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Modulated Rayleigh-Benard convection is analyzed for high frequencies and large modulation
amplitudes. The linear theory of Gershuni and Zhukhovitskii is generalized to the nonlinear
domain, and a subcritical bifurcation to convection is found in agreement with the experiments of
Niemela and Donnelly. The crossover between the high-frequency ("Stokes layer" ) regime and the
low-frequency regime studied previously is analyzed.

I. INTRODUCTION

Rayleigh-Benard convection under external modula-
tion of the temperature has been studied both theoreti-
cally' and experimentally ' in recent years. In most
of this work' ' the frequency and amplitude of the
modulation were assumed not to become too large.
More precisely, the relative amplitude of modulation 6
was taken to be of order unity or less, so that all in-
teresting effects of modulation were confined to the fre-
quency domain to/tr (0 (1). Recently, Niemela and
Donnelly (hereafter referred to as ND) devised an ex-
periment where they modulated a Rayleigh-Benard cell
filled with liquid helium, at dimensionless frequencies of
order co/tr = 10 and relative amplitudes 5 =0 (30).
These authors pointed out that at such high frequencies
convection is confined to a narrow Stokes layer of thick-
ness

d, =(2/co)' '((1,

In Sec. II the linear treatment by GZ of the Stokes
layer is reviewed and the nonlinear generalization
presented and compared with the experiments of ND.
We recover a subcritical bifurcation as found experimen-
tally, and correctly predict the position of the saddle-
node bifurcation. The jurnp in temperature at the transi-
tion is not obtained with as good accuracy, but the ex-
perimental value is difficult to estimate from the results
presented by ND. In Sec. III we review the high-
frequency behavior of earlier theories of modulated con-
vection, and discuss the crossover from the low- to the
high-frequency regimes.

II. SUBHARMONIC BIFURCATION
IN THE STOKES LAYER

A. Linear theory

We assume that the bottom plate temperature is
modulated, and following GZ we write the temperature
as the sum of a conductive and a convective contribution

which changes the quantitative behavior of the system.
The high-frequency situation ( l. 1) was analyzed by
Cxershuni and Zhukhovitskii (hereafter referred to as
GZ), in a linear theory. They found that for ro=0, the
critical amplitude was

T(z ) = T„„d(z)+0,
T„„d(z ) =R,""5exp( ttz )cos—( tcz tot ), —

where

(2.1a)

(2.1b)

3/2
C

(1.2) x.=(co/2)'i (2.1c)

a result which was verified by the experiments of ND.
The present paper studies the crossover from the low-

frequency large-d, regime (which is reasonably well de-
scribed by the Lorenz model of AHL I) to the high-
frequency small-d, regime (1.1). We then generalize the
approximate theory of GZ to the nonlinear regime,
which allows us to predict the Nusselt number or the
temperature difference, and, in particular, to study the
nature of the bifurcation to convection (supercritical or
subcritical). We find that the crossover from low to high
frequency occurs at co-cu =40, for the Prandtl number
of the ND experiment. Our calculations are confined to
the case ro ——0 considered by GZ and ND, but small
values of ro are not expected to change the situation
drastically.

w =wt ——[w, (z )cos(cot /2)

+ w~(z )sin(cot /2) ](e'"'+c.c. ) (2.2a)

and

0=0t = [0,(z )cos(cot /2)

+0~(z)sin(cot/2)](e'"'+c. c. ), (2.2b)

corresponding to a subharmonic bifurcation. As
sketched in Appendix A, we insert (2.2) into the

Note that in (2. 1) we have assumed that the average tem-
perature difference ro vanishes. In linear order the ve-
locity and convective contribution to the temperature
are, respectively,
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Oberbeck-Boussinesq (OB) equations (A 1) and find ordi-
nary differential equations for w~ 2(z) and 0& z(z). These
are solved approximately by making the ansatz (A2) and
determining the unknown constants from boundary con-
ditions and integral relations. The result, shown in Eqs.
(A3) and (A4) are precisely those of CsZ. In Fig. 1 we
show by the solid line the linear threshold (A4) as a
function of frequency for a Prandtl number o. =0.49.

