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Monte Carlo determination of the elastic constants of the hard-sphere solid
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Monte Carlo simulation is used to study the elastic properties of the classical hard-sphere solid.
The elastic constants Cll, Cl2, and C44 are computed for the fcc lattice structure at the melting
density. Poisson's ratio is computed and is shown to be positive. These "exact" results are com-
pared with those of simple models of the hard-sphere solid.

I. INTRODUCTION

Starting with the work of Ramakrishnan and Yus-
souff density-functional theories have been an impor-
tant development in the study of classical solids and the
solid-fluid phase transition. Recently there have been
explorations into the application of these theories to
compute a variety of physical quantities, in particular,
the elastic constants of the solid phase. ' Given this
state of development of the theories, we thought it was
timely to compute the elastic constants of the hard-
sphere solid to provide a useful benchmark for present
and future theoretical treatments. As will be seen below
in Sec. III, the discontinuity in the hard-sphere potential
presents a few technical difficulties for the computation
of the elastic constants. In spite of these problems, the
hard-sphere system was chosen for the following reasons.

(l) The hard-sphere system is a convenient test bed for
the density-functional theories because the exact liquid
structure factor S ( k ) (an essential ingredient of the
theories) is accurately described by the Verlet-Weis
modification of the analytical solution to the Percus-
Yevick equation for hard spheres.

(2) The elastic properties of the hard-sphere solid are
nontrivial in the sense that, due to the discontinuous na-
ture of the potential, there are no "static lattice" or
"harmonic" treatments of the elastic constants. Thus
this work will provide the elastic constants of a highly
anharmonic solid.

(3) Jaric and Mohanty have performed a density-
functional computation of the elastic moduli of the
hard-sphere crystal and have arrived at the result that
Poisson s ratio is negative. Their work, in fact, was the
primary stimulus for this computation.

In Sec. II a fairly careful definition of the isothermal
elastic constants is given. Care is taken since nearly all
treatments of elastic moduli assume zero initial stress,
which is, of course, impossible for the purely repulsive
hard-sphere system. The generalization of Poisson's ra-
tio is anisotropic crystals is also discussed in this section.

Section III is devoted to the description of the Monte
Carlo method used to estimate the elastic constants.
The difficulties presented by the hard-sphere potential
are discussed here, along with possible ways to avoid
them.

In Sec. IV we present our results for the elastic moduli

C», C&2, and C44, the pressure P; and the inverse
compressibility (t3P/Bp)z. at the melting density. The
errors in these quantities are discussed. The moduli are
then used to compute the "generalized" Poisson's ratio
for the system. Lastly, we compare the computed elastic
constants with the predictions of a free-volume theory
and a simple static lattice model.

II. DEFINITION OF THE ELASTIC CONSTANTS

Let x denote the position of a material point in the
solid in the undeformed state. Next, let u;(x) be the dis-
placement of the material point in the ith direction after
the deformation has taken place. The nonlinear La-
grangian strain tensor g;~ describes the state of deforma-
tion of the system and is defined by

BQ; BQ 814 Bzc
'9,J. = + + (l)

a~, a~,- ax, ax,

where 1(i, j (3, and the Einstein summation conven-
tion is in force throughout this paper: repeated indices
are summed over. In computing the elastic constants we
assume that the strain is homogeneous, in other words,

g;z is independent of x. For a more complete discussion
of the above see Wallace.

Now define the Helmholtz free energy F by

I = —k~rlnz,
where k&T is Boltzmann's constant times the tempera-
ture and Z is the canonical partition function of the sys-
tem. Z depends on the number of particles N, the tem-
perature T, the size and shape of the container, and the
boundary conditions. Periodic boundary conditions
were used exclusively in this work. For small enough
strain, plastic flow will not occur and so displacing the
boundary surfaces by an amount corresponding to the
strain g;~ should give rise to a similar transformation of
the crystal's unit cell. Under these conditions the free
energy should be a smooth function of the strain and we
may write

Z =Z(N, V, rl;, T)=, Q(X, V, g,J, T),1

~ t~3N

where
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Q = I dr, I dr2 . f driv exp[ —f3U(r, , rz, . . . , riv)],
v' v' v'

(3)

r; is the position of the ith particle, 1 (i (N; p= 1/kli T;
A is the deBroglie thermal wavelength; and U is the po-
tential energy of interaction of the particles. The in-
tegrals over V' indicate that the coordinates are to range
over the entire deformed volume. The only way the
strain, q;J, enters into the partition function is through
these integration limits.

