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In order to study the phase-separation process near the critical point of fluid mixtures (spinodal
decomposition) without the influence of the Earth’s gravity, we have used a carefully density-
matched system of deuterated cyclohexane, cyclohexane, and methanol. Such a system is known
to behave as a real binary fluid [C. Houessou, P. Guenoun, R. Gastaud, F. Perrot, and D. Beysens,
Phys. Rev. A 32, 1818 (1985)], and our own previous microgravity experiments have demonstrated
that the gravity influence was negligible during the whole separation. A light-scattering analysis
has been performed, which provided the three-dimensional structure factor S mainly in the first
stages of the separation. For the late stages a necessary alternative is the study of the images of
the separating fluid. The interest of such a direct observation lies in the possibility of extracting
not only statistical properties analogous to those obtained with the light-scattering technique, but
also of analyzing the morphology of the phase-separation process and the motion of interfaces.
The origin of such images is not straightforward. It is shown that they reproduce the section of
the pattern of interfaces between phases, in a plane located close to the exit window. Because the
domains are interconnected, and because only the interfaces nearly parallel to the light direction
are detected, this pattern exhibits the same periodicity as that of the domains. From these images,
a numerical treatment using video techniques and computer analysis allows a two-dimensional
structure factor § to be obtained. The similarities and differences with the corresponding three-
dimensional factor S are discussed. The scaling properties of the phase separation—the time in-
variance of the reduced structure factors F and F, of the reduced second moments r and ?, the
universal behavior of the typical wave vector K,» —can be verified in the whole available range, up
to the final equilibrium state. Here wetting forces and the residual gravity effects compete to give
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to the system its equilibrium morphology.

INTRODUCTION

Suppressing convections and sedimentations during
the phase separation of fluids systems may enable new
growth mechanisms to be evidenced; this is one of the
motivations for performing experiments in space, where
the gravity level is near zero. An alternative way, which
concerns the fluid-fluid phase separation, has been re-
cently pointed out;! it involves a drastic reduction of the
density difference of the fluid phases. This has motivat-
ed the work reported here, which deals with the new
features appearing in the late stages of phase separation
when the conditions of negligible convections and negli-
gible sedimentation have been fulfilled.

For this purpose, we have elaborated a ternary liquid
mixture (cyclohexane, deuterated cyclohexane, methanol)
in order to match the density of the components as close
as possible. This mixture was shown to behave as a real
binary fluid with respect to its critical properties.! Such
a method has enabled us to directly observe the stages of
the phase separation which are usually dominated by
gravity. The pattern due to spinodal decomposition
could thus reach unusual macroscopic sizes, limited only
by the finite size of the samples. The validity of such a
phase separation as a simulation of a real microgravity
environment has recently been checked;> we have per-
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formed two experiments in microgravity, using sounding
rockets (Texus program), which have shown good agree-
ment between our terrestrial results and those obtained
under microgravity.

Phase separation in a critical binary fluid, more
specifically the spinodal decomposition process, has been
extensively studied by wusing -ight scattering tech-
niques.>* The most important result was probably the
evidence of a scaled behavior of the phase-separation
process, which was demonstrated via the experimental
study of the structure factor. We present here a similar
study which, however, takes advantage of a new analysis
method: the direct observation of the growth.

This latter method indeed allows the study of the sep-
aration to be extended to the very late stages, owing to
the analysis of the direct space patterns. For this pur-
pose we discuss the formation of the optical image and
its origin. The understanding of these optical conditions
is essential to infer the statistical properties of the pat-
tern, which enables the scaled behavior of the phenome-
na to be obtained (structure factor). Various compar-
isons can then be made with the corresponding light
scattering data, keeping in mind that light scattering
gives a three-dimensional (3D) analysis, whereas the im-
ages are of a two-dimensional (2D) nature.

This article deals with different problems, connected
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either to the physics of the phase separation or to the
comparison of this new image-analysis method with the
classical light scattering techniques. For this reason we
will describe in some details its organization.

Section I reviews the principal mechanisms involved
in the phase separation of fluids, and especially the spi-
nodal decomposition. Phase diagram properties (Sec.
I A), different growth regimes (Sec. IB), and scaling
properties (Sec. I C) are discussed.

In Sec. II the experimentally available observables are
reported. After recalling the video system characteris-
tics (Sec. IT A), the light scattering observables, essential-
ly the 3D structure factor S (Sec. II B), the direct obser-
vation of the phase separation pattern (Sec. II C) are dis-
cussed, image formation, quantitative analysis, and
definition of a new structure factor §. Then the relations
between S and § are analyzed and a brief conclusion is
given.

Section III deals with the experimental setup, and in
Sec. IV we report the data corresponding to S (3D) and
S (2D) and their scaling properties (Secs. II A and IV B).
Especially a discussion of the behavior of a typical pat-
tern size (L,,) is given in Sec. IVC. In Secs. IVD and
IV E we take benefit of the visualization of the pattern to
analyze the interface motion and the particular morphol-
ogy of the spinodal-decomposition process. Finally,
some comments are made.

I. SPINODAL DECOMPOSITION
OF A CRITICAL BINARY FLUID

A. Phase diagram

The coexistence of the two phases of a binary fluid is
schematically drawn in Fig. 1. In the plane [concentra-

(a) (b)
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FIG. 1. Phase coexistence of a binary liquid mixture. c is
the concentration of one of the components and T is the tem-
perature. The system is monophasic above the coexistence
curve and diphasic below. The spinodal curve separates the di-
phasic region into a metastable region and an unstable region.
(a) and (b) represent thermal quenches in each of these regions.
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tion (c)—temperature (T)], the curve (coexistence curve)
characterizes the concentration of the phases at equilib-
rium. The top of the curve locates the critical point
(c.,T,). The system is homogeneous in the region above
the coexistence curve. The region below this curve is a
region of nonstability, which can be divided into two
domains according to the sign of the susceptibility
X=(82F/ac2);r where F is the free energy of the sys-
tem.

A schematic way (Fig. 1) to investigate the mecha-
nisms of phase separation is to quench the system from
the one-phase region (temperature 7;) into the nonstable
region (temperature T;) and to study how the mixture
relaxes towards equilibrium.

The initial regime (the “germination”) is directly relat-
ed to the sign of X. In the domain where X >0 (the nu-
cleation domain) the system is metastable, and only the
fluctuations larger than a “critical radius™’ are able to
grow. In the domain X <O (the spinodal domain) which
is the only region that concerns a sample at criticality,
the system is thermodynamically unstable; concentration
fluctuations can grow and reach the equilibrium values.