B. Nonlinear theory

We now take solutions of the form

LU =M(

0—0I + 0O(z ) + 03(z )cos( cot ) +04( z )sin( cot )

(2.3a)

(2.3b)

a, 0,=I. , (z ) (Z ), — (2.4)

where L &(z) is given in Eq. (AS) in terms of the linear

and insert these into the OB equations (Al), keeping
only terms with frequencies co, ~/2, as well as constant
terms. The terms in c so(~t/2) and sin(cot/2) are those
of the linear theory which determines the functions
0, 2(z ) and w

&
z(z ) up to a normalization. The terms in

cosset and singlet lead to equations for 03(z) and 04(z)
[Eqs. (A10)], which are solved by Laplace transforma-
tion. The term independent of t in the equations of
motion leads to an equation for 0O(z ) of the form

solutions and (J ) is the heat current through the fluid,
averaged over the lateral coordinates and over time (this
average is independent of the vertical coordinate z). The
solution to (2.4) depends on the external constraints on
the experiment, which we write, in general, as

$2 —1

C

(2.6a)

(2.5)

where J'" is the total vertical current through the sys-
tem, the second term is the contribution from the
sidewalls, and A. is the ratio of conductances of the
sidewalls and fluid, respectively. Two special cases of
Eq. (2.5) are (i) fixed-zero temperature at the upper plate,
which can be achieved by setting A, = oo in (2.5), and (ii)
fixed-zero current through the fluid, which corresponds
to X =0. A typical experimental situation involves a
finite A, and Eqs. (2.4) and (2.5) determine the function
0O(z). Equation (2.5) can also be generalized to the case
of a nonzero average current (J"')=Jo, or average
temperature 0O(z = 1)=Ro.

The calculations outlined in Appendix A are straight-
forward but tedious. The Anal result can be expressed in
terms of the average velocity squared P and the reduced
amplitude

g =a~ P'+Pl~ (2.6b)
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The linear threshold 5, is given in (A4), and the
coefficients a and P, displayed in (A12), depend on the
Prandtl number o. . The main frequency dependence of
the result has been scaled out by the factors of
x=(co/2)' appearing in (2.6b) and (A12). When the
wall conductance A, is zero, a and j3 are strictly in-
dependent of co, but for finite k a weak frequency
dependence remains.

From these results we may predict the Prandtl num-
ber o. , at which the bifurcation changes from subcritical
to supercritical, i.e., the "tricritical" value of o. for
which a=0. For A. =0 we find

20 o, =4.5 . (2.7a)

10 C. Comparison with the experiment of Niemela and Donnelly

90
I

120

FIG. 1. Linear threshold for onset of modulated convection
via a subharmonic bifurcation. The critical amplitude 5, is
plotted as a function of the dimensionless frequency ~, for the
case of no average temperature difference (ro ——0) and o. =0.49.
The solid line is the result of the "Stokes layer" theory of Gz
(Ref. 4), the solid circles come from a numerical evaluation of
the Lorenz model of AHL I (Ref. 2), the dashed line is the ap-
proximate solution of the Lorenz model discussed in Appendix
B, the solid triangle is the exact result of Dowden at co=0, and
the solid square is the experimental result of Niemela and Don-
nelly (Ref. 6).

The experiment of ND corresponds to parameter
values o =0.49, co = 113, and has a threshold value
5,"I"=30.3, compared to the QZ value 5',"=25.8. The
sidewall thermal conductance corresponds to a value
A.„=0.27 for which the tricritical o. is

o., =5.5, (2.7b)

6sN ——0. 856, .

The jump in temperature at 5 =5, turns out to be

(2.S)

which means that the bifurcation is expected to be sub-
critical (a &0) for cr =0.49, with a saddle-node (SN) bi-
furcation at
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gT '" 00(z=1,5=5, ) =0.058
Tp, 6 R"" (2.9a)

for A. =0 and

BT '"
=0.049

Tpc
(2.9b)

for A, =0.27. To compare to the experimental values
we first note that ND modulated the top plate, whereas
in our calculation we have assumed modulation of the
bottom plate, Eq. (2.1). Tracing through this difference
we find that Eq. (2.8) is unchanged, and Eq. (2.9) is re-
versed in sign. From Fig. 3(a) of ND we find