If we let f denote the free energy per particle,
f =F/N, and let p be the number density of the unde-
formed state, p=X/V, then we are in a position to
define the elastic constants. The constants are defined as
the coefficients in the following expansion of pf about
g;. =0:

pf ( iiij ) =p'f (0)+ Tij 'gij + p j&
kl'9ij fkl '+ (4)

where the N, V, T dependence has been suppressed in f,
TJ, and C;Jkl. All repeated indices are summed over.
T;J is the stress tensor: the component T,J is the force
per unit area in the ith direction acting across an area
element perpendicular to the jth direction. The C;Jkl are
the isothermal elastic constants we wish to calculate.

One can see from Eq. (4) that there is a subtlety in the
definition of C;Jkl when the initial stresses are not all
zero. Since the strain tensor is assumed to be small, one
may argue that the third term in Eq. (1) is of higher or-
der and so one may just as well take the following as the
strain tensor:

Bzl BQj
2 a a

In fact, if all of the Tj are zero then both definitions, (1)
and (5), give rise to exactly the same C;Jkl. However, if
some of the T;~ are not zero then, in Eq. (4), the "terms
of higher order" in TJ g,J clearly modify the next-order
term, ,' C ~kl rj~ qkl. W—e will use definition (1) as the
strain in this paper. While the above discussion is based
purely on definitions, it clarifies exactly what is meant by
"Cij

From the above one can show

gl J IJl & TiJ TJI

ij kl jikl klij

We will use the standard Voigt notation in this paper; it
is a mapping of two indices (ij) onto one (a):ll~l;
22~2; 33~3; 12,21~4; 23,32~S; and 31,13—+6. If
the undeformed system has cubic symmetry, as does the
face-centered-cubic (fcc) crystal considered here, then
one can easily show that a large number of the expan-
sion coefficients in Eq. (4) vanish. In the Voigt notation,
the only nonzero stresses are T], T2, and T3. Further-
more, T&

——T2 ——T3 ———P, which implies the stress tensor
is equal to the negative of the isotropic pressure times
the identity matrix. For a system with cubic symmetry,
of the 6)&6=36 possible C p, only 12 are nonzero, and
among these there are only three independent ones,

I

which can be taken as C», C&2, and C44.
We conclude this section with a short discussion of

Poisson's ratio. For an isotropic system, Poisson's ratio
o~ is the negative of the ratio of the transverse strain to
the longitudinal strain when the stress is incremented
parallel to the longitudinal direction. Thermodynamic
considerations restrict Poisson s ratio to lie between —1

and —,
' for an isotropic system. If o~ is less than zero,

then when one stretches the material in one direction it
expands at right angles to this direction. In general one
believes that materials have o~ &0, but there are some
notable exceptions. For an anisotropic solid, Poisson's
ratio depends on both the direction along which the in-
crement in stress is made and the direction along which
the resulting contraction is measured. If the stress is in-
cremented along n then it is sufficient to know o.

~ for
two mutually orthogonal directions, both perpendicular
to n: the o.

~ associated with contraction along any other
direction may be obtained by the standard rules for ro-
tating tensors. The knowledge of the elastic constants
and initial stresses coupled with the general stress-strain
relations enables one to compute cr~ along an arbitrary
direction in the crystal for any transverse direction. All
of this is discussed in detail in Wallace.