Let us recall some classical critical properties which
will be used in the following. Near the critical point, the
system is characterized by the order parameter
M =c —c, (we adopt the magnetic notation). The binary
fluid concerning the static properties belongs to the same
universality class as the three-dimensional Ising model.
With the reduced temperature e=(T-—T.)/T,, the
correlation length £~ (in the two-phase region) behaves
as

E-=E(—€)", (1

where £; is the correlation length amplitude, which is
system dependent, and v is an universal exponent
(v=0.63).

It is, however, generally the correlation length (&7)
which is determined in the one-phase region, and one
has to apply the 2-scale-factor universality to infer £5;
according to a renormalization-group calculation,®
&5 /€ =0.524.

The surface tension o between the two phases can be
related to £1 by using the following ratio from the
2 -scale-factor universality:

ks T
B _R(E*Y)~4R(£7)?, )

where R has been experimentally found to be R ~2.6.”

It is also useful to introduce the average lifetime 7~ of
the fluctuations. This time can be understood as the
typical Brownian diffusion time of a fluctuation of size
&7, and can be expressed as®

- 61Tll —\3
T =%,T, (&), (3)
where kjp is the Boltzmann constant and 7 is the mean
shear viscosity at the considered temperature.

The use of standard techniques (laser light scattering)
enables the structure factor S(K,t), i.e., the Fourier
transform of the correlation function of the order pa-
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rameter fluctuations, to be obtained via the scattered in-
tensity’

(K, 1)< S(K,t)x { | 8Mg(2)|2) , 4)

where K is the transfer wave vector and 8Mg(¢) is an
order-parameter fluctuation with same wave vector K.

B. The different regimes

Just after the thermal quench, the fluctuations are
small. According to a linear analysis by Cahn,'° one can
write the time evolution of a fluctuation of wave number
K as M =6M e X", The growth rate w(K) exhibits a
peak at K, (Fig. 2), and becomes negative for large
values of K. This agrees with the intuitive finding that
large K (small-sized) fluctuations, which correspond to
high concentration gradients and are costly in energy,
must disappear; and that small-K (large-sized) fluctua-
tions, which involve weak concentration gradients,
should grow with a very small rate.

The modes around K,, dominate the growth, imposing
a characteristic quasiperiodic interconnected pattern of
typical wavelength L, =27/K,,. A numerical simula-
tion is presented in Fig. 3.

Nonlinearities, which are due to the coupling of
modes, complicate the simple scheme previously de-
scribed, and prevent it from being confirmed experimen-
tally. One of the new main features which emerge is the
time dependence of K,, which decreases with time.
Langer et al.,!! neglecting the hydrodynamic degrees of
freedom, have found a power-law variation K,; '« 1?

W (K)

(0] K K K

m c

FIG. 2. Amplification factor o(K) vs the wave vector K.
Following the linear theory, (K) is positive for K <K, and
exhibits a maximum at K =K, .
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FIG. 3. Numerical simulation of a spinodal decomposition
pattern. 20 modes of wavelength having random directions
(uniform angular distribution between 0 and 27), random
phases (uniform distribution between O and 27), and random
amplitudes according to a Gaussian distribution (64 levels), are
added.

with @ ~0.2. The behavior of I(K,¢) is indeed no longer
exponential with time, as saturation of the growth
occurs. A qualitative understanding of this effect is
given in Fig. 4, where the growth of a fluctuation up to
the local equilibrium is illustrated.

Kawasaki and Ohta'? have extended Langer’s ideas to

t‘ o ' \

a) t=0
Concentration fluctuations

b) t/1%1
Growth of the typical fluctuation

Ln X ~¥ x
Toony
o t/13! d) t/1-10

Saturation of the typical fluctuation
and growth of the typical length

FIG. 4. Illustration of the growth of fluctuations in the ear-
ly stages of the spinodal decomposition.
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binary fluids but none of the authors have been able to
completely describe the late stages. In these stages,
where well-defined interfaces between domains are estab-
lished, the influence of the surface tension becomes im-
portant. A crossover towards a K, '«t behavior was
qualitatively explained by Siggia!’ and Cahn and Mold-
over'* as a growth due to capillary flows.

On the basis of a new dynamical interfacial model,
Kawasaki and Ohta'® have identified all the processes
encountered during the spinodal decomposition in fluid
mixtures. In this model they assume that the local equi-
librium has been reached. Here the local concentrations
are those determined by the coexistence curve. This
occurs typically for times ¢t ~ 7~ (see Sec. II D below).

For the typical length L, , they have obtained the two
main behaviors L, «t'/® and L,, «t. The latter ac-
counts for hydrodynamical effects, and the —;- power law
corresponds to the diffusion-reaction process, the coales-
cence of domains being activated by their Brownian
motion (see also Ref. 16). The growth of L, (¢) is thus
explained by the coarsening of the domains which in-
crease their mean size. This coarsening probably leads
to the change of the morphology of the two phases. For
instance, the picture in Fig. 3 would be modified by a
breakup of the connectivity of the phases. One can then
suggest that a complete description of the problem
would involve other quantities besides L,,(¢). In addi-
tion to L, (¢), which can always be understood as the
mean spacing between domains, the mean size of the
domains R (t¢), and their polydispersity would be
relevant.

Up to now gravity g has been neglected. However,
gravity can induce also a new crossover, towards a re-
gime dominated by convection and sedimentation flows.
The denser phase sinks down and the lighter rises up.
Simple arguments, as developed by Siggia,'* show that
the crossover takes places when the size of the domain is
comparable to the capillary length
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g ) (5)

g Ap

c

where Ap is the density difference of the two phases at
the temperature T, i.e., when

K,L.s1. 6)

This condition can be easily verified experimentally.
Finally, the growth will stop when the domain size be-
comes comparable to the sample size (e), or when

K,e~1. 7

If therefore one wants to suppress the gravity
influence in the phase-separation process, one needs, at
least, to fulfill both (6) and (7), i.e., to make the capillary
length of the order the sample size, that is,

l.~e . (8)

c

Finally, we note that when a macroscopic size is ob-
tained, finite size effects will arise, including wetting phe-
nomena. They will introduce an asymmetry between the
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phases, since one phase will preferentially wet the walls
of the cell.!” In the absence of any gravity influence,
wetting forces should control the final equilibrium state
of the system. For instance, near a critical point, a mac-
roscopic wetting film can be observed.

