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If the neutral molecule core of a molecular negative ion has sufficient rotational energy, the weakly
bound electron will autodetach by transfer of molecular rotational energy to this electron. Under
certain circumstances, this process can be theoretically described by an analogy with the internal-
conversion mechanism of nuclear physics. The internal-conversion mechanism is described and its

applicability to the calculation of rotational autodetachment transition rates discussed. It is shown
that under the conditions for applicability of the internal-conversion model, this model is equivalent

to, but much simpler than, the conventional nonadiabatic couplings (both couplings, not just the
gradient-gradient coupling) which result from the breakdown of the Born-Oppenheimer approxima-
tion. One state of FeO, which satisfies the criteria, has a very distinctive dependence of autodetach-
ment transition rate on rotational quantum number. With the help of the internal-conversion model,
this dependence is reasonably well described.

I. INTRODUCTION

In a laser spectroscopy investigation of autodetaching
resonances in FeO, Andersen et al. ' observed negative-
ion states which they designated as the negative-ion com-
plexes FeO[ b3]-s and FeO[ 63]-p, for which the depen-
dence of the autodetachment rate on rotational quantum
number was very different from that of the
valence state of FeO . In their notation, the quantum
numbers in square brackets describe the spin-orbit state of
the ground-state neutral FeO molecule, which acts as the
core of the FeO, while the loosely bound negative-ion
electron moves in an essentially (I =0)- or (1=1)-type
atomic state about that core (hence the appended sand-
-p). An analysis of the experimental data of Andersen
et aI. presented in Sec. III suggests that the FeO core
state may not be a pure 6 multiplet, but may exhibit
significant spin-orbit coupling. Nevertheless, their nomen-
clature will be used throughout this work for
identification purposes. The [ h3]-s excited state of FeO
is electronically stable, lying some 35 cm ' below the A4
ground state of FeO (see Fig. 1). This binding energy is,
however, sufficiently small that there exist rotational
states of the molecular core that bring the overall molecu-
lar energy for this electronic state above the energies of
some lower rotational states of the A4 ground state of
FeO and also above the A3 excited state. These rotation-
al states are unstable against electron detachment by the
transfer of molecular rotational energy into electronic en-
ergy. Very small detachment rates were found for rota-
tional states in the energy range between the A4 ground
and A3 excited states of FeO, and these rates increase in
a roughly linear manner with increasing J. Above the A3
energy threshold the autodetachment rates exhibit a
dramatic increase with increasing J (see Fig. 2).

Autodetachment of states of the type described by An-
dersen et al. as FeO[ b, 3]-s and -p should be treatable
within the formulation of the internal-conversion process
of nuclear physics. The requirements for the validity of

the internal-conversion formulation are that the loosely
bound electron shall in zeroth order be describable by a
potential which is independent of the details of the struc-
ture of the nucleus. In the nuclear-physics case, this is
the potential produced by a point charge Ze. For the case
of vibrational autoionization of Rydberg states of H2,
Russek, Patterson, and Becker showed that for initial
states which satisfied the requirements for its validity, the
internal-conversion formulation gave exactly the same re-
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FIG. 1. Energy-level diagram for FeO and FeO. On the left,
the level scheme of Andersen et al. is reproduced. To the right
of that, the FeO['b~)-s scheme used in the interpretation de-
scribed in the present work is shown. On the extreme right, the
ground-state of neutral FeO is also shown.
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FIG. 2. Autodetachment rates for the valence A h~q2 state,
and the FeO['h3]-s and FeO['A4]-s states. Only experimental
rates, reproduced from Andersen et al. , are shown for the
valence state, since the internal-conversion model does not treat
this state. The rates measured by Andersen et al. for the
FeO['A3]-s state are shown as the open circles. The crosses
show the calculated values for this state, listed in Table I. Pre-
dicted values for the FeO['b, 4]-s are shown by +. . Andersen
et al. claim to see autodetachments from this state, but did not
report the rates.

suits as the nonadiabatic-coupling formulation of Berry.
Although rotational detachment of negative ions may at
first sight seem to be an altogether different process from
vibrational autoionization of Rydberg states of neutral
molecules, the underlying mathematical description of
these two processes are quite the same.

What is of interest in the context of the results of An-
dersen et al. is that the states which they describe in
terms for which the internal-conversion mechanism ought
to be valid exhibit autodetachment rates which are very
different from the autodetachment rates exhibited by the
valence 3 65~2 state, which cannot be treated within the
internal-conversion formulation.

The internal-conversion formulation of the autodetach-
ment process is presented in Sec. II, with a proof of the
equivalence of this formulation with the usual nonadiabat-
ic coupling deferred to Appendix A. The proof, a gen-
eralization of that given in Russek, Patterson, and Becker
to encompass rotational autodetachment, is valid only
when the following two important conditions are met:

(l) The weakly bound electron makes a negligible con-
tribution to the core structure (i.e., a negligible contribu-
tion to the core Hamiltonian).

(2) The dominant contribution of the core to the poten-
tial governing the motion of the weakly bound electron
must be a term which is independent of the orientation of
the core (a monopole or an averaged dipole). The poten-

tial terms produced by the core which do depend on the
details of core orientation must be sufficiently small as to
be treated within the framework of a perturbation expan-
sion.