III. COMPUTATIONAL METHOD

The method used in this work to compute the elastic
constants is that of Broughton, with slight modifications
required to treat the discontinuous nature of the hard-
sphere interaction. The method involves performing a
Monte Carlo simulation of a system which has a small,
finite strain applied to it. The strain is imposed by con-
straining each particle to remain inside the deformed
volume V' in Eq. (3). During the course of the simula-
tion the stress tensor of the deformed system is mea-
sured. The linear dependence of this stress tensor on the
(small) strain is then used to "pick out" the elastic con-
stants of the undeformed system. Specifically, consider
the system in the state of deformation given by g;J. By
using Eq. (4) and considering infinitesimal changes in the
strain about the deformed state, one arrives at the fol-
lowing expression for the stress tensor in the deformed
state:

T; ( I g j ) = T; (0)(1 gkk )+C; ki(0)gk—i+ 0 (g ),
where Ig] implies "in the deformed state" and we have
explicitly put "(0)" to signify that the quantity pertains
to the undeformed state. The factor multiplying Tj(0)
comes from the change in the overall factor of p in Eq.
(4). Given that one can perform simulations to estimate
Tj( I 71] ) and Tj(0), one Proceeds to do so at the number
of distinct strains necessary to solve the set of linear
equations [Eq. (7) applied to each IgI] for the elastic
constants C jki(0). Thus if there are n independent elas-
tic constants, one must perform at least n+1 simula-
tions with different strains: one at zero strain to get
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p = —,'(C]]+2C,~+P) .
Bp

(8)

In our work the pressure was computed in the standard
fashion' at three densities; p, p+6p, and p —6p. The
pressures from the last two densities allow one to esti-
mate BP /Bp at p by finite differencing. Equation (8)
gives one piece of information and so two additional
Monte Carlo simulations must be performed with
different types of strain to extract the three independent
elastic constants. We have tried to choose these strains
to minimize errors and maximize convenience as much
as possible.

For lack of a better terminology, we label the two
strains "shear 1" and "shear 2 ~" Shear 1 is defined by
the fo11owing transformation of coordinates:

x =x+ey,

T~(0), and then n more at distinct values of strain to
pick off the CJ«(0). It is also a good idea to do addi-
tional simulations in which the strain is merely scaled up
or down by a factor to test if one is actually in the linear
regime of Eq. (7).

%'e now specialize to the case of cubic symmetry, and
shall shortly specialize to the hard-sphere system. For a
cubic crystal under isotropic pressure one has, from
Wallace,

magnitude of the strain, with, of course, e=O implying
no deformation. Shear 1 is seen to be a simple shear
parallel to the xz plane. Shear 2 can be shown to be a
composite of two simple shears.

An important point to note is that the above two
strains are "invariant" when e is replaced by —e. This
invariance follows from the cubic symmetry: for shear 1

one uses y~ —y and for shear 2 one uses (x,y)~(y, x).
Thus the free energy per particle is an even function of
e: f (e)=f ( —e) for both shears. This fact is of great
convenience, for it implies

B B(e)=, (0)e+O(e'),BE'
which is a useful piece of information since we will be
trying to extract the linear term of this expression. The
lack of a zeroth-order term in (11) is desirable because
we avoid increasing our statistical error by having to
subtract off the constant. The absence of an 0 (e ) term
is equally convenient since it makes it much easier to be
in the linear regime of Eq. (11).

We shall now describe how to compute the left-hand
side of Eq. (11) for the hard-sphere system. The
configurational integral of the system is

g= f dr, f dr~QS(r, —o.), (12)
(& J)

z —z 7

and shear 2 by

x'=(1 —E)x,
y' = (1+e)y,
z'=z .