C. Scaling properties

The scaling idea was originally introduced by numeri-
cal simulation'®'® and also confirmed experimentally.>*
Only one length scale (L,,) appears to be relevant, and
physical quantities should depend on time only through
this length scale.

Experimentally the main points which have been in-
vestigated are the following:

(i) The scaling behavior of S(K,?) can be tested
through the possible time independence of a reduced
structure factor'®

K3S(K,t)
Kp>K,, ’ 9)

F(x,t)= ;
Ji, k. SKK,0K?dK

where x =K /K,,.

This reduced structure factor is dimension dependent.
In the following, we will have to deal with a 2D pattern,
with a structure factor S(K,t), whose corresponding re-
duced factor F(K,t) can be deduced through

KXS(K,t)
s : (10)
S(K,t)K dK

K, <K,

Fix,t)=

(ii) Another test of the scaling is the study of the ratio
defined as a reduced second moment of the intensity'®

(1= 220 (1n
r(t)= ,
k(1)
where k,(¢) is the intensity moment of order n defined
by
J K"s(k,t)dK
k,(t) (12)

~ [ sK,ndk

A perfect scaling behavior would imply that these two
quantities do not vary during all the phase separation.

(iii) The characteristic length of the system, L,,(¢), is
commonly understood as a measure of the periodicity of
the ordered regions which are developing in the system.

Note that light scattering experiments give the oppor-
tunity of deducing L, (¢) from S(K,z). Although the
first moment k() is often related to L,,(¢) in theoretical
works, the most natural choice which is offered to the
experimentalist is the maximum of S(K,¢), which is pre-
cisely the average distance between the domains accord-
ing to the theory of light diffraction.'

In reduced units, the dimensionless wave vector
K =K, & versus the reduced time t* =t /7~ exhibits a
universal behavior

Kn=ft*), (13)

where f is system independent.
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The scaling approach enables the behavior of the
above quantities to be determined through the following:

(i) A reduced structure factor F(x). One has to con-
sider two asymptotic behaviors, namely, x <<1, where
the local mass conservation implies F(x)~x2 and x >>1,
where a Porod law modified by the domains connectivity
leads to F(x)~x "~

Furukawa?® has proposed an expression compatible
with these conditions,

F(x)=4x%/(3+x%) . (14)

(ii) A universal curve K} =f(t*). Considering the
two  asymptotic  behaviors KX ~(t*)"!'3  and
KX ~(t*)~! Furukawa® has obtained, for the charac-
teristic length L% =(K)~!, the relation

dL} X
=AML} B (15)

with two adjustable parameters 4 * and B*. By integra-
tion and using the initial condition (L., =1 for t*=0),
(15) becomes

4+ 1/2 B 172
-1
(Ly—1)— IT [tan L* Ve ’
. 1172
—tan~! L J ]

=B*t* . (16)

Note that in all these predictions only the critical region
is concerned and that the gravity effects are neglected.

II. OBSERVABLES

The main interest of using an isodensity system lies in
the possibility of studying directly the morphology of the
phase separation, and not only properties already aver-
aged. This has lead us to set up a video system allowing
a direct observation of the sample to be made, with
structures typically in the range L, =10-10* pm ac-
cording to the magnification rate used.

In order to interpret the morphology in the same
terms as the previous light scattering studies, we have
also performed scattering experiments. In place of the
direct image, we have recorded, by video, the scattered
light pattern. A typical range is L,, =3-30 um, and it is
therefore mainly in the early stages of phase separation
that this technique has been applied.

Let us first describe the video system.

A. Video system characteristics (Ref. 21)

The video system consists of a video camera, video-
tape and a computer.

The video camera includes a 1-in Newicon tube, of
sensitivity 0.1 lux. The fact that the electron beam
needs a time 7, =40 ms to reset a pixel (i.e., picture ele-
ment) implies that the information in each point is in-
tegrated over ¢.

The pictures are stored on a videotape (U-matic 3
inch), then digitized on 256256 pixels and 6 bits (64
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levels) on a computer. The method of sampling is such
that the information in each pixel is in fact averaged
over a quarter of a pixel area.

The camera and the digitization processor have been
tested in order to check the linearity in intensity and
also the spatial homogeneity of the pattern. These latter
are of order 1% in the central part of the picture.?!
Only the central part (128 128 pixels) of the pattern is
analyzed.

B. Light scattering

A typical pattern of light scattering consists of a spi-
nodal decomposition ring (Fig. 5). Once digitized, this
ring is fitted to determine its center and its diameter
(2K,, ). Due to the symmetry, a radial average of the in-
tensity is then performed and the intensity versus the
scattering angle 1(6,t) is obtained. It is finally convert-
ed to I(K,t).

Let us examine in greater detail the link between such

a measurement and the structure factor S(K,t). The
latter is computed as
S(K,t)={|8Mg(t)| %)y, 17)

where OM (t) is regarded as a stochastic variable con-
nected to a probability distribution functional P(M,T).
( )o then denotes an average over P.

I(K,t) is also an average of |8Mg(¢)|? that we will
examine in more detail:

(a) The first average which has to be estimated is made
over the scattering volume Vs. The problem reduces to
evaluating how many domains can be considered in the
cross section a of the laser beam. This number is of or-
der a’/L} ~a?/(47*)K?2 and remains in the range
80-800 for the typical values a@~200 um and
K,, =2000-20000 cm !,

An equivalent formulation is to consider the number
of coherence areas summed up on the observation screen
to obtain the information related to an angle 6. Since
radial symmetry is observed, a radial average can be

FIG. 5. Typical spinodal decomposition ring obtained by
light scattering 70 s after the beginning of the quench
(T.—Ty=3mK, K,, =3.8X 10’ cm™!, C*C-M system).
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realized over the spinodal ring. It covers typically 100
coherence areas.

This radial average gives | 6Mg(t)|2),. We have
noted the subscript 1 to recall that this average is
different from the above average { ), which had to be
made on a set of equivalent systems. However, in the
limit where the coherence areas can be considered as sta-
tistically independent, and that 100 areas is a sufficiently
large statistical set, one can consider both averages as
being equivalent.

(b) The temporal integration of the picture over
to=40 ms would provide an average of the intensity if
to>>7, the typical lifetime of a fluctuation. However,
typically T, —T;~ a few mK, thus 77 ~300 ms. This
shows that the video scanning does not provide any time
average on I(K,t).