5'' =0.905, , (2. 10)

and from their Figs. 2 and 3(a) we estimate, at Ra =Ra„

Tpc
= —0.08+0.02 . (2.1 1)

Thus the position of the saddle node is correctly ob-
tained by our theory, whereas the magnitude of the jurnp
is somewhat underestimated. (See note added in proof. )

The above formula is valid only for 6 fixed and co~ op,
so it does not apply to the case rp, =0. This formula
(3.2) contrasts with the behavior of the Lorenz model for
stress-free boundaries in this limit,

rp, ——1+18crm 5 /co (3.3)

the difference with (3.2) coming from the higher modes
left out of the Lorenz model.

In the limit of zero frequency the threshold was evalu-
ated by Dowden, ' as discussed in Sec. III C of AHL I.
In this limit the Lorenz model is exact for stress-free
boundaries and an excellent approximation in the rigid
case; the result can be expressed as

—,'I =(2vr) 'Re 1 ds[e/m +(I"/2) +(5/m)coss]'

(3.4)

in the notation of AHL I, Eq. (B7). For cr =0.49 and

rp ——0 we find

III. DISCUSSION AND CONCLUSION 6, =6.9, (3.5)

A. Approximate treatment of the Lorentz model

2m ~ approx

-0.5, (3.1a)

whereas an exact solution of the Lorenz model yields'

2m~, exact
-0.454 . (3.1b)

The corresponding numbers for a step modulation are
0.375 (approx. ) and 0.365 (exact). Thus the ansatz (2.2),
(2.3), (A2) works well for the Lorenz model at high fre-
quencies.

B. High- and low-frequency behavior of the OB equations

We may find the high-frequency behavior of the exact
second-order threshold formula of Uenezian" by
evaluating the infinite sum over n in his Eq. (45), using
an asymptotic formula given by Bender and Orszag. '

We find

ro, —1+(2v'2/27)f (a )5 /co'

where

(3.2)

We may test the approximations made in Sec. II by
applying the same procedure to a solution of the Lorenz
equations discussed in AHL I. The results for the linear
threshold are given in Appendix B and displayed as the
dashed line in Fig. 1. The solid points were obtained
from a numerical solution of the Lorenz model for rigid
boundaries, and correspond to a subharmonic bifurca-
tion. At large cu we find, for r p =0,

where we have inserted the parameters m and I for the
rigid case. This is to be compared with the value 5, =2
obtained from Eq. (Bl) (GZ theory), which is only ex-
pected to be correct at high frequencies.

C. Crossover

We have collected the available information on the
linear threshold for subharmonic bifurcations in Fig. 1,
which plots 6, versus co for rp ——0 and o. =0.49. We see
that the result based on scaling with the Stokes layer d,
is closest to the Lorenz model result based on scaling
with the plate separation d = l, for co = co =40, i.e.,
d, (co)=0.22. We presume that the correct answer is
reasonably well approximated by the GZ (Stokes layer)
theory (lower curve) for co & co„, and by the Lorenz mod-
el (solid points) for co &co„. This assumption is support-
ed by the independent calculation at co =0 (solid triangle)
and by the experimental point at su=113 (solid square).
(See note added in proof. ) Moreover, we may test the
validity of the Lorenz truncation by considering the ex-
tended model of Hohenberg and Swift, which includes
the n =2 modes left out of the Lorenz model. An evalu-
ation using this model' shows that for co=co„ the n =2
modes contribute 20%%uo to the average Nusselt number.
For m ~co„ the contribution is smaller, but it becomes of
order unity when co ~~co . Thus it is reasonable to infer
that the Lorenz formulas (based on scaling on the length
d) can be trusted for co &co„, but not for co & ~„.