(9)

(10)

where r;J =
~
r, —rj ~

and cr is the hard-sphere diameter.
The theta function, 8(x), is 1 if x &0 and 0 otherwise.
Let e& be the strain parameter of shear 1 and, similarly,
let e2 correspond to shear 2. Use of Eq. (2) and the
strain definitions, (9) and (10), leads to

(13)

In both cases e is a parameter which determines the
I

1 Bf 2&2 1 1 y;q
2

(e,)=,——g 5(r,, —o)ksTBe, '
1 (e) X . .. " r,, 1+~,

where x,&, y;J, and z,~ are the three components of r; —r~, and 5(x) is the Dirac delta function. The average of an ob-
servable 3 is defined by

(15)

where V(e, ) denotes the volume of the deformed con-
tainer under strain e„(v=1,2), and Q(e„) is the corre-
sponding value of the partition function. Formulas (13)
and (14) are derived in the standard manner in which
one computes the virial expression for the pressure. "
One introduces a change of variables in the integral (12)
such that the integration limits do not change with t

but rather the integrand contains all of the dependence.
The single differentiation of the integrand with respect
to e is then carried out, and the above formulas are ob-
tained by making a change of variables back to the origi-

I

nal integration coordinates.
The delta functions in expressions (13) and (14) cannot

be averaged directly from the configurations generated in
the Monte Carlo simulation. Rather, one breaks up the
pair separation r;J into "bins" of width Ar and averages
the coeScient of the delta function for each bin. Gne
then extrapolates the bin averages to r;J =o.. This tech-
nique is completely analogous to the standard method of
estimating the virial pressure for the hard-sphere sys-
tem. ' The procedure is awkward and the extrapolation
increases the error in the estimates, so a method was
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developed that avoids extrapolation altogether. The
technique involves the construction of an estimator for
the stress based on an analytic expression for the expect-
ed value of a "fictitious" Monte Carlo step. Details are
presented in the Appendix. Unfortunately, the simple
implementation of the method used in this work can be
shown to have infinite variance. Although appearing to
be disastrous, this fact did not prevent the new estima-
tors from providing very useful checks of the standard
extrapolation method.

IV. RESULTS AND DISCUSSION

All of the results presented in this section are given in
reduced units where the hard-sphere diameter o. is taken
as the unit of length and energies are measured in units
of kz T. The system consisted of 500 hard spheres at the
established melting density, p = 1.040 86. ' "Spot
checks" of the eA'ect of finite size were done with sys-
tems of 256 and 864 particles. Any statistically
significant size dependence was extrapolated to N = oo

assuming an O(1/N) correction term. The shape of the
undeformed simulation cell was a cube, and the particles
obeyed periodic boundary conditions.

Table I contains the results of the computation of the
pressure and finite-differenced compressibility. A "pass"
in the Monte Carlo simulation is defined to be one at-
tempted move of every particle in the system. In the
runs of Table I the system was started in a perfect fcc
crystal and then allowed to relax for 5000 passes. Infor-
mation used to determine the pressure was then collect-
ed over the next 300000 passes. Runs of this length
gave an accuracy in the pressures of about 0.1%, which
was satisfactory for the purposes of the paper.

From Eqs. (1), (4), (9), and (10) one can derive the fol-
lowing expressions:

the same quantity for shear 2. By assuming p (r ) varies
smoothly with r one may extrapolate the bin averages to
obtain p . Figure 1 shows the results for the bin aver-
ages of shear 1 with e&

——0.02. The extrapolations were
performed by evaluating a quadratic fit to the first three
bin averages at r =o.. Consistency was checked by redo-
ing the fit with the bin width doubled, and by using both
bin sizes to extrapolate away the O(b, r ) error term.
For both types of checks the estimated systematic error
was found to be much smaller than the statistical error.
Furthermore, the elastic moduli and pressures that were
computed from the estimators requiring no extrapolation
(see the Appendix) agreed with the extrapolated values
quoted in this paper to within the observed error bars.
The program was also tested by running in the fluid
phase at p =0.7 and the results for p& and p2 were con-
sistent with the fluid being unable to support a shear
(which corresponds to p&

——0 and p2 ——2P). In the solid
runs, the system was always started from the perfect
crystal obtained by straining the fcc lattice by the corre-
sponding e . Typically, the initial 5000 passes were dis-
carded and averages were computed over the next
100000—300 000 passes.