(c) The digitization of the picture could lower the an-
gular resolution. This loss of resolution does not intro-
duce any problems, because the range of interest is al-
ways much larger than one pixel. We can therefore con-
clude that the mean value I (K,?) which is computed via
the video system is correctly related to the structure fac-
tor S(K,1).

C. Direct observation

1. Image formation

A digitized picture of the structures obtained in real
space is shown in Fig. 6. A good contrast is obtained
only when the focus is done on a plane which is close to
the exit inner plane of the cell (Fig. 7), more precisely at
a distance of order L,,.

This seems to be very natural as the superposition of
the structures between the exit plane and the focus plane
makes the picture very fuzzy if the latter is located too
deep within the bulk.

An important point is now to elucidate the meaning of
patterns such as Fig. 6. It is tempting to interpret this
picture as the exact replica of Fig. 3, the dark domains
identifying one phase and the bright domains the other.
However, such a picture can have many origins, and in
the following we review different possibilities.

(a) Transmission? The first interpretation could be
due to a difference in transmission, itself due to a
difference in turbidity. The turbidity can be evaluated
for both phases at equilibrium as??

2

2
" | S2G(e,Kof™) . (18)

dc

172

_}»8

Here A, is the wavelength of light in a vacuum and
Ky=2mn/A, is the light wave vector in a medium of re-
fractive index (n). The function (G) and the derivative
(3n2/dc) are identical for both phases, so the variations
of A have to be attributed only to the local field factor
S,. In fluids the Yvon-Vuks formulation?

_ 9p 2
(n?2+2)(2n%+1)

is seen to describe well the experimental data. This al-

(19)

n
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lows the transmission variation corresponding to a re-
fractive index variation An to be evaluated. Using the
definition of the transmission factor,

T=exp(—Ae), (20)

the corresponding variation can be calculated using the
numerical values of Ref. 1 for a typical quench of 10
mK. In particular, the refractive-index difference be-
tween the two phases is

An~5x1073,

which leads, for a sample thickness e=0.2 cm, to a vari-

(b)

FIG. 6. (a) Spinodal structures obtained by direct observa-
tion. This picture is digitized here only on 5 levels. (b) Struc-
ture factor (§) computed from the structures (a). The radial
symmetry is confirmed in spite of a slight asymmetry due to
the digitization.
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Contrast

FIG. 7. Phase separation in the vicinity of a window. M
is the wetting phase and M the nonwetting phase. The ap-
proximate location of the plane of maximum contrast is indi-
cated. (a) Front view; (b) top view.
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ation T~5X10"% This transmission variation is clear-
ly too small to account for the highly contrasted pattern
which has been observed.

(b) Schlieren? An object which is formed of a
refractive-index modulation is classically detected
through coherent illumination by Schlieren optics.?*
This is nothing more than the suppression of K ~0
modes in the Fourier space of the optical device in order
to consider only the K > 0 modes.

In the range L,, =10-100 pum, the sample is very tur-
bid because of the vicinity of the critical point. There-
fore, schlieren is not very efficient at this stage. We have
checked this point by transforming the setup into a
schlieren device, adding a mask (M) in the focal plane of
the observation lens (L,) (see Fig. 11). In the range
L,, =10°-10* um, schlieren becomes efficient in increas-
ing the contrast of the interfaces between the two
phases.

(c) Self-focusing? The domains can also be con-
sidered as an ensemble of spherical diopters, which
separate two phases of different refractive indices and
which focus the incident light (Fig. 7). An order of mag-
nitude of the corresponding focal length is
L, /(4An)~50L,,, which is always much larger than
L,,. The intensity variations connected to this conver-
gence effect remain therefore negligible.

(d) Interface scattering? The observations are con-
cerned with a time region where the size of the domains
is much larger than the light wavelength. These domains
are very poor scatterers. This is not the case for their
mutual interfaces, of order of a few correlation lengths.
The visualization of the domains will therefore mainly be
performed through the light scattered by these inter-
faces.

In Fig. 8 we show some pictures corresponding to 3
typical scales. It is clear that a mere change of scale
makes the image 8b, in the range 10>~ 10 um, similar to

Typical size(um) 10 - 102 102 - 10° 10 - 10t
Turbidity - - -
Schlieren - + +
Self-focusing - - -
Interface Sec. + + +

¥
0

0

M
6M- pattern |,

Image IT

Photo
(exit window )

1mm,

(©)

FIG. 8. Presentation of the various optical conditions encountered during the phase separation. For each size the respective
influence of the mechanisms is listed, from — (low efficiency) to + (high efficiency).
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the image 8(c) in the range 10°-10* um, in agreement
with the expected scaling properties of the phase-
separating pattern. However, Fig. 8(a) in the range
10-10? um seems to exhibit a different morphology.
This paradox disappears when the limitations due to the
optical resolution of the instruments are taken into ac-
count. One indeed easily realizes that 8(a) can be recon-
structed from 8(b) by a mere change of scale plus an en-
largement of the black and white lines which denote the
location of an interface. This phenomenon is also re-
sponsible for the apparent larger contrast in the smallest
length range.

The effective depth of field in the focusing plane is
determined by the resolution, i.e., by the aperture num-
ber of the lens (here close to F:1). For instance, the
minimum resolution available in Fig. 8 corresponds to
about 50 pm.

The signature of an interface is mostly, as reported in
Fig. 8, a dark line followed by a bright line. A few
events, connected to slight defocusing effects, are also
visible, bright line or dark line. An important remark
has to be made: only the interfaces perpendicular or
nearly perpendicular to the focusing plane will become
visible (cf. Fig. 7). For sake of simplicity, we will as-
sume that statistically, only half of the interfaces will be
therefore detected. This makes the visible interfaces
have the same periodicity as the domains, and not the
half period. This property is due to the nonspherical
shape of the domains, and ultimately to their intercon-
nectivity. On the contrary, the interface pattern of
spherical droplets gives rise to a typical periodicity
which is half of the droplet periodicity. This has been
checked experimentally.

2. Pattern analysis

There are several steps in the analysis of such a pic-
ture.

(a) Image modeling. The image on the video camera
(axes x,y) is a time-dependent two-dimensional image of
intensity I (x,y,t). As noted above, this intensity can be
related to the location of an interface nearly parallel to
the light [i“(x,y,t)], in a section near the exit window
with a depth of order L,,. Strictly speaking, one has to
consider the image as the convolution of i; by the instru-
mental function F(x,y),

I(x,y,t)=iy(x,p,t) ® F(x,p)+ A(t) . 21

The parameter A (z) represents a continuous back-
ground, which varies with time. In contrast to the light
scattering technique, one notes that the quantity I is al-
ready spatially averaged, at least over the size of a pixel,
which is always larger than £~

(b) Quantitative analysis of the pictures: the structure
Jactor. The typical size (8/) related to a pixel is, accord-
ing to the optical magnification, in the range 8/ =1.5-80
p m. The time evolution of the pattern is always much
larger than the scanning time of the video camera (40
ms) thus making the corresponding time averaging negli-
gible.