The internal-conversion formulation does not introduce
any new physics. It can be regarded merely as a conveni-
ence, which greatly simplifies the calculation of autode-
tachment transition matrix elements for those initial states
for which it is applicable. It does more than just that,
however. It also provides a conceptual framework for
better understanding the dependences of the autodetach-
ment transition rates on the quantum number N describ-
ing the rotational state of the molecular negative ion.
This is most important for such a complicated system as
FeO, because different ab initio calculations ' are not
even able to agree on the ground state of FeO. It would,
thus, seem hopeless at this time to attempt an ab initio
calculation of the autodetachment transition rates. Never-
theless, it will be seen that the J dependence exhibits a
characteristic behavior which can be understood with the
help of the internal-conversion formulation. The
internal-conversion formulation provides simple formulas
for the autodetachment rates, with phenomenological pa-
rameters that can be adjusted from experimentally ob-
tained information. In the discussion section, Sec. IV, the
conceptual framework obtained from the internal-
conversion formulation will be translated into the conven-
tional nonadiabatic-coupling terminology.

ttj~ „(r,p) =@~(p)$„(r)

and the probability for ejecting the electron is given by

~ =2~
I
~

l
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(2)

(3)
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In the context of molecular negative ions, the "nucleus"
is the neutral molecule core and the ejection of the loosely
bound electron is known as autodetachment. In this case,
H, (r;,R) is the Hamiltonian for the neutral molecule
core, while

H, =p /2m, +vo(r),

II. THE INTERNAL-CONVERSION FORMULATION

An excited nucleus can decay either by emitting a y-ray
photon or by internal conversion, a process whereby the
excited nucleus transfers its excitation energy directly to
an atomic electron (generally a K-shell electron), thereby
ejecting it. In the theoretical treatment of internal conver-
sion, the unperturbed Hamiltonian Hp is the sum of two
disjoint terms; one describes the nuclear motion, while the
other describes the atomic electron. Only the perturba-
tion term of H couples the two constituents, mediating a
transition in which energy is exchanged between the two.

H(r, p) =H, (p)+H, (r)+ V(r, p) =Ho+ V(r,p),
where p stands for the coordinates of all constituents of
the nucleus. The eigenfunctions of Hp are of the form
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where vo is some combination of a monopole potential
plus a representative dipole potential, V(r, Ro), generated
by the core, and

V(r, R)= Dr(—cosy c—osyo)/(r +d ) (6)

is the deviation of the instantaneous electron-core interac-
tion potential from the potential included in H, . The in-
teraction term is here approximated by a dipole-
interaction term with dipole moment D =qdR, with A a
unit vector pointing along the inernuclear axis and d a
characteristic distance of the order of the size of the mole-
cule. Finally, y is the angle between r and R. The
essence of the autodetachment process can be succinctly
summarized. A dipole potential of sufficient strength will

bind an s electron no matter in which direction, Ro, that
dipole moment points. However, if the direction rotates,
then the bound electron rotates with it, producing a cen-
trifugal force. In the molecular analogue to internal con-
version, the adiabatic approximation for core motion dic-
tates that the overall state of the negative ion is written as
a product of three terms,

1('=@cx(r;;R)X„J(R)p„(r),

where N describes the adiabatic electronic state of the
core, X the vibration-rotation state of the core, and P the
state of the loosely bound electron. The matrix element,
M, is given by

M =(QF
~

V
~
1tl&=(+c~

~
+cl&&XJ'Pk

~

V ~XgP & . (8)

In Eq. (8) dependence of the core state on vibrational
quantum number v has been supressed, inasmuch as no
vibrational excitation is here being discussed. In the adia-
batic approximation for the core state, the electronic state
of the core will not change in the detachment process,
since the interaction term V given by (6) does not involve
the core electrons. However, the experimental data indi-
cate that nonadiabatic coupling within the rotating core
actually does couple different electronic states to a small,
but detectable extent. Hence the factor (4c~

~
@cl) is

not simplified to 6c~ ~I.
A second important property of the matrix element

given by (8) together with the electric dipole interaction
(6) is the existence of a pseudo-selection-rule. Many of
the rotational states with energies just above the detach-
ment threshold can detach only if the core gives up
several units of angular momentum. However, since the
dipole interaction can change the core by only one unit of
angular momentum, these transitions can occur only in
higher order. Each additional order beyond the first
brings in an additional matrix element and energy denom-
inator. Approximating this ratio by a constant, A, then
the ith order contribution, M;, to the matrix element M is
given by

as in the nuclear internal-conversion process. For the
negative-ion detachment process, A is of the order of 0.5,
so that several orders will contribute significantly to the
detachment rate. For each JI, there is both a maximum
and a minimum value for the possible order i of a transi-
tion matrix element. The minimum order n of a transi-
tion is the minimum number of units of angu1ar momen-
tum that the core must give up in order to transfer an en-
ergy to the loosely bound electron greater than its binding
energy Ed. The maximum order possible, denoted by m,
is limited by the amount of molecular rotational energy
available in the initial state,

m =Jr —Jlnt (10)

where J;„, is the intrinsic angular momentum of the core.
The transition rate is given by Eq. (3), where the matrix
element M is given by a perturbation series M; which
must be summed over all orders,

T, =B[(2J+1)n n] Eq . —— (12b)

The factor T arises from the available phase space for
the outgoing electron in the density of final states p(E;) in
(3). The remaining factors of p(E;) have been absorbed
into

I
Mi

I

'.