Table II contains the extrapolated bin averages of the
quantities p& and p2 along with their standard errors for
three values of the strain parameter. The O(e ) depen-
dence in Eqs. (16) and (17) cannot be discerned from the
statistical error. In Table III the finite-size dependencies
of the pressure and the elastic constants are presented.
Also presented in Table III are the results of the free-
volume theory. In this theory each sphere is allowed to
wander about in the cage defined by fixing its neighbors

36.0

p( =~ (E))=(C44 P)+O(ef)—B

BE&
(16) 32.0

and

pp= (62) =2(C» —C, 2 P)+ 0 (ez)—~ Bf 2 (17)
28.0

The quantities p& and p2 are found by using the Monte
Carlo estimates of the right-hand sides of Eqs. (13) and
(14), respectively. As mentioned in the previous section,
p& and p2 can be computed by extrapolating certain "bin
averages, " which are now described. Let p, &(r) denote
(p/E, b, r ) times the average of the coefficient of the delta
function in Eq. (13) for all pairs with separation between
r ,'b, r and r+ ,'Ar—Simila—rly—, le.t pz(r) correspond to

24, 0

20.0

TABLE I. Data used to compute the pressure and inverse
compressibility of the X = 500 hard-sphere fcc solid.

ap
Bp

1 2.0
0, 000 0.025 0.050 0.075

1.020 86
1.040 86
1.060 86

10.899+0.01
11.671+0.01
12.524+0.01

37.3+1.2
42.3+0.3
47.4+ 1.1

FIG. 1. Bin averages of the elastic p ~
——C44 —P for

p=1.04086, @=0.02. The estimated value for the elastic con-
stant is the intercept at r —cr =0. The curve is the quadratic fit
used to find the intercept.
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at their lattice positions. ' Let uf(p, e) denote the free
volume this "wandering" particle may sweep out at den-
sity p and strain e. The configurational integral, (12) is
approximated by

where

p2

pI, T

C»=C»+~S T

C]2 ——Ci2+6,S T

S T
C44 ——C44,

(19)

TABLE II. Extrapolated bin averages of the elastic con-
stants for the N =500 particle system at various values of the
strain parameter e. (p = 1.040 86. )

0.01
0.02
0.04

33.7+0.7
34.1+0.5
34.8+0.3

82.1+1.0
84.2+0.8
83.6+0.5

Q=uf
which implies

f= —ksT lnuf(p, e) .

One may next work out the pressure, inverse compressi-
bility, and elastic moduli by taking the appropriate
derivatives of vf with respect to p or e. For the density
dependence of vf with @=0Buehler's analytic expression
was used. ' The e dependence was computed by the use
of a crude Monte Carlo scheme that unforrnly fille a
cube known to contain the free volume with roughly 10
random points. The fraction of points falling inside the
free volume provides an estimate of vf . As is well
known, ' the simple free-volume theory gives surprising-
ly good results for the pressure and compressibility even
at the melting density (the theory is asymptotically exact
for the equation of state as the density approaches close
packing: p~&2). The free-volume predictions of the
elastic moduli p& and p2 are, however, less satisfactory.
The most obvious difference occurs for the shear-2
modulus p2, which is almost three times too large.
(There is some indication of singular behavior in the e
derivatives of the free volume at e=O, in which case this
free-volume model would be inapplicable. ) It would be
interesting to see if the correlated cell theories, such as
the one due to Hardy and Day, ' give more reasonable
predictions.