In order to obtain the structure factor of this pattern,
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it is necessary to perform a numerical Fourier transform
of the digitized intensity [I/(K;,#)] and to compute the
square of its modulus [ | I(K;,t)|?] where i is an index
running from 1 to 128 128, which denotes each pixel.
The structure factor exhibits a radial structure (Fig. 6),
which makes it very similar to the usual light scattering
ring (Fig. 5). Finally, a radial average as described
above in Sec. II B is performed, allowing the quantity
&(K;,t) to be obtained (here K;= | K, |),

6K, t)=(|I(K;)|?), (22)

or

G(K;,t)=| FHK;)|* i (K;,t)|?)+B(1)
+ | A(2) | %8(K;) . (23)

The average { ), has the same meaning as that ob-
tained with light scattering experiments (see Sec. II B),
and the same limitations. Especially the number of in-
terfaces in the picture should remain large enough to en-
sure that a statistical average is really performed. The
background B (¢) is connected to the digitization of the
image, and | 4 |?8(K;) represents the initial back-
ground. It is clear that a more rigorous treatment tak-
ing into account the discretization of the image and the
finite numbers of pixels can be performed, making visible
a minimum spacing 86K ~1/(12838/) and a maximum
range AK ~1/61.

The function & will therefore reproduce the structure
factor of the interface position to within the approxima-
tion of the |F|? factor. This factor is only optics
dependent, and will be made equal to unity in the follow-
ing, which means that the magnification rate and the
resolution of optics have been correctly chosen.

Finally, another limitation arises from the small num-
ber of interfaces in the picture; typically any statistical
analysis becomes meaningless when less than seven inter-
faces remain in the pattern, which corresponds to a
minimum wave vector K,?,,~50 cm™!'. There is, more-
over, a region where the | 4 | % term is so large that it is
difficult to separate a structure from the central peak.

If one can reasonably claim that the measurement of
& allows, by substracting a background B and a K =0
peak A, the interface structure factor ( | i((K;,t)| 2), to
be inferred, it is worth noticing that one cannot compare
it directly to the usual three-dimensional structure factor
of the domains as obtained by light scattering. Their
origins are different. This is why we will note in the fol-
lowing the structure factor obtained from a two-dimen-
sional picture as

Sk, )= [i(K;,t)|?), . (24)

Nevertheless, in Sec. IID we will develop reasonable ar-
guments which justify high similarities between S and S.
Experimental results (see Sec. IV) will moreover confirm
such a resemblance.

(c) Other typical parameters. New informations—new
observables—can also be obtained without performing a
Fourier transform of the pictures. For instance, the
characteristic length (L,,) can be estimated directly



4884

from a digitized picture. And the motion of an interface
can be studied from the direct observation, allowing a
typical interface velocity to be obtained and compared to
the estimations (see below).

D. Relation between S and S

The comparison between S and S needs a model. We
will describe a very natural model, based on the assump-
tion that the local equilibrium between the phases is
reached just after the quench, after a time ¢* ~ 1.

1. The structure factor of the 3D pattern

Several arguments can be given to justify the assump-
tion of local equilibrium. First, rough calculations can
be done by using Cahn’s model to estimate the time
necessary to reach the local equilibrium. In so doing
one gets, for instance, t* ~20 in the case of a quench
depth of 2mK. Also numerical simulations performed
with pure fluids indicate that the Cahn regime has
finished when ¢* ~ 8.2

More convincing arguments are provided by experi-
ments concerned with the phase separation of a critical
binary fluid which relaxes towards equilibrium after hav-
ing been stirred in the two-phase region.?® Stirring
homogenizes the mixture by turbulence at a scale of or-
der a few um, a scale where the initial equilibrium con-
centrations should be preserved. The structure-factor
evolution of such a system being identical to that ob-
tained after a thermal quench, the above assumption
about the rapid attainment of the local equilibrium
seems, therefore, well supported.

Once this local equilibrium is assumed, we can use a
description of the order-parameter field already used by
Ohta,”’

M(r,t)=Mgsgn[u(r,t)]+6M(r,t) . (25)

The function sgn(x) is a function whose value is +1 if x
is positive or negative; =M, is the equilibrium value of
the order parameter at T, and u(r,t) is a field which
specifies the location of the interfaces between the
domains: u(r,t)=0 for r corresponding to an interface,
u>0 or u <0 if r belongs to the phase (+M,) or
(—M,), respectively. The formulation (25) remains val-
id in the approximation ¢* >>1 (local equilibrium) and
K&~ << 1 (interface profile neglected).

The structure factor of such a concentration field can
be written as

S(K,t)={(M2|sg(t)|?
+My[sg()BME(t)+5g(8)8Mg(2)]
+ | 8M (1) | %), . (26)

The factor sg(¢) is the Fourier transform of the function
sgn[u(r,t)], and 8My is the Fourier transform of
SM (r,t) (the superscript asterisks denote the conjugate
part of these quantities).

In the limit K&~ << 1, several approximations can be
performed. First, the structure factor of the fluctuations
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can be expressed by its K =0 value, i.e., the susceptibili-
ty x—,%
() 8Mg(2) |2y =X~ . 27)

There are no reasons to assume correlations between
the fluctuations 8M and the interface pattern; therefore
the average (26) can be simplified to

S(K,t)=M3{ |sg(t)|?)+X~ . (28)

If we leave out the constant term X, this structure
factor provides a description of the organization of the
3D pattern via sg. (An example of calculations for
spherical domains can be found in Ohta.?’) And the
scaling of S(K,t) will express the scaled behavior of the
morphology of the domains as the phase separation
proceeds.

One notes finally that the function sgn(u) varies only
at the domain interfaces. Thus the Fourier transform
(sg) is also closely related to the structure factor of the
interfaces.

2. The structure factor of the direct observation pattern

The image which is detected can be considered as the
section of the 3D pattern at a distance ~L,, from the
exit window. A first question is what is the precise
influence of the wall on the morphology of the struc-
tures?