III. AUTODKTACHMENT IN FeQ

A. Decay of the valence state of FeO

Figure 1 shows an energy-level diagram for FeO, with
the level scheme of Andersen et al. shown on the left,
and the FeO[ b,~]-s levels discussed in the present work
to the right. The black circles in Fig. 2, reproduced from
Andersen et al. ,

' show the autodetachment transition
rates obtained by them for the 2 b, 5~2 valence state of
FeO, which cannot be treated in the internal-conversion
formulation. It can be seen that the rotational state
dependence of the decay rates for this state is qualitatively
different from that for the FeO[ b,~]-s states in Fig. 2, for
which the internal-conversion formulation should be val-
1d.

M= gM;.
i=n

Because different contributions to M; involve different
final states, these contributions add incoherently to

~

M ~, giving

m

(12a)
i=n

where T; is the kinetic energy of the detached electron
when the energy of i units of core angular momentum is
transferred to the weakly bound electron,

M~ ——(4C~
~
@cl)Mi 3 ' (9)

B. Decay of the FeO['h~]-s states of FeO
where Jp= Jr —i Equation (9.) is just a rough approxima-
tion for the dependence of M; on the number of rotational
quanta needed to eject the electron. It is justified in Ap-
pendix C. If 3 &1, then M; monotonically decreases as
the order of the transition increases, albeit not as strongly

Andersen et a/. hold the neutral FeO core to be a
multiplet, showing the A4, h3, and hq components. In
their notation, what appears to the left of the hyphen de-
scribes the state of the neutral FeO core, while the quan-
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Ng ——%4+a +3,
NM ——N3 —a &4,

(13a)

(13b)

where the subscripts 3 and 4 denote the adiabatic states
which Andersen et al. describe as

I
b3) and

I

'b, 4). It
will be seen below that the value for M, predicted by
states considerably overestimates the value obtained from
the data of Andersen et al. It is therefore suggested that
these states may not be pure 6 states, but an admixture
due to coupling of the orbital motion with the spin. In
any event, the projections 3 and 4 wi11 be valid quantum

turn designation to the right of the hyphen describes the
state of the weakly bound electron. If a very weakly
bound s electron attaches to this core, a corresponding
multiplet of FeO states is expected to exist. The
FeO['b, 3]-s state is least controversial, and will therefore
be considered first. The experimental autodetachment
transition rates obtained by Andersen et al. are repro-
duced in Fig. 2. For this state, the major features exhibit-
ed by the autodetachment rates as a function of rotational
quantum number are the following:

(1) The existence of a small autodetachment rate which
increases with rotational quantum number for rotational
states between the autodetachment threshold and the
neutral threshold, which occurs at J = —", .

(2) A dramatic but continuous increase in autodetach-
ment rate as a function of rotational quantum number
above the J= —", threshold rotational quantum number, a
threshold for which autodetachment to the A3 state of
neutral FeO becomes energetically possible.

Below the J= —", threshold (i.e. , in the energy range be-

tween the b4 and h3 states of FeO), detachment can
only occur if the electronic state of the core changes from
A3 to A4. Such a transition cannot arise from V, since V

does not involve the coordinates of the core electrons.
Thus, in the approximation in which the core is treated
adiabatically, the transition matrix element vanishes, be-
cause the initial and final adiabatic electronic states 4cq
and N~~ are orthogonal to each other. It must be remem-
bered, however, that adiabatic electronic states are calcu-
lated with fixed nuclei. If the core is rotating, a small de-
viation from adiabatic behavior mixes the two pure A4
and A3 electronic states of the FeO core. This nonadia-
batic rotational coupling is well known since the early
days of molecular physics, and has been used to discuss A
doubling. ' A more compact treatment of the subject
can be found in Landau and Lifshitz. An alternative
derivation of the rotational coupling term is presented in
Appendix B. This latter derivation is valid when the an-
gular momentum of core rotation N is large compared
with %+X, so that J and N are nearly colinear. In this
case, the core angular velocity co can be taken as approxi-
mately constant and approximately equa1 to J/I, where I
is the moment of inertia of the core. When applicable, the
derivation given in Appendix B is both simpler to use and
more straightforward.

Thus, the proper notation for the two electronic states
should be the admixtures 4~~ and +~M, where I., M,
and U stand for lower, middle, and upper. The mixing is
small, so that a perturbative treatment suffices,

numbers, so that the states will be denoted by 13) and
14). Equation (13b) is incomplete, since 43 also mixes

with 42 as we11 as with 44. However, that coupling is not
important in the energy range under consideration. The
mixing coefficient a is given by

a (J)= 2—JBM, /(s3 —E4),

M, ={4IL,+S. 13) .