Finally, in Table IV we present the results for
Poisson's ratio along three symmetry directions, n, in
the crystal. As was mentioned in Sec. II, for each n one
must compute Poisson's ratio along two mutually or-
thogonal directions in the plane transverse to n. These
two directions shall be denoted by ii and l. ii corre-
sponds to the direction in the plane containing n and the
z axis, and J. is orthogonal to both n and ~i. For exam-
ple, if n is [110] then ii is [001] and l is [110]. Since the
pressure of the hard-sphere system is directly propor-
tional to the temperature, it is a simple matter to con-
vert the isothermal elastic constants to ones for adiabatic
processes (constant entropy). The conversion is given by

and the superscripts S and T refer to adiabatic and iso-
thermal processes, respectively. Poisson's ratios for both
types of processes are shown in Table IV. Evidently, the
isothermal crz(i) is slightly negative along the [110]
direction. This implies that if the sample is compressed
along [110] then there will be a slight contraction in the
[110] direction. The contraction is more than compen-
sated by the large expansion that occurs in the [001]
direction. It is obvious that the sum of v~(ii) and oz(l)
provides a measure of the overall change in area in the
transverse plane when the stress is incremented along n.
In all cases considered here the sum of the two Poisson
ratios has been found to be positive.

To test the Monte Carlo result that cr~(110,l) &0, a
simple lattice model was used. The goal was to come up
with any reasonable physical system that possessed a
negative cr (110,J.). As shall be seen below, it is some-
what amazing that the lattice model does much better
than the free-volume model in predicting the Poisson's
ratios. The lattice model consists of a system of parti-
cles interacting via a pair potential u(r)=e(cr jr) . At
T =0 one may compute the elastic constants and
Poisson s ratios easily because the particles are localized
at the fcc lattice sites. Now consider the hard-sphere
limit (n~ao ) of these quantities. At finite n, all of the
elastic constants and the pressure have exactly the same
density dependence [equal to e(o /d)" for large n, where
d is the nearest-neighbor distance], which cancels out of
the Poisson's ratio. Therefore the Poisson's ratios ap-
proach finite values independent of the density as
n ~ ao. The results of this "model" are presented for
n =12 and n = ~ in Table IV. Several points may be
noted. First, the n =12 static lattice has cr (110,l) &0.
This suggests that the similar result from the Monte
Carlo runs is not unreasonable. Second, the hard-sphere
limit (n ~ oo ) of this model is remarkably close to the
simulation results. Although the model is a drastic ap-
proximation to the actual hard-sphere system, evidently
enough information remains about how particles rear-
range under stress to allow for semiquantitative agree-
ment. Lastly, it must be noted that the model has a
severe defect in that any distinction one would hope to
make between the isothermal and adiabatic elastic con-
stants was lost when the limit T~O was taken.

V. SUMMARY

In this study the elastic moduli and generalized
Poisson's ratios have been computed to roughly 1% ac-
curacy at the melting density for the fcc hard-sphere sys-
tem. These data allow all of the elastic properties of the
solid to be computed: one may derive the stress-strain
relations, the acoustic wave propagation velocities and
polarization vectors, etc. For compressions along the
[100] and [111]directions Poisson's ratio was found to
be positive, which agrees with one's physical intuition
about the system. Along the [110] direction, (iso-
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TABLE III. Finite-size dependence of the pressure and the elastic constants of the solid at
p=1.04086. The last line contains the results of the free-volume theory described in the text.

256
500
864

free volume

11.640+0.01
11.671+0.01
11.668+0.01
11.687+0.02
10.87

P
Bp

41.9+0.4
42.3+0.3
42.6+0.3
42.9+0.4
43.97

33.7+0.4
34.1+0.5

~ 0 ~

34.1+0.5
43.3+0.4

81.1+0.8
84.2+0.8

~ ~ ~

83.3+0.8
229.0+9.0

thermal) compressions shall cause a slight contraction
along the [110] direction and a larger expansion along
[001].

The free-volume theory gives rather disappointing pre-
dictions for the shear moduli in light of its success for
the equation of state. Surprisingly, a very simple, T =0,
static lattice model gives quite accurate results for the
isothermal Poisson's ratios. It would be interesting to
see if any extensions of the lattice model would give an
even better description of the elastic properties (such as
the computation of the adiabatic Poisson's ratios). It is
hoped that the results of this study shall provide a useful
test case for any theories attempting to compute the
elastic moduli of the hard-sphere system or more com-
plicated solids.