Complete wetting of one phase!” is seen near 7,. This
implies the existence of a wetting film of one phase (M *
phase) on the wall. Provided that the longitudinal exten-
sion of this film is smaller than the location of our focus
plane, the influence of the wall on the interface pattern
must remain negligible (Fig. 7).

A second question concerns the nonvisualization of in-
terfaces which are not approximately perpendicular to
the plane of observation. This phenomenon reduces in
fact the number of visible interfaces by roughly a factor
of 2 and, provided that statistics can apply, it seems
reasonable to assume that the consequences on the struc-
ture factor are negligible. One, however, notices that
this has the nice consequence of giving the same typical
frequency as the domains. This frequency should have
been the double if all interfaces have become visible, an
interface M §-M; giving rise to the same intensity peak
as an interface My -M .

Keeping in mind all these approximations, one realizes
that it is therefore the structure factor of interfaces be-
tween the domains of a section of the phase-separating
pattern that we determine through §(K,t).

3. Final remarks

A more quantitative analysis of the relag\ions between
the structure factors S of the domains and S of the inter-
faces is beyond the present study. However, S and S
must show strong similarities. In particular, the infor-
mation they provide are of the same kind, in the sense
that they reproduce the Fourier spectrum of the distri-
bution of domains, or of detected interfaces between
domains. Therefore the scaling properties should be the
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FIG. 9. Experimental determination of the time delay dur-
ing a quench performed with T; and T, in the monophasic re-
gion using light transmittency (7). The delay is chosen as the
time where [T(¢)—T(0)]/7T(0)=0.62.
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same, and more speciﬁcall}y, the periodicity K,, will be
reproduced in both S and S. The exact shapes cannot be
compared directly, the 2D interface morphology being
only similar, and not identical, to the 3D pattern case.
The experimental results (see below, Sec. IV) will demon-
strate strong similarities between S and S; surprisingly,
the shapes themselves will be found to be very similar.

III. EXPERIMENTAL

The system which was used was, in fact, a ternary
mixture whose components are cyclohexane (C) with a
small amount of deuterated cyclohexane (C*) and
methanol (M). This mixture was fully studied in a pre-
vious paper! where its critical properties were investigat-
ed. In particular, it has been shown that this mixture
behaves as a real binary fluid with reference to the shape

4885

of the coexistence curve and to the various critical pa-
rameters.
With m, the mass of the component x, the different
ratios which have been used are the deuteration ratio
mc*

co=——""—"""~3%
0 (mc+mg«) ?

and the critical mass fraction .
cc=(mc+m s)/(mc+m s+my)=0.7614x107> .

At T, —T,=10 mK, a typical value for the difference in
density between the two separating phases at equilibrium
is Ap~10~°% gem™>3. This latter value was obtained
from the measurement of the Laplace length [see Eq.
(5)].

It is for a deuteration ratio close to 3% —and varying
from 2% to 4% under the influence of uncontrolled
impurities—that the Laplace length was the largest, of
order of the sample size. As noted above in Sec. I, this
observation was a necessary condition to suppress the
gravity effects during all the phase separation [Eq. (8)].

The cells are made of quartz, of cylindrical shape,
with an inner diameter of 2.0 cm and inner thickness
0.200 cm. The observation windows are optically flat.
Cells are filled through a 5-mm quartz pipe which was
then sealed by a Teflon stop. They are quite identical to
those used in the microgravity experiments; a full
description can be found in the corresponding reports. !

The sample cell was immersed in a water bath with
thermal regulation of +0.2 mK near T,~45°C. The
quench was performed from a temperature 7; close to
T, [T;=T,+(0.5-5 mK] to T, below T, [T,=T,
—(0.5-15) mK], by means of a heat exchanger working
during a calibrated time period. The time response of
the bath plus the sample has been studied using the light
transmittency in the mixture itself, in the homogeneous
region T >T,. A detailed analysis is reported in Fig. 9,

He-Ne

COMPUTER

L3 / wWB,

/

! | |
\ ,/
Hy =t
/N Q
L, o
TH P
2

FIG. 10. Experimental setup used for both direct observation (a) and light scattering (b). L,,L,,L3,L4,Ls, lenses; He-Ne,
helium-neon laser; H;,H,, pin holes; M, semitransparent mirror; Qth., quartz thermometer; WB,,WB,, temperature-regulated wa-
ter baths; P,,P,, pumps; FT, water filter; HE, heat exchanger; C, cell; M, mask, E, screen.
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where we see that the dead time is approximately 12 sec.

The general setup derives from that already used in
Ref. 1. It is reported in Fig. 10. It can be used either as
a light scattering setup [Fig. 10(b)] when illuminating the
cell with a slightly focused He-Ne laser beam of a few
mW power, or as a direct-observation optical device,
when illuminating the sample by collimated white light
[Fig. 10(a)].

The early stages of the phase separation can be better
studied by light scattering (range K, ~0.1-1), whereas
the late stages are chiefly concerned with the direct
space observation. There is obviously a regian of over-
lap, which is of prime importance for checking the as-
sumptions concerning the two different structure factors

T ]' T [ T
F(x.,t) (b)
| + 30s B
v 40s
50 s
12k o 70s B
o 80s
+
*bvg?
0.8 — j{*qf&% -
o_ &
o B ¥ &,
UL\_ +-‘-vp Dt"
v hY —
% tb:%.
+og da’%:q)-
0 400 L N ¥ %L, 000
0 0.5 1 15 2 25 3
X

FIG. 11. (a) Typical temporal evolution of S(K,¢) for a 1.5-
mK quench depth (light scattering). (b) Scaling function
F(x,t) corresponding to the evolution shown in (a). The times
are those corresponding to the symbols on the figure.
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S and §, as defined in Sec. II.

The typical range that can be covered by light scatter-
ing is K,, =2000-20000 cm~! or L, =3-30 um;
different magnification ratios allow direct space struc-
tures to be investigated in the range L,, =10-20000 um.

In Sec. II A we have already described the characteris-
tics of a digitized picture and how the averages have to
be accounted for.

Specific softwares?! have been elaborated to compute
the structure factor S(K,z) from the light scattering
measurements (determination of the ring center, radial
average) and to determine the structure factor §(K,t)
from the direct-observation pattern (fast Fourier trans-
form, radial averages).

Finally, the scaled forms F(x,t) and ﬁ(x,t), and the
ratios r(z) and 7(¢) are computed from, respectively, S
and S according to the expressions (9) and (10). Practi-
cally the limits of the involved integrals have been taken
as

K, =K, /2 and Kz =2K,, .