(14)

(15)

Since neither L nor S are constants of the motion (only
L, +S, ), the matrix element can only be calculated if ex-
act ab initio states are available. Therefore, M, is here
taken as an adjustable parameter. Depending on how the
spin couples (or does not couple) to the electronic orbital
motion, M, can range anywhere from zero to a value
somewhat larger than unity. To understand this, it wi11

be assumed for heuristic purposes that the core states are
predominantly L =2, despite the fact that L is not a con-
stant of the motion in a diatomic molecule,

44= 14) =
I
L =2,L, =2,S =2,S, =2,j =4,j, =4) .

a (J)= —0.0056JM, . (16)

It will be noted in Eqs. (13) that for fixed J, 4q and 4&M

are orthogonal, but that the overlap does not vanish if the
two are computed for different J,
{+C~

I

c C, ) = {er
I
eM ) = —0.0056(Ji —JF )M, . (17)

The detachment energy for the FeO[ b, i]-s state to the
A4 state of neutral FeO is given by Andersen et al. as

The lower case j is here used to represent the total angu-
lar momentum of electronic motion, since J has been
reserved for the total angular momentum of the entire
molecule, in order to maintain consistency with the nota-
tion of Andersen et al. The state 14) is both a Hund's-
rule state, b4, and one for which j and j, are valid quan-
tum numbers. Three different cases will be considered for
43=

I
3 ): Hund's rule (a) and the two couplings of L

with S which give rise to the extreme values of M, .
Case 1, Hund's rule (a). 13)=

I

b, 3) =
I
L =2,

L, =2,S =2,S, =1). In this case, L and S are decoupled
from one another; each couples only to the nuclear axis,
and j=L+S is not a constant of the motion. Inasmuch
as the orbital motion is unaltered in the transition, the
matrix element of j is equal to that for S, alone,

' 14) = {3
I
S- 14

It wi11 be seen in the comparison with the experimental
data below that this value is much too large, suggesting
that these states are not a 6 multiplet.

Case 2, 13)=
I

L =2,S =2,j =3,j,=3). For this case
and the one which follows, neither L, nor S, separately is
a constant of the motion. For case 2, {3

I j, 14) =0; since
j„acting on 14) does not change the value of j, the ma-
trix element between a j =3 state and a j =4 state van-
ishes. Thus it is seen that M, can be as small as zero.

Case 3, 13)=
I
L =2,S =2;j =4,j, =3). For this

case, {31j 14) =2'
For the 13) and 14) states of FeO, with 8 and c3 E4

taken from Andersen et al. ,
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CR 2~ 2( g 2)i —1 T 1/2

R = 2B/(e—iv
—eiv ) ),

(18a)

while the detachment rate for a transition of ith order to
the A~ state of neutral FeO above the c~ threshold is
given by

c ( g 2)i —1T1/2 (18b)

The factor C incorporates the 2m in Eq. (3) as well as all
the factors of p(E; ) except T (in cm '

), where T; is
the kinetic energy of the detached electron. In addition, it
contains a normalization adjustment, since the matrix ele-

Ed ——35 cm ', although there is some uncertainty about
that value. With the rotational constant 8 =0.517 cm
for the b, states, the lowest rotational level above the de-
tachment limit is the J = —", state, with EJ ——41 cm
However, this state can detach only in sixth or higher or-
der. The minimum orders of the transitions for the de-
tachable states below the FeO A3 energy threshold are
listed in Table I, where Ed has been taken to be 37.2
cm . This value is well within the experimental uncer-
tainty for Ed, and makes the interpretation more reason-
able.

For detachment to the b~ state of neutral FeO, the
contribution of order i to the transition rate below the c~
threshold is given by

ment M~ is not calculated.
For the FeO[ h3]-s state, N =3. The values for the pa-

rameters found for best fit with the experimental transi-
tion rates are C =5800, M, =0.034 and 2 =0.5. The
value for R is not adjusted, but is obtained from the value
for B and the energy difference adopted by Andersen
et al. : 8 =0.0056. With these adopted values, Table I
lists for all rotational levels the separate detachment rates
for the FeO[ b,3]-s state of FeO to the b,4 and to the
A3 states of FeO. Table I also lists the total transition

rates, which is the sum of the two, and compares the
theoretical detachment rates with those measured by An-
dersen et al. Because the adjusted value for M, imposed
by the experimental data turns out to be so much smaller
than that predicted by the Hund's rule (a)-state (0.18, as
compared with 1.0), the Hund's rule description may not
be valid. The interpretation of the experimental data here
presented suggests that I. and S strongly couple, and that
L, (i.e., 6) is not a good quantum number describing the
state.

From the model of an s electron loosely bound to a
neutral FeO core in one of the components of the
multiplet, it follows that there should exist a correspond-
ing multiplet of FeO: FeO[ b, iv]-s. Since the loosely
bound electron is, to a first approximation, independent of
the details of core structure, the separation between these
states of the molecular negative ion should be 185 cm

TABLE I. Autodetachtnent transition rates for the FeO['53]-s state. The transition rates for transi-
tions to the A4 state have been calculated from Eq. (18a), while transitions to the '63 have been calculat-
ed from Eq. (18b). The constant C has been taken to be 5800, with M, =0.034 and 2 =0.5. No listing
indicates no transition is possible. No experimental results were given by Andersen et al. for J& 42, be-

cause the peaks were too broad to be analyzed.

