 1 increases dramatically near the transition,
and this maximum is reached more and more slowly.
This highly non-Gaussian behavior is reminiscent of
jump diffusion process occurring in superionic conduc-
tors ' and underlines the importance of activated pro-
cesses near the glass transitions.

Figure 11 shows that the self-diffusion constants D
&

and D2 obey reasonably well an Arrhenius law

D* = 3 exp( —a /T)
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(solid symbols) and D 2 (open symbols). Triangles,

x& ——0.75; circles, x& ——0.5; squares, x& ——0.25. Th

tions from Arrhenius behavior (materialized by the dashed
straight lines at the lower temperatures (large I )' th e vertical

ars in icate rough estimates of statistical uncertainties, based
on the difference bbetween the Kubo and Einstein routes to D

D' =8 (I s —I ) (34)

VI. DISCUSSION

The best At for equimolar mixtures, shown in Fig. 14, is
obtained for I =0.87 (1,~=1.566) and v&

——v2-2. The
exponent v is practically the same for the two species,
and agrees reasonably well with the predictions of
mode-coupling theory for a one-component Lennard-

e t ( ) is at least as good as the Arrhenius fit (33).
The scaling law (34) is inapplicable in th

' d'

cinity of the glass transition, where activated processes
lead to a small residual diffusion, even beyond the transi-
tion, as is clear from Table III.

4
~V

O
0.08

0 I I I

100 300
t/T

FIG. 12. a Mea-
the li ht u

Mean-square displacernents (in un't f ) f
e ig (upper curve) and heavy particles vs reduced time for

x
&
= 2, g = 1.425; the dashed straight lines are the estimated

asymptotes. (b) Same as (a), but for I,~——1.523. (c) Same as
(a) but for I,~——1.584.

Q. 4,

CL
Q. 2

By considering binary mixtures, we have been able to
per orm extensive molecular-dynamics computer "ex er-

n supercooled and amorphous states of a soft-

cleation. Our results show some of the characteristic
features that
one-component "computer glasses, " but we believe that

60 120 180
t/T

FIG. 13 "Non-Non-Gaussian" ratio R (t) for the lighter (left-
most curve) and heavier particles vs reduced time for x I

———',
I,g ——1.425.

ime or xI—
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quenched amorphous and fully relaxed fluid states. The
fluid branch is found to lead to phase separation at very
low temperatures. This opens the possibility of studying
the phase separation observed experimentally in many
multicomponent glass-forming systems.

The second important result of our MD simulations is
the emergence of an intermediate time scale in the
mean-square displacement of the atoms near the glass
transition. Between the initial rapid atomic motion in
the cage of nearest neighbors and the linear diffusion re-
gime at sufficiently long times, the mean-square displace-
ment is characterized by a highly non-Gaussian,
subdiffusive time dependence which extends over 10
Einstein periods or more. We believe that this regime is
intimately related to the slowing down of structural re-
laxation. The small, residual diffusion observed below
the glass transition temperature is due to activated pro-
cesses (jump diffusion) which exist even if the structure
is frozen. This "rounding off" of the transition is in
qualitative agreement with a recent theoretical analysis
of Das and Mazenko. Discarding this residual
diffusion, the diffusion constants of the two species obey
over the whole supercooled fluid domain a simple scaling
law of the form (34) with an exponent v nearly equal to
2. In a subsequent paper we shall present a direct inves-
tigation of structural slowing down based on MD results
for the density autocorrelation function.

FIG. 14. Power-law plot of the reduced self-diffusion con-
stant D&* (solid symbols) and D& (open symbols). The circles
are from constant-energy MD simulations, while the triangles
are from constant-temperature simulations. The slopes of the
dashed lines are close to 2. Note the strong deviations from
the power-law behavior (34) close to the glass transition due to
activated processes.

two of our main findings are novel, to the best of our
knowledge. The first result is clear evidence for a bi-
furaction of the equation of state into "giass" and
"fluid" branches below the transition temperature Tg.
Although such a bifurcation is frequently postulated in
the literature on the glass transition, our MD computa-
tions and the solutions of the thermodynamically self-
consistent RY integral equation yield convincing
theoretical evidence for the simultaneous existence of
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