This choice has been imposed by the limitations of the
experiments; it has already been performed by other au-
thors.>*?® In fact, the value of the integrals are not
very sensitive to the choice of these cutoffs.

IV. RESULTS AND DISCUSSION

This section is mainly concerned with the scaled be-
haviors of the light scattering structure factor S and of
the corresponding quantity S as deduced from the direct
observation. The behavior of the typical wave vector
K,, will be also discussed and for the very late stages the
velocity of interfaces will be compared to the corre-
sponding K,, evolution.

A. S and its scaling properties

Since the works of Chou and Goldburg® and Wong
and Knobler,* the scaling of S(K,?) has been well as-
sessed. Although a detailed study of S was made neces-
sary to compare with S, it was also of great interest to
compare their data to our measurements since we have
used a nonclassical experimental procedure.

Tests of scaling are twofold: evolution of the reduced
structure factor F(x,t) and of the reduced second mo-
ment r(¢), which should not vary with time in the case
of a perfect scaling behavior.

Some typical structure factors S(K,?) are reported in
Fig. 11(a) (T, —T;=1.5 mK, ¢ range=30-80 s), together
with the reduced factor F(x,t) [Fig. 11(b)]. This latter
demonstrates that scaling is indeed verified.

Figure 12 is devoted to the comparison of an average
of our F data with those reported in Ref. 4 for the isobu-
tyric acid and water system by Wong and Knobler, and
with the theoretical shape [Eq. (14)] proposed by
Furukawa. In spite of a few discrepancies, one can con-
sider the agreement as excellent when considering the
experimental uncertainties—and especially the subtrac-
tion of the background intensity which must be estimat-
ed for each picture.
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FIG. 12. Comparison between various F-scaled functions.
Furukawa’s theoretical parametrization (...), Chou and

Goldburg’s data (x), Wong and Knobler’s data (+ ), mean
value of our F(x,t) data (O). A mean value of our ﬁ(x,t) data
(@) has been reported; although it cannot be compared in prin-
ciple, it is surprising to find a shape nearly identical to F.

The values of the reduced second moment r(¢) are re-
ported in Fig. 13. Scaling is here also well verified and
the constancy of r is striking.

As a conclusion to these light scattering studies, the
good agreement between our data and those previously
reported gives us confidence in the video analysis system.

B. S and its scaling properties. Comparison with S

The similar scaled behavior has been found with the
reduced structure factor F(x,?) deriving from §(K,t), as
shown in Figs. 14(a) and 14(b) where, respectively, S and
F are shown for a typical quench of T, — T, =3 mK.

The comparison of the mean value F obtained with all
our data and the corresponding F variation is drawn in
Fig. 12. Although the similarity between F and Fis

(t" I ' '
r DIRECT OBSERVATION
AL
—~

113 - < -
= (<] . . 4 v -
- oo x oooo ca se s +9v v —
— o xx e v .
109 = xx o . —
= =} m
1.07 — o 0.6mk .

QUENCH x 1.2mk

LIGHT SCATTERING ¢ 2.0mk

DEPTH o 1.4mk

+ 3.0mk

1 1 | v 10.0 mk

10 10? 10° 0t 10° t*

FIG. 13. Evolution of the reduced second moment r vs t*.
The results of six distinct quenches are shown and the analysis
was done by light scattering, by direct observation or by both
techniques. An average value is around 1.1.
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striking, some differences have to b/g discussed; they are
essentially located at low x, where F remains larger than
F, and at large x, where the tail of Fis higher than that
of F. It is tempting to consider that these differences are
significant. However, one must note that close to K =0,
in both cases, the transmitted light appears as a large
peak whose tail makes any measurement uncertain in
this region. Similarly, in the large-K region, the back-
ground term which has to be removed increases the un-
certainty. It is therefore not clear to what extent the
differences between F and F are meaningful.

The reduced second moment value ?(z) is found to be
a constant (Fig. 13) and its mean value is very close to
the corresponding r(¢) value obtained by light scatter-
ing, r(¢)=1.10%£0.02, compared to 7(¢)=1.11%0.02.

N T [ T I T
F b
(x.t) + 190 s (b)
| e 430 s N
610 s
730 s
1.2 — —
0.8 _
04— —
0
0

FIG. 14. (a) S(K,t) vs K for a 3-mK quench depth (picture
analysis). The time elapsed from the beginning of the quench
is indicated. (b) Scaling function F(x,7) vs x. The different
times are indicated.



4888

The value r(#)=1.14 can be inferred by using the ex-
pression (14) in Eq. (11).

Finally, the important results coming from these anal-
yses concern the strong similarities between the light
scattering and the direct-observation methods. One
must note also that this latter method allows the study
to be performed on a very large time interval, limited
only by finite size effects.

C. Behavior of K} versus t*

The peaks (K,,) of the structure factors S and S can
be reported on one single curve versus time, provided
that the scaled values K =K, £~ and t*=t/7" are
used. This curve describes merely the temporal evolu-
tion of the typical distance L, =2w/K,, between
domains (see, e.g., Fig. 8).

In Fig. 15 we have drawn the results we have obtained
by light scattering and by direct observation. We have
also reported the corresponding values obtained by Chou
and Goldburg in the 2,6-lutidine and water system® and
those obtained by Wong and Knobler in the isobutyric
acid and water mixture.* They are clearly all in agree-
ment; the values obtained by light scattering and direct
observation are especially quite similar. This is con-
sistent with our analysis of the image formation. All our
data have been fitted to the analytical variation due to
Furukawa [see Eq. (16)].
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The resulting values for the parameters 4* and B*
are

A*=0.14%0.01,
B*=0.022+0.001 .

These values can be compared to those obtained assum-
ing the following mechanisms:

(i) A diffusion-reaction mechanism at small times. In
this case A4 *~2!/3—1=0.26, which compares favorably
with the above value.

(ii) A capillary flow at large time. The constant B has
to be evaluated from the estimation by Siggia,'’

z (29)

K. '~B t,

where B is a numerical constant,
B, ~0.1.

A more refined treatment by San Miguel et al.? has
given

BSM 20.04 .

The numerical comparison of B and B* can be expressed
through the evaluation (2) of the surface tension, and
leads to
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FIG. 15. Plot of K% vs t*. On this single curve are shown the results obtained by both light scattering (LS) and direct visualiza-
tion (DV) techniques. A model from Furukawa is drawn with a continuous line. The dashed line corresponds to averaged light
scattering measurements [Chou and Goldburg (Ref. 3), Wong-Knobler (Ref. 4)].
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The Siggia estimation is far too large, but the constant
B =0.08 compares favorably well with our above re-

sult.