Transitions to 'A4

state of FeO
Transitions to 'A3

state of FeO
Theory

Total transition rates

(10 )

Experiment

17
2

19
2

21
2

23
2

25
2

27
2

29
2

31
2

33
2

35
2

37
2

39
2

41
2

43
2

45
2

47
2

49
2

10

12

13

14

15

16

17

18

19

20

21

22

0.00

0.04

0.08

0.14

0.17

0.22

0.26

0.29

0.32

0.34

0.37

0.40

0.43

0.46

0.48

0.50

0.52

18

15

14

12

12

19

20

21

22

0.05

1.77

5.59

16.09

27.44

0.00

0.04

0.08

0.14

0.17

0.22

0.26

0.29

0.32

0.34

0.37

0.40

0.48

2.23

6.07

16.59

27.96

not observed

not observed

not observed

not observed

not observed

&0
0.07

0.11

0.15

0.19

0.28

0.40

1.31

3.47

6.02

15.10
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the same as the known separation between components of
the 5 triplet of neutral FeO. That would predict the
FeO[ b, 2]-s state of FeO to be at —12 196 cm ', and
the FeO[ b,4]-s to be at —11 826 cm

Andersen et al. did indeed find what appears to be two
close-lying states at —12221 cm ', reasonably close to
the predicted value of —12196 cm ', for which the
dependences of the autodetachment transition rate on ro-
tational quantum number J are quite similar to that found
for the FeO[ b, 3]-s state. However, the thresholds at
which the autodetachment rates begin to rise steeply with
increasing J are located at —12283 cm ' and —12375
cm ', neither of which corresponds to any state of the

triplet of neutral FeO. Andersen et al. interpret
these states as a doublet of FeO[ b, 3]-p states. Such an
identification would indeed account for a doublet, but
does not account for the puzzling threshold energies. A
possibility that could account for both the doublet charac-
ter and the threshold energies is a nonadiabatic rotational
coupling between the A b, 3/2 and FeO[ b q]-s states of
FeO . However, because of the uncertainty surrounding
these states, they will not be analyzed in this work. Fur-
ther work on these states must await a more complete ex-
perimental description.

The third state of the FeO triplet is the FeO['b, 4]-s
state. Andersen et al. found some transition lines in their
spectra which they attributed to this state, but they were
not sufficiently confident to list any transition rates for
this state. The plus symbols in Fig. 2 show the rates cal-
culated in this work for that state. Since there is no lower
state of the FeO core to mix, only the contributions to the
transition rate given by Eq. (18b) are applicable. As a
consequence, only a few rotational states in the sharply
rising J dependence are predicted to fall within the limits
they are able to measure.

IV. DISCUSSION

As stated in the Introduction, the internal-conversion
formulation does not introduce any new physics. Rather,
it is a tool which simplifies the calculation of rotational
autodetachment transition matrix elements for the initial
states for which it is applicable. It provides a simple for-
mula for the transition rates with two phenomenological
parameters, which can be adjusted from experimentally
obtained information. In addition, a nonadiabatic mixing
of adiabatic electronic states of the core, due to its rota-
tional motion, has been introduced to account for the sud-
den change in the J dependence of the autodetachment
rates at the h~ thresh olds. Here too, the internal-
conversion formulation provides a simple formula, with
the introduction of a third parameter. With the parame-
ters adjusted, the fit of the theory to the experimental de-
tachment rates for the FeO[ h3]-s state of FeO investi-
gated by Andersen et al. is rather good. Additionally,
the detachment rates for the FeO[ b, 4]-s state are predict-
ed. This state was seen, but not investigated, by Ander-
sen et al.

The successive "orders" of the transition rates refer to
the number of quanta of core rotational angular momen-
tum lost by the core, the energies of which are transferred

to the detached electron. There are but a finite number of
orders, determined by the minimum amount of rotational
energy needed to detach the electron for one limit, and for
the other limit, the total available amount of core rota-
tional energy. If one elects not to introduce the internal-
conversion formulation, but to stick with conventional
nonadiabatic coupling, then the orders w; of transitions
simply become the different final rotational states of the
residual FeO neutral molecule after detachment. If, as
one would suspect, not all final rotation states are equally
probable, but that the probabilities successively decrease
as JI —JF increases, then a parameter 3 would have to
be introduced to quantify how much. The second param-
eter is, of course, the size of the largest rate. The near
linear dependence of the small transition rates below the
core threshold has already been described in terms of
nonadiabatic coupling even in the internal-conversion con-
ceptual framework. This behavior requires a third and
final parameter to describe the rigidity of the core adiabat-
ic states against nonadiabatic rotational mixing.