Note added. After the completion of this work, we
obtained the results of a density-functional study by
Velasco and Tarazona. ' By extrapolating their results to
the density we have worked at, it appears that their
values of C», C&2, and cr~(100) are in very good agree-
ment with ours. The value of C44 P they obta—in ( =58)
is 70%%uo in excess of ours. However, we have been in-
formed by the above authors that they are presently im-
proving their calculation and expect significant changes
in their value of C44. We are performing Monte Carlo
simulations at one of the densities they have studied to
provide a better comparison between our results and
theirs.

ACKNOWLEDGMENTS

P. W. Leung and N. W. Ashcroft are to be thanked
for very useful discussions on the elastic properties of

crystals. We are indebted to K. E. Schmidt for being in-
strumental in coming up with the Monte Carlo estimator
described in the Appendix. Most of all, we would like to
thank C. L. Henley, who stimulated this work by provid-
ing us with the density-functional results of Jaric along
with encouragement during all phases of this study.
This research was supported by the National Science
Foundation (NSF) under Grant No. DMR-85-13300 and
was conducted using the supercomputing resources of
the Center for Theory and Simulation in Science and En-
gineering at Cornell University, which receives funding
in part from the National Science Foundation, New
York State, and the IBM Corporation.

APPENDIX

In this appendix an estimator to compute averages of
the form

ii 1;„= g r8)0), 4r)h ,)r;, ))
1

j (&0
(21)

where O(x, b r) is equal to 1 if 0 & x & b, r and is zero oth-
erwise. The region where 8(r i —cr, Ar) = 1 defines a
spherical shell of thickness Ar about particle j. In the
following we will assume that

h;—: 5r~ —o. h rj
j («)

for the hard-sphere system is presented. The estimator
avoids the extrapolation process described in Secs. III
and IV.

First, define the bin average by

TABLE IV. Poisson's ratio along three directions in the fcc hard-sphere solid at the melting density. Results for both iso-
thermal and adiabatic processes are given along with the free-volume predictions. The static lattice results are included with the
isothermal quantities. Due to the cubic symmetry of the system o.,(~~)=o„(l) for the [100] and [111]directions.

[100] [110],
//

o.~, isothermal

[110],J.

Monte Carlo
Free volume
Lattice n = 12
Lattice n ~ «e

0.344+0.002
0.077+0.015
0.425
0.333

0.552+0.008
0.070+0.015
0.824
0.500

—0.054+0.009
0.165+0.010

—0.116
0.000

0.186+0.004
0.129+0.003
0.288
0.200

o.~, adiabatic

Monte Carlo
Free volume

0.445+0.001
0.311+0.008

0.748+0.009
0.276+0.016

0.066+0.009
0.389+0.014

0.380+0.002
0.338+0.002
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lim h;b;„——h; .
Dr ~0

Consider a configuration of the system drawn from an
equilibrium ensemble by the standard Metropolis algo-
rithm. ' One is, of course, allowed to do one more
Metropolis Monte Carlo step of the ith particle before
performing the average in Eq. (21). This last step is
chosen from a valid Metropolis transition probability for
which one can analytically compute the probability of
moving to the region where 0=1. One can then obtain
an expression for the expected contribution to (21) from
taking this last Monte Carlo step. ' Finally, one takes
the limit Ar ~0 of the analytic expression to arrive at an
estimator for h; that involves no extrapolation.

Most likely, a very good estimator results from a tran-
sition probability which uniformly samples the available
volume surrounding the initial point r; (i.e., the region of
space containing the ith particle's initial position that
does not intersect with any other sphere). In this case
the estimator for h; would involve the ratio of the sur-
face area of the available volume to the available volume
since Ar times this ratio is the probability of moving to
the shell in which 0=1. The computation of the above
surface area and volume is a rather tedious geometry
problem we chose to avoid [not to mention the average
of h (r) over the surface].