Finally we comment on the question of the correct
convective pattern in the high-frequency regime.
Niemela and Donnelly interpreted their subcritical bifur-
cation as possible evidence for a hexagon pattern, as dis-
cussed by Roppo et al. ' and the present authors. Our
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crude theory presented in Sec. II is based on a roll pat-
tern and it yields a subcritical bifurcation, as discussed
above. Indeed, the Lorenz model itself has a subcritical
bifurcation for co=113.' ' Thus the subcritical bifurca-
tion does not represent evidence, one way or the other,
for a hexagon pattern. The extended Lorenz model of
Ref. 3 which includes hexagons can also be solved nu-
merically for the parameters of ND, but since the contri-
bution of the n =2 modes turns out' to be as large as
that of the fundamental (n =1) mode, it is clear that the
theory is unreliable. This is to be expected since the
conductive profile is very far from linear in the high-
frequency limit. We therefore conclude that the nature
of the convection pattern cannot be determined in this
regime by the theories we have discussed in the present
paper, and a better calculation is called for to resolve
this issue. We expect, however, that the position of the
saddle node and the order of magnitude of the tempera-
ture jump at the bifurcation will not depend too much
on the nature of the convective pattern.

1Vote added in proof. Further analysis by ND of un-
published data in addition to those in Fig. 3(a) gives
average values 5sg'/5, =0.86 and [AT/To, ]'"~'
= —0.066, respectively, which improve the agreement
between experiment and theory.

Subsequent analysis of unpublished data by ND at
lower frequencies lends support to a crossover at
cu =40. For frequencies just below the crossover the
data agree with the numerical Lorenz-model result, but
at a still lower frequency (to =18) the data fall below the
Lorenz-model value. The reason for this discrepancy is
not known at the present time.
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wi 2(z)=wi 2F(z)
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(A2a)

F(z)=z e (A2b)
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8i q ——8, q@(z),

with

(A2c)

4(z ) =(z+az )e (A2d)
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5I —8 5I++ i
—5I++ A 5I +8 w2

0
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0

(A3d)

1. Linear theory

We neglect the nonlinear terms, insert (2.1) and (2.2)
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these equations approximately making the ansatz

The authors are pleased to acknowledge useful conver-
sations with Cx. Ahlers, R. J. Donnelly, W. D. McCor-
mick, and J. J. Niemela, and computational assistance
from D. Barkley. One of us (J.B.S.) wishes to thank
ATILT Bell Laboratories for its hospitality during part
of this work, as well as the U.S. Department of Energy
for partial support (under Contract No. DE-AS05-
84ER13147).

APPENDIX A

The hydrodynamic equations, in the Oberbeck-
Boussinesq (OB}approximation, may be written as2'4

with

J„=f (8, —k )"F(z )dz

and

rC„=f "(a' k)"N—(z)dz .

Equations (A3) yield

21~ [(1+a) +1]
9(R"")'o'k 'a

C

X[(3k oI, I2} +(3crI—, +.k I2) ],

(A3e)

(A3f)

(A4)

V B,w =o.V w+o V 0+T,
a, O=V'e —wa, T,.„,—V VO,

T=z.VXVX(V VV),
V.V=O,

(Ala)

(A lb)

(A 1c)

(Aid)

where a =~a, k =~k, I2 ——a +3k, I
&

——k +3a, and
a and k are determined by minimizing (A4) with respect
to a and k.

2. Nonlinear theory

where T,o„d is given in Eq. (2.1), o is the Prandtl num-
ber, and we use the notation V = (V, 8, ), where V is the
horizontal Laplacian, V=(u, w) is the velocity, z is the
vertical coordinate, and the units are those of AHL I. a'8,(.-)= q 'ag(r), (A5a)

As explained in Sec. II, Eqs. (2.3) and (Al) lead to the
equation for 8o(z },
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where

0 =miei+m2e22

and

(A5b) and

(J)=(9/8a )A, (1+i, )

e, (z=l)=(9/8a )(1+k )

(A9a)

(A9b)

g (z )=F(z )4(z )

(we here use the notation a =—a, ). It follows that

ep(z)=p J g(z')dz'+c&z .
0

(A5c)

(A6)

The equations for 03 and 04 are
—~e,(z) =a'e, —(m, e, +m, e, )ag(z)

and
~e,(z) =a'e, —(m, e, —m, e, )ag(z),

(A10a)

(A10b)

(J&=—ae, +q'g= —c, .

This gives (2.4) with

L, (z)= (1'g(z) .