Finally, a few words on why the internal conversion
mechanism is inappropriate to study the detachment rates
of the 3 A~ valence states. The internal-conversion for-
mulation requires that to lowest order, the core and the
weakly bound electron are uncoupled. Thus, the interac-
tion term V must be insignificant in forming the states of
Hp', it merely mediates the transition between initial and
final states of H0. This is not true for the 3 A~ states.
Here, V is important in determining the initial state as
well as in mediating the transition. In this case, V must
be decomposed by means of projection operators P and Q
into PVP+ Q VQ, which is incorporated into HD and
determines the states, plus the terms PVQ+QVP, which
mediate the autodetachment transitions. (Indeed, this is
precisely what must be done in describing autoionization
of doubly excited states of atoms. ) A semiphenomeno-
logical treatment of the valence states would have to take
into account the fact that the initial state already has a
substantial overlap with the h~ core state, so that all de-
tachment rates will be substantial. The linear rise in the
detachment rates with increasing J merely reflects the in-
creasing number of final states with increasing JI.

Note added in proof. In the work of T. Andersen
et al. , Ref. 1(b), the nomenclature for the FeO[ b, q] —s
state of FeO has been changed to B A7/p in keeping
with more customary spectroscopic notation.
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APPENDIX A

In this appendix the approximate equivalence of the
internal-conversion formulation with the nonadiabatic



36 ROTATIONAL AUTODETACHMENT OF FeO COMPLEXES 493

coupling formulation will be established. It will be shown
that the transition matrix element Mic obtained from the
internal-conversion formulation, is mathematically equal
to MNAc, the transition matrix element which follows
from the nonadiabatic-coupling formulation, provided that
a condition is fulfilled which is approximately realized
when a diffuse electron interacts with a small, massive
core.

Let X;(R) and X/(R) be vibrational-rotational eigen-
functions of the Hamiltonian describing the motion of the
nuclei,

[—(1/2M) VR + v, +u(R)]X„=E,X„. (A 1)

Here M stands for the reduced mass, V, for the contribu-
tion to the adiabatic potential due to the core constituents,
and v(R) for the electronic contribution of the loosely
bound electron to the potential energy. The exact equali-
ty of the internal-conversion matrix element and the
nonadiabatic coupling matrix element for the transition
will be proven, provided that

I —(E Ef )M[c=(E'—Ef )(efxf
~

v'
~

4 X (A3)

Carrying out the inner product over electronic coordinates
yields

I —(E Ef)(xf(R)
~

u'(R) ~xj(R)& (A4)

where the brackets (
~

& now indicate integration only
over R. We can rewrite (A4) using the Schrodinger equa-
tions for g„,

~ = (X/
l

u
I [—(2M)- 'V,'+ V, + v)X, &

—( [—(2M) —'V~ + V, +v]x/
~

u
~
X; &

= —(2M) '[(X/
~

u
~

V~X;& —(V&X/
~

v ~X;&]

= —(2M) '(X/
~

[u, Vg ] ~
X; &,

where [v, Vg] denotes the commutator. This last step is
justified because Vg is Hermitean. Expanding the com-
mutator, I can be written in the form

I=+(2M) '(Xf
~
V~u) Vg+(V„u) ~X;& . (A5)

v(R)=u/;(R)=(N/(r, , r;R)
~

V(r, R)
~
@;(rj,r;R) ~, (A2)

instead of one of the diagonal terms, u;;(R) or vt/(R).
Here, the inner product notation (~) denotes integration
only over the electronic coordinates r~ of the core elec-
trons and r of the loosely bound electron, and V(r, R) is
the interaction term in the full Hamiltonian that couples
the loosely bound electron to the core constituents. Of
course, the condition (A2) cannot be exactly fulfilled. No
potential experienced by a physical system in state i can
anticipate the transition to state f. Thus, the equivalence
hinges on the approximate condition that u;; and v~y have
such a small effect in determining 7; and Xy that each
may be neglected. In that case each may be replaced by
the equally negligible U~;. This condition is approximately
satisfied if the loosely bound electron makes a negligible
contribution to the nuclear motion (i.e., if for all practical
purposes V, alone determines the core motion).

For convenience, we define a quantity I, given by

Finally, equating the two expressions for I from Eqs. (A3)
and (A5) yields

Mtc= ~@fxf
I

v
I
e x

= I /(E; —E/)

=[2M(E; E/)]—'[(X/
~

2(Vgu). Vgx; &

+(X/
~

(V~u) ~x;&] . (A6)

The matrix element Mic is the transition matrix ele-
ment which follows from the internal-conversion (IC) for-
mulation. This will be compared with the matrix element
MNAC for the transition which follows from the nonadia-
batic coupling (NAC) formulation:

MNAC —(2M) (@fxf I
2Vz 4; Vzx; + (VR Ni )Xt &

(A7)

where, to first order, the electronic state is given by

N„=P, (r; R) P„+g P~ V~„ /(E„—s~ ) (A8)

Here, P, (r;R) denotes the full adiabatic electronic wave
function describing the neutral FeO core, the P„describe
the zeroth-order wave functions for the loosely bound
electron in a core potential which is a monopole or aver-
aged dipole (both of which are independent of R), and

In this treatment, the neutral FeO core is described by an
adiabatic wave function, while the weakly bound electron
is described only to first order in a perturbation expan-
sion.