The method used here involves the following transi-
tion probability for particle i.

(1) Sample a random direction u.
(2) Move particle i along +u until contact with anoth-

er sphere is made. Call this sphere the "+ " sphere and
the distance moved l+.

(3) Do the same as step (2) in the —u direction. Call
this sphere the "—"sphere and the distance moved I

(4) Choose the new position of particle i at random
uniformly on the line segment of length l =(l+ +l )

that connects the points of contact with the + and—

P =pkg T 1+— (22)

where

1

6
1 1

i
cos(8+)

i i
cos(8 )

i

+

and 0+ is the angle between u and the relative separation
at contact for the + and —spheres. Analogous expres-
sions may be derived for the shear moduli p& and p2.
One may, of course, improve one's statistics by sampling
a number of random directions for each particle (15 were
used in this work). Unfortunately, 6; is an unbounded
estimator since both the cosines and the length of the
line segment can go to zero. In fact, one may show that
both types of singularities lead to logarithmically diverg-
ing terms in the variance of 6;. This difficulty may be
removed by considering the estimator involving the en-
tire available volume mentioned above or by the method
of "reselection. "' Neither consideration was imple-
mented in this work. Curiously, in the extensive compu-
tations performed here (over 10 directions sampled), al-
though many non-Gaussian, "outlier" points were ob-
served, in all cases the averages computed from (22)
agreed with their extrapolated counterparts to within the
error estimate of the latter. This observation strongly
suggests that the weakness of the logarithmic divergence
actually allows one to obtain meaningful averages from
(22).

spheres.
One can show that this transition probability satisfies

detailed balance and is therefore an acceptable choice for
the Metropolis algorithm. It is a simple geometry prob-
lem to compute the expected contribution of step (4) to
Eq. (21). The result for the pressure is

'Present address: Courant Institute of Mathematical Sciences,
New York University, 251 Mercer Street, New York, NY
10012.

T. V. Ramakrishnan and M. Yussouf, Phys. Rev. B 19, 2775
(1979).

M. D. Lipkin, S. A. Rice, and U. Mohanty, J. Chem. Phys. 82,
472 (1985).

M. V. Jaric and U. Mohanty, Phys. Rev. Lett. 58, 230 (1987).
L. Verlet and J. J. Weis, Phys. Rev. A 5, 939 (1972).

5D. C. Wallace, in Solid State Physics, edited by H. Ehrenreich,
F. Seitz, and D. Turnbull (Academic, New York, 1970), Vol.
25, p. 301.

6J. P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic, London, 1976).

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics (Addison-Wesley, Reading, Mass. , 1964),
Vol ~ II, Chaps. 38 and 39.

R. Lakes, Science 235, 1038 (1987); A. E. H. Love, 3 Treatise
on the Mathematical Theory of Elasticity, 4th ed. (Dover,

New York, 1944).
9J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, Phys. Rev.

B 25, 4651 (1982).
oJ. A. Barker and D. Henderson, Mol. Phys. 21, 187 (1971).
T. L. Hill, Statistical Mechanics (McGraw-Hi11, New York,
1956).

D. Frenkel and A. Ladd, J. Chem. Phys. 81, 3188 (1984)~

R. J. Buehler, R. H. Wentorf, Jr., J. O. Hirschfelder, and C.
F. Curtiss, J. Chem. Phys. 19, 61 (1950).
B. J. Alder, W. G. Hoover, and D. A. Young, J. Chem. Phys.
49, 3688 (1968).
R. J. Hardy and M. A. Day, Phys. Rev. B 29, 4108 (1984).
E. Velasco and P. Tarazona, Phys. Rev. A 36, 979 (1987).

' N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J, Chem. Phys. 21, 1087 (1953).
M. H. Kalos and P. Whitlock, Monte Carlo Methods (Wiley,
New York, 1986), Vol. I, pp. 103—107.
H. A. Steinberg and M. H. Kalos, Nucl. Sci. Eng. 44, 406
(1971).