B*=

D. Direct measurement of the interface motion

Looking at the phase-separation pattern gives us the
opportunity of measuring directly the velocity at which
an interface moves, and thus of determining a value in
the exact framework of the theory. At the very end of
the phase separation (¢t*~2.10° for AT,=5 mK), one
can observe a phase (M 1), whose typical size is of the
order of the cell size, which includes a few domains of
the other phase (M ~). These last domains are shrinking
with time and a single equilibrium state is obtained when
phase (M ™) is surrounded by phase (M ~). The mea-
surement can begin as soon as a definite interface sur-
rounding a domain can be unambiguously delimited.

A measurement of the time evolution of the area A of
a domain gives direct access to the interface velocity.
For practical reasons, we have reported the radius (R) of
an equivalent disk with the same area A =mR2 The
temporal evolution of R (see Fig. 16) allows a global
measurement of the interface velocity to be made.

The time dependence of R has been found to be linear,

R :RO'—BRt
with
Bgr=(2.3+0.3)x<10"* cms™'.

This behavior, which is very comparable to that depicted
in Sec. IV C, indicates that the hydrodynamic influence

[ T T T T T
2R ¥\
(mm)

24—

06

1 |
L0 600

| 1 I\ 1
0 120 240 360 720 t(s)
FIG. 16. Experimental measurement of the interface veloci-
ty through the evolution of the size (R) of a domain with time
t.
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remains strong even at the end of the process. This is
shown by the linear variation of R with ¢ which implies
a time-independent ¢ interface velocity. The value of By
leads to a value B* ~2Xx 10! which is comparable to
B* previously estimated, which implies that the same
kind of hydrodynamic instability is operating even at
this very late stage.

An interesting point should be the dependence of the
interface velocity with respect to the curvature radius.
In the case of a system with a nonconserved order pa-
rameter (such as an antiferromagnet) it has been shown?*°
that the velocity R (¢) was directly proportional to
R ~Xt) which is consistent with the growth law
R (t)~t'/2 which is generally assumed.

In the case of a binary mixture—where the order pa-
rameter is conserved—the growth law R (¢) ~¢ should be
consistent with the independence of R (¢) upon its curva-
ture radius R (¢). The kind of measurement we de-
scribed above can be used in order to check this point.

V. MORPHOLOGY OF THE PHASE SEPARATION

The most striking signature of a phase separation at
criticality is surely its peculiar morphology. The begin-
ning of the phase separation indeed gives birth to a spec-
tacular interconnected pattern (see Fig. 8). Nevertheless,
this cannot always be considered as a proof of a spinodal
decomposition process, as pointed out by Jantzen and
Herman.?! These authors point out, for instance, that
the aggregation of droplets in a nucleation process can
also occur in an interconnected way, according to the
importance of the volume fraction of the phases in pres-
ence.

This is, however, not the case in the above experi-
ments. Within our optical resolution (10 um), we have
always observed the phase separation as developing from
interconnected structures, and never from the coales-
cence of isolated domains.

The final equilibrium state of the system is governed
by wetting forces. The methanol-rich phase is preferen-

FIG. 17. Total wetting observed at the end of a quench of 5
mK depth (¢* ~3x10°%). Note the small clusters included in
each phase.



4890

tially attracted by the walls and a situation of total wet-
ting is reached. This is actually observed as a macro-
scopic wetting film which surrounds the nonwetting cy-
clohexane phase (see Fig. 17).

There remain, however, in both phases small droplets
of the complementary phase. They evolve very slowly
with time. We interpret this phenomenon by the discon-
nection of some domains during the growth of the per-
colated pattern. They are therefore no longer connected
and they can grow only by diffusion through the inter-
face. This is a very slow growth mechanism, especially
close to the critical point where the mass diffusion is
nearly zero.

CONCLUDING REMARKS

The use of an isodensity system has allowed, by
rendering negligible the gravity-induced convections and
sedimentations, the direct observation of spinodal struc-
tures to be performed up to the ultimate stages.

The origin of these images is subtle and resides in al-
lowing the interface pattern to be determined in a plane
near the exit window. The fact that on average only one
interface out of two is made visible ensures that the in-
terface periodicity is the same as the domain periodicity,
and not its double. The problem of connecting the exact
shape of the corresponding structure factor to that ob-
tained by light scattering is still open. However, by
comparing their statistical properties to the correspond-
ing data obtained by light scattering, it has been shown
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that these two-dimensional pictures reproduced the scal-
ing properties of the bulk structures and most aspects of
their morphology. The scaling properties are seen to
remain relevant up to the very end of the phase-
separation process.

The study of the morphology of the growth pattern
gives evidence of the interconnection of domains as the
signature of the phase separation at criticality. Let us
note that this coarsening mechanism is very sensitive to
the exact criticality of the sample. A slightly noncritical
system will exhibit other growth laws’ which implies
that the morphology of the phase separation should be
drastically changed as the location of the quench is
moved in the phase diagram. A systematic investigation
of the different growth morphologies in this phase dia-
gram, with the help of isodensity systems, would be of
great interest.

The location of the detectable layer, close to the exit
window, should allow surface and wetting properties to
be evidenced. Finally, the fact that no gravity influence
has been observed during the growth is a good indica-
tion that isodensity systems are good candidates to simu-
late experiments in space. But this is another problem,
which is presently under study.?
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FIG. 17. Total wetting observed at the end of a quench of 5
mK depth (t* ~3x10°). Note the small clusters included in
each phase.



FIG. 3. Numerical simulation of a spinodal decomposition
pattern. 20 modes of wavelength having random directions
(uniform angular distribution between 0 and 27), random
phases (uniform distribution between O and 27), and random
amplitudes according to a Gaussian distribution (64 levels), are
added.



FIG. 5. Typical spinodal decomposition ring obtained by
light scattering 70 s after the beginning of the quench
(T.—T;=3mK, K,,=3.8%10° cm~!, C*C-M system).
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FIG. 6. (a) Spinodal structures obtained by direct observa-
tion. This picture is digitized here only on 5 levels. (b) Struc-
ture factor (§) computed from the structures (a). The radial
symmetry is confirmed in spite of a slight asymmetry due to
the digitization.
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FIG. 8. Presentation of the various optical conditions encountered during the phase separation. For each size the respective
influence of the mechanisms is listed, from — (low efficiency) to + (high efficiency).