Equation (A8) and (A9) are now substituted into the
expression for MNAc given by Eq. (A7), remembering that
in the expressions for the electronic states, only P, and u,„
depend on R. After some simplification, we obtain, in a
first-order perturbative treatment of the loosely bound
electron (i.e., to terms linear in v „)

MN&c= —(2M) '[(X/
~

2Vgu V~X; &

+(Xf
~
Vgu ~x;&]/(e; —Ef) (A10)

c; —E/= (E; E/) . — — (Al 1)

With Eq. (Al 1) substituted into Eq. (A10), this latter be-
comes identical to the expression (A6) for M~c. Thus, we
have proven that

In Eq. (A10), u(R) stands for v/;(R), as defined in (A2).
In deriving (A10), we have used the following:

zeroth-order term vanished identically, as did the first-
order term that contained (P,

~
Vg P, ). Two pairs of

first-order terms canceled each other, because they were
identical except for the energy denominators, which were
negatives of one another. We now note that because total
energy (nuclear plus electronic) is conserved, E; E/, the-
energy difference between the initial and final states of the
loosely bound electron, is equal to the negative of the cor-
responding ditference in nuclear energies, —(E; E/), —
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~IC —™NAC (A12)

APPENDIX 8

The solutions for the adiabatic electronic states of a
molecule are always carried out in terms of body-fixed
coordinates. Accordingly, this appendix presents a
derivation of the molecular Hamiltonian in terms of the
rotating body-fixed coordinate system. It must be made
clear at the outset that in the derivation which follows,
there is no such thing as a "body fixed ref-erence frame
The entire physics is (as it must be) carried out in a
space-Axed Newtonian reference frame; the results are
merely expressed in terms of the rotating body-fixed coor-
dinates for convenience in calculating the electronic states,
since these are always calculated in terms of body-fixed
coordinates.

The standard procedure for obtaining the quantum-
mechanical Hamiltonian in any coordinate system
q ~, qq, . . . , q~ requires first finding the Lagrangian in
classical dynamics in terms of the classical variables, q;,
and the velocities, q;,

It is important to note that the proof given above is not
valid in general. Its validity is dependent on two critical
assumptions, which are justified only when the active elec-
tron is strongly coupled to the core by a potential which is
independent of R. Aside from this potential, the residual
coupling to the core must be weak. In that case,
U" =Uff =U'f since all three can be approximated by zero.
At the same time, the states of the active electron will be
essentially determined by a potential which is independent
of R, with the small residual coupling that is dependent
on R producing only perturbative corrections.

y'=y cos (tot ) —z sin(cot ),
z'=y sin(cot)+z cos(cot) .

For the classical-dynamics problem, the classical variables
r'(t) and r(t) describe the trajectory of the electron in the
respective coordinate systems.

inasmuch as Newtonian physics (including the La-
grangian formulation thereof) is valid only in a Newtonian
reference frame, the kinetic energy of the electron must be
referred to a space-fixed coordinate system. Thus,

T = ( m /2) [(x')'+ (y')'+ (x')'] . (86)

Differentiating the three transformation equations (85)
with respect to time and substituting the result into (86)
yields

are not used once the derivation in this appendix is comp-
leted.

Let x'„y', z' denote the space-fixed coordinate system
in the Newtonian reference frame, and let x, y, z denote
the body-fixed coordinate system rotating about the com-
mon x and x axes. This choice is unconventional in dis-
cussing a rotating coordinate system. The selection was
made because all molecular calculations of adiabatic elec-
tronic states always use the body-fixed coordinate system
and always denote the coordinates simply by x, y, z, with
the z direction taken to be along the internuclear axis.
The axis of molecular rotation is here taken to be the x
axis, and for simplicity the x axis of the space-fixed sys-
tem is also taken to lie along this rotation axis. With
these choices, the transformation from space-fixed to
body-fixed coordinates is given by

X =X

L =T —V. (Bl) T =(m/2)(x +y +z )+(m/2)(y +z )co

The kinetic energy must be referred to a Newtonian refer-
ence frame. The Hamiltonian of classical mechanics is
then given by'

X
H —g piqi L (82)

where the momenta p; are defined to be

p;=aL/aq; . (83)

[q;,p, ]=i%5;, . (84)

To avoid cumbersome notation, the operators are denoted
by the same symbols used for the classical variables.
There will be no confusion, because the classical variables

In the Hamiltonian formulation, the coordinates and mo-
menta are considered to be a set of 2X independent vari-
ables which fully determine the dynamical system. There-
fore, the X velocities must be expressed in terms of the
coordinates and momenta from the N equations (83), and
these expressions then substituted into (82) to make the
Hamiltonian a function of q;,p; only. All of this is strict-
ly classical physics. The passage to quantum mechanics is
accomplished by replacing the N pairs of canonical classi-
cal variables q;,p; by operators which satisfy the cummu-
tation rules

+me@(yz —zy) . (87)

etc. ; thus, L can be replaced by T in Eqs. (83). The mo-
menta are found to be

p =aL /ax = a T/ax =mx

py =my —met)z

p, =mz+mmy .