For the boundary condition (2.5) we thus have

g =m ]+m 2=(k Kp/J2)p

3'=(Po J2+coQJ~/2)/(crk Ko)+Jzno/k Ep,
8'=(a J~Q —,'coPJ, )/(o—k Kp),

no ——(2/a )(c& +20/Sla ),
2

Cl =C1 P

(A7)

(A8)

The integration constant c& is related to the average
current, (J ) (averaged over horizontal coordinates and
time) by using Eq. (A26) in AHL I, as well as (2.2) and
(2.3). We find

which can be solved by Laplace transforms. We now in-
sert 03, t94, and Oo back into the equations for 6I& 2 and
w

& 2 keeping only the subharmonic terms
[cos(cot/2), sin(cot/2)], and integrate over z. As a result
Eq. (A3) is changed to

5I —8 —8'P 5I++ A + A'P~ m, 0

5I++ A +—A'1( 5I +8+8'Q m2

(A 1 la)
where

(Al jb)

(A 1 lc)

(Al ld)

(A 1 le)

(A 1 1 f)

and

P = —
—,'x (P)+P2),

Q = ——,& (Q&+Qz)

P& ——(27) '(40h
&
l3a +216h2/9a +22h3 la + 10h&/a +2h5 la ),

h, =4a 4a, ,

h2 ———Sa a ~,

h3 ——4a (3—20a )a &,

h~= —12a(Sa —40a +1)a &,

h5 ———6(35X2 a ' —2 X155a +260a —1)a &,

a& ——(4a +1)
P2 ———(1+x ) (1+y ) I6[(x —3x —3x+1)(y —6y +1)—(x +3x —3x —1)(4y —4y)]

+24a(1+y ) '[(x —3x —3x+1)(y —10y +5y)
—(x +3x —3x —1)(5y —10y +1)]I

x= —I —a,
y =2a —1,
Q~ ———(27) '(40h6/3a +216h7/9a +22h&/a +10h9/a +2h, o/a ),
h6 ——2a a),
hq ———2a(1 —4a )a &,

h& ——(48a —48a +1)a &,

h9=24a (16a ' —40a +5)a ~,

h)o ——12(5X2 a ' —101X2 a +135X2 a —15)a, ,

(Al lg)

(A 1 1 h)

(A 1 li)

(A113)

(A 1 lk)

(A111)

(A 1 1m)
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Q2 ———(1+x ) 3(1+y ) [6[x +3x —3x —l)(y —6y +1)+(x —3x —3x+1)(4y —4y)]

+ 24ct ( 1+y )
' [(x '+ 3x —3x —1 ) (y

' —10y '+ Sy )

+(x' —3x —3x+1)(5y —10y +1)]I . (A 1 ln)

Equations (Al 1) yield (2.6) with ct and f3 given by with

a =2' (BB'+A A ') I( A +B ),
P=tc"(A'+B')/(A'+B') .

APPENDIX B

(A12a)

(A12b) and

F, = [ I + (colrr')'] '[ I+( col 9~')']

2p, (sinh p, cosh p, +sin pcos p)
(cos p sinh p, +sin p cosh p)

(8 1f)

(8 1 g)

In this appendix we apply the CsZ approximations
used in Appendix A to the Lorenz model given in Eq.
(2.7) of AHL I.

with p =&co/8=~/2.

2. Nonlinear theory

1. Linear theory

Using the ansatz (2.2) we obtain

52 =( A '+B') I(I'+ +I' ),
where in the notation of AHL I

A =1 (cor, /2—) cr

B =(—,'cor, )(1+cr '),
and for free boundary conditions

I++I = —,'[1+(co/4rr ) ]

while for rigid boundary conditions

I+ +I—=F&F2/4

(8 la)

(8 lb)

(8 lc)

(Bid)

(8 le)

In the lowest nonlinear order we obtain

71 =alb +Ply (82)

(83a)

B'= ——,'cor, [1/2cr —1/b]I[1+(cor, lb) ], (83b)

using the notation of AHL I.

where P =x f+x2, the constants x, and xz are the ex-
pansion coefficients of x(t) in terms of cos(cot/2) and
sin(cot /2), ri is given in (2.6a), and a and p are given by
expressions of the form (A12) with x.= 1 and
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