(Bg)

It is important to note that the momenta in the body-fixed
coordinate system are not simply mv, but contain addi-
tional terms the significance of which will be discussed

The first term gives the kinetic energy relative to the rotat-
ing coordinate system. The second term is the so-called
"centrifugal potential, " which gives rise to the "centrifu-
gal force" that would be experienced by an observer in the
body-fixed frame. This term can be understood by recog-
nizing that even if the electron is stationary with respect
to the molecular axes, it still has a velocity rcu in the
space-fixed frame. The third term gives the Coriolis in-
teraction.

Since the potential V is a function of spatial coordinates
only,

aL /ax =aT/ax,
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H =Hp —coL„,

where

(B9)

below. With the equations (B8) the Hamiltonian can be
expressed in terms of r and p. The algebra is a bit com-
plicated, but quite straightforward,

H = (1/2m)(p„+p~ +p, ) coL—„+V(r),
which can be written more compactly as

enough energy to the electron to overcome its binding en-
ergy. Because the interaction term (6) can change the
core angular momentum by only one unit, a change of i
units requires calculation of the transition matrix element
to ith order.

The starting point is the equation from Schiff" relating
successive orders i in the amplitude ak of the kth state in
time-dependent perturbation theory,

knan e
Ho=p /2m+ V(r),

L=r&p .

(B10a)

(B10b) with

H =Hp —a)-L . (B1 1)

Here, Hp denotes the Hamiltonian that one would write
down for a nonrotating molecule. It is the Hamiltonian
the eigenstates of which are the customary adiabatic states
(in the adiabatic approximation, of course). The extra
term —cuL is treated as a perturbation in this work,
since molecular rotational velocities are small. It couples
different adiabatic states and is, therefore, a nonadiabatic
coupling term. Since all terms in nonrelativistic Hamil-
tonians are scalars, the perturbation can be more generally
expressed as —m L,

ak '=0 for k~I,
ar ——I .(0)

(C2)

Since the matrix elements do not depend on time, Eq.
(C 1) can be integrated to obtain the first-order term

ak"(t) =Hks(1 e"' )/cokr— (C3)

where the kth state must be one for which Xk =2Vq —I.
The only significant contribution to the transition rate will
come from a final state F for which energy is conserved,

Writing out L„,
L„=yp, —zp~ =(ymz —zmy)+m(y +z )co,

EF EI —~FI —0 ~

(B12) so that

(C4)

H =Ho —~'(L+S) . (B13)

APPENDIX C

In this appendix, the approximation given by Eq. (9) for
the ith-order matrix element M; will be justified. It is
needed when the molecular core must lose more than one
unit of rotational angular momentum in order to supply

where y +z is the square of the distance to the axis of
rotation. It is seen that L„ is the x component of angular
momentum referred to the space-axed frame, a result
which is not surprising, since the physics has all been exe-
cuted in a space-fixed reference frame. The term mr co in
L gives the angular momentum the electron would have
in the space-fixed frame if it were stationary with respect
to the molecular axes.

The interaction term —coL„ in H couples states of
different z component of orbital angular momentum (i.e.,
X to II). However, all the states under consideration are

but with different z components of spin angular
momentum. To generalize the result (B9) to encompass
mixing of spin states, one need only recognize that L is
the generator for infinitesimal rotations in the Hilbert
space which describes electron translational motion. In
the Hilbert space which describes both spin and orbital
coordinates, the corresponding infinitesimal rotation gen-
erator is L+S, giving rise to the nonadiabatic coupling
term co(L„+S„),or, more —generally, —e.(L+S), giv-
ing

aF"(t)=HF'r [(1—e '
)/coFq J .

The transition rate is given by

w =2m.p(M [

(C5)

(C6)

(C7)

Again, by energy conservation, ~Fz ——0. The first term in
the square brackets of (C7) cannot contribute, because nei-
ther coFk nor cokq can ever be equal to zero. Moreover,
there is only one intermediate state in the sum over k: the
one for which the electron is ejected and the core rotation-
al motion has decreased by a single rotational quantum.
Thus

~p'(r) = (HF'kHkI /~kI )[(1——e '
) /~FI J . (C8)

Assuming all matrix elements are approximately equal,
and denoted simply by H',

where M is that which multiplies the factor in the square
brackets, HF'q in this case.

When two rotational quanta are needed for suscient
energy to eject the electron, then the first-order term can-
not conserve energy. It is then necessary to substitute the
first-order amplitude (C3) into (C 1) and integrate once
again,

&2'(&)= Q (HFkHkz/~kr)
k

X [(1 e" )/coFk —(—1 e' )/coFy J . —
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M, =M,
~

H—'/~t, s ~'=Mt A'. (C9)

(C10)

Similarly, when three rotational quanta are needed to
eject the electron,

M3 =M&
l
(H /coks)(H /cons )

l

'=

~here ~„l is the energy defect when two rotational quanta
have been supplied out of the three needed. The energy
denominators form a decreasing sequence, but that is ig-
nored in the rough approximation given by Eq. (9) of Sec.
II.
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